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We connect two seemingly faraway problems:
e Traveling Salesman Problem (TSP)

o Algebraic problem of satisfying the maximum
number of equations in a given system of linear
equations (over finite fields)

The first problem belongs to the fundamental and most
important problems in combinatorial optimization. (formal
definition follows later for both problems)
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Introduction

Definition (Metric TSP)

Input:

Objective:

A metric space (V/, d) (weighted graph, shortest

path metric)

Find an ordering of the points v, vs, ..
such that d(vi1, v2) + d(vo,v3) + ... + d(vn, v1)

is minimized

.7Vn

o’
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The Metric TSP

@ NP-hardness proved by Karp in 1972 — Leaving less hope
for efficient algorithms solving the Metric TSP to
optimality
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factor 3/2 [Christofides'76]
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Metric TSP

The Metric TSP

@ NP-hardness proved by Karp in 1972 — Leaving less hope
for efficient algorithms solving the Metric TSP to
optimality

@ Best known efficient approximation algorithm achieves a
factor 3/2 [Christofides'76]

o APX-hard [Papadimitriou & Yannakakis'93]

@ First explicit inapproximability bound: 5381/5380
[Engebretsen’00]
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@ 3813/3812 [Bockenhauer et al.’00]
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Metric TSP

Explicit inapproximability constants for the Metric TSP

@ 3813/3812 [Bockenhauer et al.’00]
@ 389/388 [Engebretsen & Karpinski'01]

@ 220/119 [Papadimitriou & Vempala'06]

@ 185/184 [Lampis'12]

Theorem (Karpinski, Lampis & S."13)
It is NP-hard to approximate the Metric TSP within any factor
less than 123/122.
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Starting point: Inapproximability result for MAX-E3LIN2

Definition (MAX-E3LIN2)

Input: A system .Z of linear equations mod 2, in which
equations are of the form x; ® x; ® xx = b
with b € {0,1}
Output:  An assignment to the variables in . that
maximizes the number of satisfied equations

universitétbonnl

8 /41



The Reduction (Metric TSP)

Starting point: Inapproximability result for MAX-E3LIN2

Definition (MAX-E3LIN2)

Input: A system .Z of linear equations mod 2, in which
equations are of the form x; ® x; ® xx = b
with b € {0,1}
Output:  An assignment to the variables in . that
maximizes the number of satisfied equations

Approximation lower bound: MAX-E3LIN2 is NP-hard to
approximate to within any factor less than 2. [Hastad'01]
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The Reduction (Metric TSP)

High-level view of the reduction:

@ Construct a reduction from MAX-E3LIN2 to Metric TSP
(£ — TSP instance)
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The Reduction (Metric TSP)

High-level view of the reduction:

@ Construct a reduction from MAX-E3LIN2 to Metric TSP
(£ — TSP instance)

@ Reduction is easier if the number of occurrences of each
variable in .Z is bounded by a constant (to control the
consistency of variable gadgets)
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The Reduction (Metric TSP)

High-level view of the reduction:

@ — We need inapproximability results for MAX-E3LIN2
with bounded number of occurrences of variables
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The Reduction (Metric TSP)

High-level view of the reduction:

@ — We need inapproximability results for MAX-E3LIN2
with bounded number of occurrences of variables
(Intermediate problem: MAX-E3occ-LIN2)

@ Sparse instance methods (amplifier graphs)
[Berman&Karpinski'99]
— Prove inapproximability for MAX-E3occ-LIN2
— Prove our result for Metric TSP
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Sparse Instance Methods

First approach: Use expander graphs to decrease the number
of occurrences of variables:

@ Restrict ourselves to expander with maximum degree A
bounded by a small constant

@ Main property: In any partition of the vertices into two
sets (S, V\S), there are many edges crossing from S to
V\S

This is achieved even though the graph has only few edges!

Definition (Strong expander)

A graph G = (V, E) is a strong expander if for all S C V
with |S| < |V|/2, we have that |[{e € E | |enS| =1} > |S|.
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Construction for reducing the number of occurrences

For each variable x:
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Sparse Instance Methods

Construction for reducing the number of occurrences

For each variable x:

@ Let n be the number of occurrences of x in .Z:
Replace the ith occurrence of the variable x with a new
variable x;

@ Construct a strong expander G with vertices {1,2,...,n}

@ For each edge {/,j} in G, add the equation: x; ® x; = 0

< g
universitétbonnl

13 /41



Sparse Instance Methods

Construction for reducing the number of occurrences

For each variable x:

@ Let n be the number of occurrences of x in .Z:
Replace the ith occurrence of the variable x with a new
variable x;

@ Construct a strong expander G with vertices {1,2,...,n}

@ For each edge {/,j} in G, add the equation: x; ® x; = 0

Note: x @ y = 0 if and only if x = y (equality equation)
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Optimal assignments are consistent

© Suppose that in the new instance the optimal assignment
sets some of the x;'s to 0 and others to 1 — partition of
the strong expander
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© Suppose that in the new instance the optimal assignment
sets some of the x;'s to 0 and others to 1 — partition of
the strong expander (Note: Each edge crossing the
partition corresponds to an unsatisfied equation!)
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Sparse Instance Methods

Edges crossing from S to V\S
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Optimal assignments are consistent

© Suppose that in the new instance the optimal assignment
sets some of the x;'s to 0 and others to 1 — partition of
the strong expander (Note: Each edge crossing the
partition corresponds to an unsatisfied equation!)

@ — it is always optimal to give the same value to all x;'s.
Because bounded-degree expander graphs are sparse, we
added only a linear number of equations.
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Optimal assignments are consistent

© Suppose that in the new instance the optimal assignment
sets some of the x;'s to 0 and others to 1 — partition of
the strong expander (Note: Each edge crossing the
partition corresponds to an unsatisfied equation!)

@ — it is always optimal to give the same value to all x;'s.
Because bounded-degree expander graphs are sparse, we
added only a linear number of equations.

© This gives some inapproximability factor
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Sparse Instance Methods

Unfortunately:
For A < 6, strong expander are yet not known to exist!
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Sparse Instance Methods

Unfortunately:
For A < 6, strong expander are yet not known to exist!
Second approach: we use amplifier graphs instead

Amplifier graphs

o Amplifier graphs are strong expander graphs for a
certain subset of vertices (contact vertices)

@ The other vertices are thrown in to make consistency
easier to achieve (checker vertices)

@ This allows us to get smaller A
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Sparse Instance Methods

Special class of amplifier graphs with A = 3:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

@ Start with a cycle on 7n vertices
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Sparse Instance Methods

Special class of amplifier graphs with A = 3:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

@ Start with a cycle on 7n vertices
@ Every seventh vertex is a contact vertex

@ Other vertices are checker vertices
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Sparse Instance Methods

Special class of amplifier graphs with A = 3:

Wheel amplifier graphs [Berman & Karpinski'99]

Construction:

@ Start with a cycle on 7n vertices
@ Every seventh vertex is a contact vertex
@ Other vertices are checker vertices

@ There is a perfect matching on the set of checker vertices
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Sparse Instance Methods

Wheel amplifier graph
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Sparse Instance Methods

Amplifier graphs tailored for the Metric TSP:

Bi-wheel amplifier graph [Karpinski, Lampis & S.'13]
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Amplifier graphs tailored for the Metric TSP:

Bi-wheel amplifier graph [Karpinski, Lampis & S.'13]
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Sparse Instance Methods

Construct the intermediate instance -£3,cc, in which each

variable appears in exactly 3 equations:

@ Variables x corresponding to contact vertices appear in
equations with three variables x &y &z = b
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variable appears in exactly 3 equations:

@ Variables x corresponding to contact vertices appear in
equations with three variables x &y &z = b

@ Each cycle edge {i,i + 1}: x; @ xj31 = 0 (equality eqn)
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Sparse Instance Methods

Construct the intermediate instance -£3,cc, in which each

variable appears in exactly 3 equations:

@ Variables x corresponding to contact vertices appear in
equations with three variables x &y &z = b

@ Each cycle edge {i,i + 1}: x; @ xj31 = 0 (equality eqn)

e Each matching edge {i,j}: x; ® x; = 1 (inequality eqn)

o
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Sparse Instance Methods

Construct the intermediate instance -£3,cc, in which each

variable appears in exactly 3 equations:

@ Variables x corresponding to contact vertices appear in
equations with three variables x &y &z = b

@ Each cycle edge {i,i + 1}: x; @ xj31 = 0 (equality eqn)

e Each matching edge {i,j}: x; ® x; = 1 (inequality eqn)

Note: x @ y = 1 if and only if x # y (inequality equation)

o
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The Reduction (Metric TSP)
cont’d
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The Reduction (Metric TSP)

Construction (-Z30cc — TSP instance):

Given an instance B3occ,

@ For each variable, create a vertex

v
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Given an instance B3occ,
@ For each variable, create a vertex

@ For each equality equation, create an edge

v
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The Reduction (Metric TSP)

Construction (-Z30cc — TSP instance):

Given an instance B3occ,
@ For each variable, create a vertex
@ For each equality equation, create an edge

@ For each inequality equation, add an inequality gadget
(will be shown on the next slide)
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The Reduction (Metric TSP)

Construction (-Z30cc — TSP instance):

Given an instance B3occ,
@ For each variable, create a vertex
@ For each equality equation, create an edge

@ For each inequality equation, add an inequality gadget
(will be shown on the next slide)

@ Add gadgets for equations with 3 variables (containing the

contact vertices)
universitétbonnl
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The Reduction (Metric TSP)

Forced edge: any tour is forced to use this edge at least once

Inequality gadgets for x; © x; = 1 and x;11 ® x, =1

--
- "o
9%

~

v
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The Reduction (Metric TSP)

Simulating x; ® Xi+1 =0, x; @ Xj = 1 and Xi+1 D xx =1

v
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The Reduction (Metric TSP)

Simulating x; ® Xi+1 =0, x; @ Xj = 1 and Xi+1 D xx =1

X; Xit+1

v
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The Reduction (Metric TSP)

Simulating x; ® Xi+1 =0, x; @ Xj = 1 and Xi+1 D xx =1

Xi Xit1

v
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The Reduction (Metric TSP)

Sub-tour visiting all contact vertices of one cycle

< g
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Sub-tour visiting all contact vertices of one cycle
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The Reduction (Metric TSP)

Final remarks:

@ For equations with 3 variables, we construct a more
efficient gadget (not shown)
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@ Some work needs to be done to ensure connectivity
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The Reduction (Metric TSP)

Final remarks:

@ For equations with 3 variables, we construct a more
efficient gadget (not shown)

@ Some work needs to be done to ensure connectivity

@ Similar ideas can be used for Asymmetric TSP
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Asymmetric TSP
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Asymmetric TSP

Definition (Asymmetric TSP)

Input:

Objective:
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Asymmetric TSP

Definition (Asymmetric TSP)

Input:

Objective:

An asymmetric metric space (V/, d) (arc
weighted digraph)
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Asymmetric TSP

Definition (Asymmetric TSP)

Input:

Objective:

An asymmetric metric space (V/, d) (arc
weighted digraph)

Find a tour in (V, d) with minimum length
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Asymmetric TSP

Theorem (Papadimitriou & Vempala (STOC'00))

It is NP-hard to approximate the Asymmetric TSP to within
any factor less than 117/116.

By using our bi-wheel amplifier methods, we obtain:
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Theorem (Karpinski, Lampis & S.'13)
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Asymmetric TSP

Theorem (Papadimitriou & Vempala (STOC'00))

It is NP-hard to approximate the Asymmetric TSP to within
any factor less than 117/116.

By using our bi-wheel amplifier methods, we obtain:

Theorem (Karpinski, Lampis & S.'13)

It is NP-hard to approximate the Asymmetric TSP to within
any factor less than 75/74.

First improvement after more than a decade!
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TSP with Distances 1 and 2

TSP with Distances 1 and 2
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TSP with Distances 1 and 2

Definition (TSP with distances 1 and 2 ((1,2)-TSP))

Input:

Objective:

universitétbonnl

31/41



TSP with Distances 1 and 2

Definition (TSP with distances 1 and 2 ((1,2)-TSP))
Input: A graph G = (V,E)

Objective:
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TSP with Distances 1 and 2

Definition (TSP with distances 1 and 2 ((1,2)-TSP))

Input:

Objective:

A graph G = (V,E)
Find a tour with minimum length

d(vj,v;) = 1if {vi,vj} € E and 2 otherwise
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TSP with Distances 1 and 2

Theorem (Engebretsen & Karpinski (ICALP’'01))

It is NP-hard to approximate the (1,2)-TSP to within any
factor less than 741/740.

By using wheel amplifier graphs combined with " parity
gadgets”, we obtain:

universitétbonnl

32/41



TSP with Distances 1 and 2

Theorem (Engebretsen & Karpinski (ICALP’'01))

It is NP-hard to approximate the (1,2)-TSP to within any
factor less than 741/740.

By using wheel amplifier graphs combined with " parity
gadgets”, we obtain:

Theorem (Karpinski & S."12)

It is NP-hard to approximate the (1,2)-TSP to within any
factor less than 535/534.
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Graphic TSP

Graphic TSP
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Graphic TSP

Definition (Graphic TSP)

Input:

Objective:
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Definition (Graphic TSP)
Input: A graph G = (V,E)

Objective:
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Graphic TSP

Definition (Graphic TSP)

Input:

Objective:

A graph G = (V,E)

Find a tour with minimum length

d(vj, v;) is defined by the shortest-path distance

of viand vj in G

universitétbonnl

34 /41



Graphic TSP

Reducing (1,2)-TSP to Graphic TSP
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Reducing (1,2)-TSP to Graphic TSP
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Graphic TSP

Reducing (1,2)-TSP to Graphic TSP

AP

Implying the best up to now inapproximability factor for
Graphic TSP
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Subcubic & Cubic Instances

Comparison of inapproximability results

Problem ‘ Previously best known ‘ Our Result
(1,2)-TSP 1291/1290

on cubic graphs [CKKO02]

(1,2)-TSP 787/786

on subcubic graphs [CKKO02]

Graphic TSP -

on cubic graphs

Graphic TSP -

on subcubic graphs
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Comparison of inapproximability results

Problem ‘ Previously best known ‘ Our Result
(1,2)-TSP 1291/1290 1141/1140
on cubic graphs [CKKO02]
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on subcubic graphs [CKKO02]
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Subcubic & Cubic Instances

Comparison of inapproximability results
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Problem ‘ Previously best known ‘ Our Result
(1,2)-TSP 1291/1290 1141/1140
on cubic graphs [CKKO02]

(1,2)-TSP 787/786 673/672
on subcubic graphs [CKKO02]

Graphic TSP - 1153/1152
on cubic graphs

Graphic TSP - 685/684
on subcubic graphs
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Further Results

Further related results on approximability of the problems of:

@ Shortest Superstring

@ Maximum Compression
@ Steiner Tree with distances 1 and 2
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@ But, the inapproximability constants are still very low!
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Further research:

@ Improving the inapproximability bounds for the TSP and
the Steiner Tree problem?

@ Better amplifier constructions?

@ New global PCP-system constructions for TSP?
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Further research:

On upper bounds side:

@ Improving general upper approximation bound for metric
TSP below 3/2 (1.50)7?
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Further research:

On upper bounds side:

@ Improving general upper approximation bound for metric
TSP below 3/2 (1.50)7?

@ Improving upper approximation bound for cubic Graphic
TSP below 4/3 (1.33)?
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Thank Youl!
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