On Approximability of Bounded Degree Instances of Selected Optimization Problems

Richard Schmied

Dept. of Computer Science and Hausdorff Center for Mathematics, University of Bonn

> Ph.D. Thesis Defense July 25, 2013

We connect two seemingly faraway problems:

We connect two seemingly faraway problems:

• Traveling Salesman Problem (TSP)

We connect two seemingly faraway problems:

- Traveling Salesman Problem (TSP)
- Algebraic problem of satisfying the maximum number of equations in a given system of linear equations (over finite fields)

We connect two seemingly faraway problems:

- Traveling Salesman Problem (TSP)
- Algebraic problem of satisfying the maximum number of equations in a given system of linear equations (over finite fields)

The first problem belongs to the fundamental and most important problems in combinatorial optimization.

We connect two seemingly faraway problems:

- Traveling Salesman Problem (TSP)
- Algebraic problem of satisfying the maximum number of equations in a given system of linear equations (over finite fields)

The first problem belongs to the fundamental and most important problems in combinatorial optimization. (formal definition follows later for both problems)

Definition (Metric TSP)	
Input:	
Objective:	

Definition (Metric TSP)

Input: A metric space (V, d) (weighted graph, shortest

path metric)

Objective:

Definition (Metric TSP)

Input: A metric space (V, d) (weighted graph, shortest

path metric)

Objective: Find an ordering of the points v_1, v_2, \ldots, v_n

such that $d(v_1, v_2) + d(v_2, v_3) + \ldots + d(v_n, v_1)$

 $is\ minimized$

The Metric TSP

 NP-hardness proved by Karp in 1972 – Leaving less hope for efficient algorithms solving the Metric TSP to optimality

The Metric TSP

- NP-hardness proved by Karp in 1972 Leaving less hope for efficient algorithms solving the Metric TSP to optimality
- Best known efficient approximation algorithm achieves a factor 3/2 [Christofides'76]

The Metric TSP

- NP-hardness proved by Karp in 1972 Leaving less hope for efficient algorithms solving the Metric TSP to optimality
- Best known efficient approximation algorithm achieves a factor 3/2 [Christofides'76]
- APX-hard [Papadimitriou & Yannakakis'93]

The Metric TSP

- NP-hardness proved by Karp in 1972 Leaving less hope for efficient algorithms solving the Metric TSP to optimality
- Best known efficient approximation algorithm achieves a factor 3/2 [Christofides'76]
- APX-hard [Papadimitriou & Yannakakis'93]
- First explicit inapproximability bound: 5381/5380
 [Engebretsen'00]

Explicit inapproximability constants for the Metric TSP

• 3813/3812 [Böckenhauer et al.'00]

Explicit inapproximability constants for the Metric TSP

- 3813/3812 [Böckenhauer et al.'00]
- 389/388 [Engebretsen & Karpinski'01]

Explicit inapproximability constants for the Metric TSP

- 3813/3812 [Böckenhauer et al.'00]
- 389/388 [Engebretsen & Karpinski'01]
- 220/119 [Papadimitriou & Vempala'06]

Explicit inapproximability constants for the Metric TSP

- 3813/3812 [Böckenhauer et al.'00]
- 389/388 [Engebretsen & Karpinski'01]
- 220/119 [Papadimitriou & Vempala'06]
- 185/184 [Lampis'12]

Explicit inapproximability constants for the Metric TSP

- 3813/3812 [Böckenhauer et al.'00]
- 389/388 [Engebretsen & Karpinski'01]
- 220/119 [Papadimitriou & Vempala'06]
- 185/184 [Lampis'12]

Theorem (Karpinski, Lampis & S.'13)

It is NP-hard to approximate the Metric TSP within any factor less than 123/122.

The Reduction (Metric TSP)

Starting point: Inapproximability result for MAX-E3LIN2

Starting point: Inapproximability result for MAX-E3LIN2

Definition (MAX-E3LIN2)

Input: A system $\mathscr L$ of linear equations mod 2, in which

equations are of the form $x_i \oplus x_j \oplus x_k = b$

with $b \in \{0, 1\}$

Output: An assignment to the variables in $\mathscr L$ that

maximizes the number of satisfied equations

Starting point: Inapproximability result for MAX-E3LIN2

Definition (MAX-E3LIN2)

Input: A system $\mathscr L$ of linear equations mod 2, in which

equations are of the form $x_i \oplus x_j \oplus x_k = b$

with $b \in \{0, 1\}$

Output: An assignment to the variables in $\mathscr L$ that

maximizes the number of satisfied equations

Approximation lower bound: MAX-E3LIN2 is NP-hard to approximate to within any factor less than 2. [Håstad'01]

High-level view of the reduction:

• Construct a reduction from MAX-E3LIN2 to Metric TSP $(\mathscr{L} \to \mathsf{TSP} \; \mathsf{instance})$

High-level view of the reduction:

- Construct a reduction from MAX-E3LIN2 to Metric TSP $(\mathscr{L} \to \mathsf{TSP} \; \mathsf{instance})$
- Reduction is easier if the number of occurrences of each variable in $\mathcal L$ is bounded by a constant (to control the consistency of variable gadgets)

High-level view of the reduction:

 → We need inapproximability results for MAX-E3LIN2 with bounded number of occurrences of variables

High-level view of the reduction:

 → We need inapproximability results for MAX-E3LIN2 with bounded number of occurrences of variables (Intermediate problem: MAX-E3occ-LIN2)

High-level view of the reduction:

- We need inapproximability results for MAX-E3LIN2 with bounded number of occurrences of variables (Intermediate problem: MAX-E3occ-LIN2)
- Sparse instance methods (amplifier graphs)
 [Berman&Karpinski'99]

High-level view of the reduction:

- We need inapproximability results for MAX-E3LIN2 with bounded number of occurrences of variables (Intermediate problem: MAX-E3occ-LIN2)
- Sparse instance methods (amplifier graphs)
 [Berman&Karpinski'99]
 - → Prove inapproximability for MAX-E3occ-LIN2

The Reduction (Metric TSP)

High-level view of the reduction:

- We need inapproximability results for MAX-E3LIN2 with bounded number of occurrences of variables (Intermediate problem: MAX-E3occ-LIN2)
- Sparse instance methods (amplifier graphs)
 [Berman&Karpinski'99]
 - → Prove inapproximability for MAX-E3occ-LIN2
 - → Prove our result for Metric TSP

Sparse Instance Methods

First approach: Use expander graphs to decrease the number of occurrences of variables:

First approach: Use expander graphs to decrease the number of occurrences of variables:

ullet Restrict ourselves to expander with **maximum degree** Δ bounded by a small constant

First approach: Use expander graphs to decrease the number of occurrences of variables:

- ullet Restrict ourselves to expander with **maximum degree** Δ bounded by a small constant
- Main property: In any partition of the vertices into two sets $(S, V \setminus S)$, there are **many edges crossing** from S to $V \setminus S$

First approach: Use expander graphs to decrease the number of occurrences of variables:

- ullet Restrict ourselves to expander with **maximum degree** Δ bounded by a small constant
- Main property: In any partition of the vertices into two sets $(S, V \setminus S)$, there are **many edges crossing** from S to $V \setminus S$

This is achieved even though the graph has only few edges!

First approach: Use expander graphs to decrease the number of occurrences of variables:

- ullet Restrict ourselves to expander with **maximum degree** Δ bounded by a small constant
- Main property: In any partition of the vertices into two sets $(S, V \setminus S)$, there are **many edges crossing** from S to $V \setminus S$

This is achieved even though the graph has only few edges!

Definition (Strong expander)

A graph G = (V, E) is a **strong expander** if for all $S \subseteq V$ with $|S| \le |V|/2$, we have that $|\{e \in E \mid |e \cap S| = 1\}| \ge |S|$.

Construction for reducing the number of occurrences

For each variable x:

Construction for reducing the number of occurrences

For each variable x:

Let n be the number of occurrences of x in L:
 Replace the ith occurrence of the variable x with a new variable x_i

Construction for reducing the number of occurrences

For each variable x:

- Let n be the number of occurrences of x in L:
 Replace the ith occurrence of the variable x with a new variable x_i
- ullet Construct a strong expander G with vertices $\{1,2,\ldots,n\}$

Construction for reducing the number of occurrences

For each variable x:

- Let n be the number of occurrences of x in L:
 Replace the ith occurrence of the variable x with a new variable x_i
- ullet Construct a strong expander G with vertices $\{1,2,\ldots,n\}$
- For each edge $\{i,j\}$ in G, add the equation: $x_i \oplus x_j = 0$

Construction for reducing the number of occurrences

For each variable x:

- Let n be the number of occurrences of x in L:
 Replace the ith occurrence of the variable x with a new variable x_i
- ullet Construct a strong expander G with vertices $\{1,2,\ldots,n\}$
- For each edge $\{i,j\}$ in G, add the equation: $x_i \oplus x_j = 0$

Note: $x \oplus y = 0$ if and only if x = y (equality equation)

Optimal assignments are consistent

• Suppose that in the new instance the optimal assignment sets some of the x_i 's to 0 and others to 1 \rightarrow partition of the strong expander

2

(3

Optimal assignments are consistent

① Suppose that in the new instance the optimal assignment sets some of the x_i 's to 0 and others to $\mathbf{1} \to \text{partition}$ of the strong expander (Note: Each edge crossing the partition corresponds to an unsatisfied equation!)

2

(3

Optimal assignments are consistent

- ① Suppose that in the new instance the optimal assignment sets some of the x_i 's to 0 and others to $\mathbf{1} \to \text{partition}$ of the strong expander (Note: Each edge crossing the partition corresponds to an unsatisfied equation!)

Optimal assignments are consistent

- Suppose that in the new instance the optimal assignment sets some of the x_i 's to 0 and others to 1 \rightarrow partition of the strong expander (Note: Each edge crossing the partition corresponds to an unsatisfied equation!)
- 3 This gives some inapproximability factor

Unfortunately:

For Δ < 6, strong expander are yet not known to exist!

Unfortunately:

For Δ < 6, strong expander are yet not known to exist!

Second approach: we use amplifier graphs instead

Unfortunately:

For Δ < 6, strong expander are yet not known to exist! **Second approach:** we use amplifier graphs instead

Amplifier graphs

 Amplifier graphs are strong expander graphs for a certain subset of vertices (contact vertices)

Unfortunately:

For Δ < 6, strong expander are yet not known to exist! **Second approach:** we use amplifier graphs instead

Amplifier graphs

- Amplifier graphs are strong expander graphs for a certain subset of vertices (contact vertices)
- The other vertices are thrown in to make consistency easier to achieve (checker vertices)

Unfortunately:

For Δ < 6, strong expander are yet not known to exist! **Second approach:** we use amplifier graphs instead

Amplifier graphs

- Amplifier graphs are strong expander graphs for a certain subset of vertices (contact vertices)
- The other vertices are thrown in to make consistency easier to achieve (checker vertices)
- ullet This allows us to get smaller Δ

Special class of amplifier graphs with $\Delta = 3$:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

• Start with a cycle on 7n vertices

Special class of amplifier graphs with $\Delta = 3$:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

- Start with a cycle on 7n vertices
- Every seventh vertex is a contact vertex

Special class of amplifier graphs with $\Delta = 3$:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

- Start with a cycle on 7*n* vertices
- Every seventh vertex is a contact vertex
- Other vertices are checker vertices

Special class of amplifier graphs with $\Delta = 3$:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

- Start with a cycle on 7*n* vertices
- Every seventh vertex is a contact vertex
- Other vertices are checker vertices
- There is a perfect matching on the set of checker vertices

Amplifier graphs tailored for the Metric TSP:

Amplifier graphs tailored for the Metric TSP:

Construct the intermediate instance \mathcal{L}_{3occ} , in which each variable appears in exactly 3 equations:

• Variables x corresponding to contact vertices appear in equations with three variables $x \oplus y \oplus z = b$

Construct the intermediate instance \mathcal{L}_{3occ} , in which each variable appears in exactly 3 equations:

- Variables x corresponding to contact vertices appear in equations with three variables $x \oplus y \oplus z = b$
- Each cycle edge $\{i, i+1\}$: $x_i \oplus x_{i+1} = 0$ (equality eqn)

Construct the intermediate instance \mathcal{L}_{3occ} , in which each variable appears in exactly 3 equations:

- Variables x corresponding to contact vertices appear in equations with three variables $x \oplus y \oplus z = b$
- Each cycle edge $\{i, i+1\}$: $x_i \oplus x_{i+1} = 0$ (equality eqn)
- Each matching edge $\{i,j\}$: $x_i \oplus x_j = 1$ (inequality eqn)

Construct the intermediate instance \mathcal{L}_{3occ} , in which each variable appears in exactly 3 equations:

- Variables x corresponding to contact vertices appear in equations with three variables $x \oplus y \oplus z = b$
- Each cycle edge $\{i, i+1\}$: $x_i \oplus x_{i+1} = 0$ (equality eqn)
- Each matching edge $\{i,j\}$: $x_i \oplus x_j = 1$ (inequality eqn)

Note: $x \oplus y = 1$ if and only if $x \neq y$ (inequality equation)

The Reduction (Metric TSP)

The Reduction (Metric TSP) cont'd

The Reduction (Metric TSP)

Construction ($\mathscr{L}_{3occ} \to \mathsf{TSP}$ instance):

Given an instance \mathcal{L}_{3occ} ,

For each variable, create a vertex

Construction ($\mathcal{L}_{3occ} \rightarrow \mathsf{TSP}$ instance):

- For each variable, create a vertex
- For each equality equation, create an edge

Construction ($\mathscr{L}_{3occ} \to \mathsf{TSP}$ instance):

- For each variable, create a vertex
- For each equality equation, create an edge
- For each inequality equation, add an inequality gadget

Construction ($\mathscr{L}_{3occ} \to \mathsf{TSP}$ instance):

- For each variable, create a vertex
- For each equality equation, create an edge
- For each inequality equation, add an inequality gadget (will be shown on the next slide)

Construction ($\mathscr{L}_{3occ} \to \mathsf{TSP}$ instance):

- For each variable, create a vertex
- For each equality equation, create an edge
- For each inequality equation, add an inequality gadget (will be shown on the next slide)
- Add gadgets for equations with 3 variables (containing the contact vertices)

Forced edge: any tour is forced to use this edge at least once

Final remarks:

 For equations with 3 variables, we construct a more efficient gadget (not shown)

Final remarks:

- For equations with 3 variables, we construct a more efficient gadget (not shown)
- Some work needs to be done to ensure connectivity

Final remarks:

- For equations with 3 variables, we construct a more efficient gadget (not shown)
- Some work needs to be done to ensure connectivity
- Similar ideas can be used for Asymmetric TSP

Asymmetric TSP

Definition (Asymmetric TSP)	
Input:	
Objective:	

Definition (Asymmetric TSP)

Input: An asymmetric metric space (V, d) (arc

weighted digraph)

Objective:

Definition (Asymmetric TSP)

Input: An asymmetric metric space (V, d) (arc

weighted digraph)

Objective: Find a tour in (V, d) with minimum length

Theorem (Papadimitriou & Vempala (STOC'00))

It is NP-hard to approximate the Asymmetric TSP to within any factor less than 117/116.

By using our bi-wheel amplifier methods, we obtain:

Theorem (Papadimitriou & Vempala (STOC'00))

It is NP-hard to approximate the Asymmetric TSP to within any factor less than 117/116.

By using our bi-wheel amplifier methods, we obtain:

Theorem (Karpinski, Lampis & S.'13)

It is NP-hard to approximate the Asymmetric TSP to within any factor less than 75/74.

Theorem (Papadimitriou & Vempala (STOC'00))

It is NP-hard to approximate the Asymmetric TSP to within any factor less than 117/116.

By using our bi-wheel amplifier methods, we obtain:

Theorem (Karpinski, Lampis & S.'13)

It is NP-hard to approximate the Asymmetric TSP to within any factor less than 75/74.

First improvement after more than a decade!

TSP with Distances 1 and 2

Definition (TSP with distances 1 and 2 ((1,2)-TSP))

Input:

Objective:

Definition (TSP with distances 1 and 2 ((1,2)-TSP))

Input: A graph G = (V, E)

Objective:

Definition (TSP with distances 1 and 2 ((1,2)-TSP))

Input: A graph G = (V, E)

Objective: Find a tour with minimum length

 $d(v_i, v_i) = 1$ if $\{v_i, v_i\} \in E$ and 2 otherwise

Theorem (Engebretsen & Karpinski (ICALP'01))

It is NP-hard to approximate the (1,2)-TSP to within any factor less than 741/740.

By using wheel amplifier graphs combined with "parity gadgets", we obtain:

Theorem (Engebretsen & Karpinski (ICALP'01))

It is NP-hard to approximate the (1,2)-TSP to within any factor less than 741/740.

By using wheel amplifier graphs combined with "parity gadgets", we obtain:

Theorem (Karpinski & S.'12)

It is NP-hard to approximate the (1,2)-TSP to within any factor less than 535/534.

Graphic TSP

Definition (Graphic TSP)

Input:

Objective:

Definition (Graphic TSP)

Input: A graph G = (V, E)

Objective:

Definition (Graphic TSP)

Input: A graph G = (V, E)

Objective: Find a tour with minimum length

 $d(v_i,v_j)$ is defined by the shortest-path distance

of v_i and v_j in G

Implying the best up to now inapproximability factor for Graphic TSP

Comparison of inapproximability results			
Problem	Previously best known	Our Result	
(1,2)-TSP	1291/1290		
on cubic graphs	[CKK02]		
(1,2)-TSP	787/786		
on subcubic graphs	[CKK02]		
Graphic TSP	_		
on cubic graphs			
Graphic TSP	_		
on subcubic graphs			

Comparison of inapproximability results			
Problem	Previously best known	Our Result	
(1,2)-TSP	1291/1290	1141/1140	
on cubic graphs	[CKK02]		
(1,2)-TSP	787/786		
on subcubic graphs	[CKK02]		
Graphic TSP	_		
on cubic graphs			
Graphic TSP	_		
on subcubic graphs			

Comparison of inapproximability results			
Problem	Previously best known	Our Result	
(1,2)-TSP	1291/1290	1141/1140	
on cubic graphs	[CKK02]		
(1,2)-TSP	787/786	673/672	
on subcubic graphs	[CKK02]		
Graphic TSP	_		
on cubic graphs			
Graphic TSP	_		
on subcubic graphs			

Comparison of inapproximability results			
Problem	Previously best known	Our Result	
(1,2)-TSP	1291/1290	1141/1140	
on cubic graphs	[CKK02]		
(1,2)-TSP	787/786	673/672	
on subcubic graphs	[CKK02]		
Graphic TSP	_	1153/1152	
on cubic graphs			
Graphic TSP	_		
on subcubic graphs			

First inapproximability results at all!

Comparison of inapproximability results			
Problem	Previously best known	Our Result	
(1,2)-TSP	1291/1290	1141/1140	
on cubic graphs	[CKK02]		
(1,2)-TSP	787/786	673/672	
on subcubic graphs	[CKK02]		
Graphic TSP	-	1153/1152	
on cubic graphs			
Graphic TSP	_	685/684	
on subcubic graphs			

First inapproximability results at all!

Further Results

Further related results on approximability of the problems of:

Shortest Superstring

- Shortest Superstring
- Maximum Compression

- Shortest Superstring
- Maximum Compression
- Steiner Tree with distances 1 and 2

- Shortest Superstring
- Maximum Compression
- Steiner Tree with distances 1 and 2
- Metric Dimension

- Shortest Superstring
- Maximum Compression
- Steiner Tree with distances 1 and 2
- Metric Dimension
- Hypergraph Vertex Cover

 Reduction method for several TSP problems leading to improved inapproximability thresholds

- Reduction method for several TSP problems leading to improved inapproximability thresholds
- But, the inapproximability constants are still very low!

- Reduction method for several TSP problems leading to improved inapproximability thresholds
- But, the inapproximability constants are still very low!

Further research:

 Improving the inapproximability bounds for the TSP and the Steiner Tree problem?

- Reduction method for several TSP problems leading to improved inapproximability thresholds
- But, the inapproximability constants are still very low!

Further research:

- Improving the inapproximability bounds for the TSP and the Steiner Tree problem?
- Better amplifier constructions?

- Reduction method for several TSP problems leading to improved inapproximability thresholds
- But, the inapproximability constants are still very low!

Further research:

- Improving the inapproximability bounds for the TSP and the Steiner Tree problem?
- Better amplifier constructions?
- New global PCP-system constructions for TSP?

Further research:

On upper bounds side:

• Improving general upper approximation bound for metric TSP below 3/2 (1.50)?

Further research:

On upper bounds side:

- Improving general upper approximation bound for metric TSP below 3/2 (1.50)?
- Improving upper approximation bound for cubic Graphic TSP below 4/3 (1.33)?

Thank You!