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Introduction

We connect two seemingly faraway problems:

Traveling Salesman Problem (TSP)

Algebraic problem of satisfying the maximum

number of equations in a given system of linear

equations (over finite fields)

The first problem belongs to the fundamental and most

important problems in combinatorial optimization.

(formal

definition follows later for both problems)
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Introduction

An instance of the Metric TSP (shortest-path metric)
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Introduction

Definition (Metric TSP)

Input:

A metric space (V , d) (weighted graph, shortest

path metric)

Objective:

Find an ordering of the points v1, v2, . . . , vn
such that d(v1, v2) + d(v2, v3) + . . . + d(vn, v1)

is minimized
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Metric TSP

The Metric TSP

NP-hardness proved by Karp in 1972 – Leaving less hope

for efficient algorithms solving the Metric TSP to

optimality

Best known efficient approximation algorithm achieves a

factor 3/2 [Christofides’76]

APX-hard [Papadimitriou & Yannakakis’93]

First explicit inapproximability bound: 5381/5380

[Engebretsen’00]
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Metric TSP

Explicit inapproximability constants for the Metric TSP

3813/3812 [Böckenhauer et al.’00]

389/388 [Engebretsen & Karpinski’01]

220/119 [Papadimitriou & Vempala’06]

185/184 [Lampis’12]

Theorem (Karpinski, Lampis & S.’13)

It is NP-hard to approximate the Metric TSP within any factor

less than 123/122.
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The Reduction (Metric TSP)

Starting point: Inapproximability result for MAX-E3LIN2

Definition (MAX-E3LIN2)

Input: A system L of linear equations mod 2, in which

equations are of the form xi ⊕ xj ⊕ xk = b

with b ∈ {0, 1}
Output: An assignment to the variables in L that

maximizes the number of satisfied equations

Approximation lower bound: MAX-E3LIN2 is NP-hard to

approximate to within any factor less than 2. [Håstad’01]
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The Reduction (Metric TSP)

High-level view of the reduction:

Construct a reduction from MAX-E3LIN2 to Metric TSP

(L → TSP instance)

Reduction is easier if the number of occurrences of each

variable in L is bounded by a constant (to control the

consistency of variable gadgets)
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The Reduction (Metric TSP)

High-level view of the reduction:

→ We need inapproximability results for MAX-E3LIN2

with bounded number of occurrences of variables

(Intermediate problem: MAX-E3occ-LIN2)

Sparse instance methods (amplifier graphs)

[Berman&Karpinski’99]

→ Prove inapproximability for MAX-E3occ-LIN2

→ Prove our result for Metric TSP
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Sparse Instance Methods

First approach: Use expander graphs to decrease the number

of occurrences of variables:

Restrict ourselves to expander with maximum degree ∆

bounded by a small constant

Main property: In any partition of the vertices into two

sets (S ,V \S), there are many edges crossing from S to

V \S

This is achieved even though the graph has only few edges!

Definition (Strong expander)

A graph G = (V ,E ) is a strong expander if for all S ⊆ V

with |S | ≤ |V |/2, we have that |{e ∈ E | |e ∩ S | = 1}| ≥ |S |.
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Sparse Instance Methods

Construction for reducing the number of occurrences

For each variable x :

Let n be the number of occurrences of x in L :

Replace the ith occurrence of the variable x with a new

variable xi

Construct a strong expander G with vertices {1, 2, . . . , n}

For each edge {i , j} in G , add the equation: xi ⊕ xj = 0

Note: x ⊕ y = 0 if and only if x = y (equality equation)
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Optimal assignments are consistent

1 Suppose that in the new instance the optimal assignment

sets some of the xi ’s to 0 and others to 1 → partition of

the strong expander

(Note: Each edge crossing the

partition corresponds to an unsatisfied equation!)

2

3
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Sparse Instance Methods

Edges crossing from S to V \S
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Optimal assignments are consistent

1 Suppose that in the new instance the optimal assignment

sets some of the xi ’s to 0 and others to 1 → partition of

the strong expander (Note: Each edge crossing the

partition corresponds to an unsatisfied equation!)

2 → it is always optimal to give the same value to all xi ’s.

Because bounded-degree expander graphs are sparse, we

added only a linear number of equations.

3 This gives some inapproximability factor
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Sparse Instance Methods

Unfortunately:

For ∆ < 6, strong expander are yet not known to exist!

Second approach: we use amplifier graphs instead

Amplifier graphs

Amplifier graphs are strong expander graphs for a

certain subset of vertices (contact vertices)

The other vertices are thrown in to make consistency

easier to achieve (checker vertices)

This allows us to get smaller ∆
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Sparse Instance Methods

Special class of amplifier graphs with ∆ = 3:

Wheel amplifier graphs [Berman & Karpinski’99]

Construction:

Start with a cycle on 7n vertices

Every seventh vertex is a contact vertex

Other vertices are checker vertices

There is a perfect matching on the set of checker vertices
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Sparse Instance Methods

Wheel amplifier graph
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Sparse Instance Methods

Amplifier graphs tailored for the Metric TSP:

Bi-wheel amplifier graph [Karpinski, Lampis & S.’13]
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Sparse Instance Methods

Construct the intermediate instance L3occ , in which each

variable appears in exactly 3 equations:

Variables x corresponding to contact vertices appear in

equations with three variables x ⊕ y ⊕ z = b

Each cycle edge {i , i + 1}: xi ⊕ xi+1 = 0 (equality eqn)

Each matching edge {i , j}: xi ⊕ xj = 1 (inequality eqn)

Note: x ⊕ y = 1 if and only if x 6= y (inequality equation)
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The Reduction (Metric TSP)

The Reduction (Metric TSP)

cont’d
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The Reduction (Metric TSP)

Construction (L3occ → TSP instance):

Given an instance L3occ ,

For each variable, create a vertex

For each equality equation, create an edge

For each inequality equation, add an inequality gadget

(will be shown on the next slide)

Add gadgets for equations with 3 variables (containing the

contact vertices)
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The Reduction (Metric TSP)

Forced edge: any tour is forced to use this edge at least once

Inequality gadgets for xi ⊕ xj = 1 and xi+1 ⊕ xk = 1

xi+1xi

xj xk
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The Reduction (Metric TSP)

Simulating xi ⊕ xi+1 = 0, xi ⊕ xj = 1 and xi+1 ⊕ xk = 1

xi+1xi

xj xk
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Final remarks:

For equations with 3 variables, we construct a more

efficient gadget (not shown)

Some work needs to be done to ensure connectivity

Similar ideas can be used for Asymmetric TSP
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Asymmetric TSP

Definition (Asymmetric TSP)

Input:

An asymmetric metric space (V , d) (arc

weighted digraph)

Objective:

Find a tour in (V , d) with minimum length
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Asymmetric TSP

Theorem (Papadimitriou & Vempala (STOC’00))

It is NP-hard to approximate the Asymmetric TSP to within

any factor less than 117/116.

By using our bi-wheel amplifier methods, we obtain:

Theorem (Karpinski, Lampis & S.’13)

It is NP-hard to approximate the Asymmetric TSP to within

any factor less than 75/74.

First improvement after more than a decade!
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TSP with Distances 1 and 2

Definition (TSP with distances 1 and 2 ((1,2)-TSP))

Input:

A graph G = (V ,E )

Objective:

Find a tour with minimum length

d(vi , vj) = 1 if {vi , vj} ∈ E and 2 otherwise
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TSP with Distances 1 and 2

Theorem (Engebretsen & Karpinski (ICALP’01))

It is NP-hard to approximate the (1,2)-TSP to within any

factor less than 741/740.

By using wheel amplifier graphs combined with ”parity

gadgets”, we obtain:

Theorem (Karpinski & S.’12)

It is NP-hard to approximate the (1,2)-TSP to within any

factor less than 535/534.
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Input:

A graph G = (V ,E )

Objective:

Find a tour with minimum length

d(vi , vj) is defined by the shortest-path distance

of vi and vj in G
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Subcubic & Cubic Instances

Comparison of inapproximability results

Problem Previously best known Our Result

(1,2)-TSP 1291/1290

1141/1140

on cubic graphs [CKK02]

(1,2)-TSP 787/786

673/672

on subcubic graphs [CKK02]

Graphic TSP –

1153/1152

on cubic graphs

Graphic TSP –

685/684

on subcubic graphs

First inapproximability results at all!
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Further Results
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Steiner Tree with distances 1 and 2
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Conclusions:

Reduction method for several TSP problems leading to

improved inapproximability thresholds

But, the inapproximability constants are still very low!

Further research:

Improving the inapproximability bounds for the TSP and

the Steiner Tree problem?

Better amplifier constructions?

New global PCP-system constructions for TSP?
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Further research:

On upper bounds side:

Improving general upper approximation bound for metric

TSP below 3/2 (1.50)?

Improving upper approximation bound for cubic Graphic

TSP below 4/3 (1.33)?
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Thank You!
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