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Chapter 1

Steiner Tree Problems

1.1 Minimum Steiner Tree Problem

Instance: Graph G = (V,E), edge costs c : E → R+, set of terminals
S ⊆ V .

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E.

Cost function:
∑

e∈ET
c(e)

Objective: Minimize.

Approx.: Approximable within ln 4 + ε < 1.39 [21] (see also [98],[73]).

Hardness: NP-hard to approximate within an approximation ratio
96/95 [36].

Comment: Admits a PTAS in the special case when G is a planar graph
[19]. Solvable exactly in time O(3kn+ 2k(n log n+m)), where n = |V |
is the number of vertices, k = |S| the number of terminals and m = |E|
the number of edges in the graph [46],[68].

1.2 Directed Steiner Tree Problem

Instance: Directed graph G = (V,E), edge costs w : E → R+, root
r ∈ V , set of terminals S ⊆ V of size (|S| = k).

2



Solution: A directed tree T = (VT , ET ) in G rooted at r such that
S ⊆ VT ⊆ V , ET ⊆ E.

Cost function:
∑

e∈ET
w(e).

Objective: Minimize.

Approx.: Approximable within approximation ratio O(|S|ε) for every
ε > 0 [27].

Hardness: For every fixed ε > 0 cannot be approximated within ratio
log2-ε n, unless NP ⊆ ZTIME(npolylog(n)) [61].

Comment: Admits a O(l3t2/l)-approximation algorithm with running
time O(t2lnl), for any integer l ≤ n, where t is the number of ter-
minals. This gives a O(tε/ε3)-approximation algorithm with running
time O(t4/ε/n2/ε) for any fixed ε > 0, and an O(logt)-approximation in
quasi-polynomial time [109], [79], [80], [60].

1.3 Steiner Tree Problem with Distances 1

and 2

Instance: Metric space (V, d), set of terminals S ⊂ V , such that for
all pairs of vertices u 6= v, d(u, v) ∈ {1, 2}

Solution: A tree T = (VT , ET ) such that S ⊆ VT ⊆ V

Cost function: d(T ) :=
∑

e={u,v}∈ET

d(u, v)

Objective: Minimize.

Approx.: Approximable within approximation ratio 1.25 [11].

Hardness: APX- hard [87],[13].
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1.4 Metric Steiner Tree Problem

Instance: A finite metric space (V, d) and set of terminals S ⊆ V .

Solution: A tree T = (VT , ET ) such that S ⊆ VT ⊆ V .

Cost function:
∑

e={u,v}∈ET
d(u, v).

Objective: Minimize.

Approx.: Approximable within ln 4 + ε < 1.39 [21] (see also [98],[73]).

Hardness: NP-hard to approximate within an approximation ratio
96/95 [36].

Comment: Metric Steiner Tree is equivalent to Minimum Steiner Tree.

1.5 Euclidean Steiner Tree Problem

Instance: Finite set S ⊂ R2 of terminals.

Solution: A Steiner tree T = (VT , ET ) for S with S ⊆ VT ⊂ R2.

Cost function: The Euclidean length d2(T ) =
∑

{u,v}∈ET

||u− v||2 of

T , where || · ||2 denotes the Euclidean Norm in R2.

Objective: Minimize

Approx.: Admits a PTAS [7].

Hardness: NP-hard [7].

Comment: d-dimensional version where S ⊂ Rd admits a PTAS for d
being constant. For d = log(|S|)/ log log(|S|) the problem is APX-hard
[102].
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1.6 ε-Dense Steiner Tree Problem

Instance: Graph G = (V,E), set of terminals S ⊆ V such that each
s ∈ S has at least ε · |V \ S| neighbors in V \ S

Solution: A Steiner tree T = (VT , ET ) for S in G

Cost function: length |ET | of T

Objective: Minimize

Approx.: For every ε > 0, there exists a PTAS for the ε-Dense Steiner
Tree Problem [74]. This also yields existence of an efficient PTAS
[64]). The Ψ(n)-Subdense Steiner Tree Problem where every terminal
has at least |V \ S|/Ψ(n) non-terminal neighbors also admits a PTAS
for Ψ(n) = O(log(n)) [25].

Comment: So far the problem is not known to be NP-hard in the exact
setting.

1.7 Terminal Steiner Tree

Instance: Graph G = (V,E), cost function c : E → R+, set of
terminals S ⊂ V .

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E
and degT (s) = 1 for every s ∈ S.

Cost function:
∑

e∈ET
c(e).

Objective: Minimize.

Hardness: Cannot be approximated within a factor less than log2−ε |S|.
This bound also applies to the node-weighted case. [16]

Approx.: Approximable within approximation ratio 2.458 on metric in-
stances [33]. Can be improved to 1.9329 using the algorithm presented
in [21].
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Comment: For the special case of unit disc graphs, a 20-approximation
was given by Biniaz et al. [15]. For the euclidean bottleneck version of
this problem, an exact solution can be computed in polynomial time
[14].

1.8 Internal Steiner Tree

Instance: Graph G = (V,E), cost function c : E → R+, set of
terminals S ⊂ V .

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E
and degT (s) > 1 for every s ∈ S.

Cost function:
∑

e∈ET
c(e).

Objective: Minimize.

Hardness: APX-hard. [69]

Approx.: Approximable within approximation ratio 2ρ on metric in-
stances, where ρ is the the approximation ratio for the Steiner Tree
Problem. [107]

Comment: Approximable within approximation ratio 9
7

on instances
where edge weights are restricted to 1 and 2. [70]

1.9 Prize-Collecting Steiner Tree

Instance: Graph G = (V,E), cost function c : E → R+, set of
terminals S ⊆ V , a penalty function π : S → R+.

Solution: A tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E.

Cost function:
∑

e∈ET
c(e) +

∑
s∈S\VT π(s).

Objective: Minimize.

Approx.: Approximable within 1.9672− δ for some δ > 0 [6].

Hardness: NP-hard to approximate within 96/95 [36].
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Comment: Admits a PTAS for the special case when G is a planar
graph [29].

1.10 Bottleneck Steiner Tree Problem

Instance: Graph G = (V,E), edge costs c : E → R+, set of terminals
S ⊆ V .

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E.

Cost function: max
e∈ET

c(e)

Objective: Minimize.

Approx.: Can be solved exactly in polynomial time [42][99][41].

1.11 k-Bottleneck Steiner Tree Problem

Instance: Graph G = (V,E), edge costs c : E → R+, set of terminals
S ⊆ V , positive integer k.

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E
and |VT \ S| ≤ k (at most k Steiner nodes used).

Cost function: max
e∈ET

c(e)

Objective: Minimize.

Hardness: NP-Hard to approximate within approximation ratio 2 −
ε on undirected metric graphs [2]. NP-Hard to approximate within
approximation ratio

√
2− ε in the Euclidean plane [103].

Approx.: Approximable within approximation ratio 2 on undirected
metric graphs [2]. Approximable within approximation ratio 1.866 in
the Euclidean plane [105].

Comment: For the euclidean case, exact algorithms exist for k = 1 and
k = 2, with time complexity O(n log n) and O(n2) respectively [8]. For
the special case of the euclidean plane with no edges allowed between
two Steiner points, a

√
2 + ε approximation algorithm exists [85].

7



1.12 Prize-Collecting Bottleneck Steiner Tree

Problem

Instance: Graph G = (V,E), edge costs c : E → R+, set of terminals
S ⊆ V , a penalty function π : S → R+.

Solution: Tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E.

Cost function: max(max
e∈ET

c(e),max
v/∈VT

π(v))

Objective: Minimize.

Approx.: Can be solved exactly in polynomial time [63].

Comment: This entry covers the penalty-based variant of the Prize-
Collecting Steiner Tree Problem. The quota-based Prize-Collecting
Steiner Tree Problem, as well as the related Steiner Forest problems
can also be solved in polynomial time [63].

1.13 Prize-Collecting k-Bottleneck Steiner Tree

Problem

Instance: Graph G = (V,E), edge costs c : E → R+, set of terminals
S ⊆ V , positive integer k, a penalty function π : S → R+.

Solution: Tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E and
|VT \ S| ≤ k (at most k Steiner nodes used).

Cost function: max(max
e∈ET

c(e),max
v/∈VT

π(v))

Objective: Minimize.

Hardness: NP-Hard to approximate within 2− ε on undirected metric
graphs [2].

Approx.: Approximable within approximation ratio 2 on undirected
metric graphs [63].
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1.14 Node Weighted Steiner Tree

Instance: Graph G = (V,E), set of terminals S ⊆ V and a node
weight function w : V → R+.

Solution: A tree T = (VT , ET ) in G, such that S ⊆ VT ⊆ V , ET ⊆ E.

Cost function:
∑

v∈VT w(v)

Objective: Minimize.

Approx.: Approximable within approximation ratio 1.35 ln k [54]. Ap-
proximable within approximation ratio ln k in the unweighted case [54].
The online version admits a polynomial time poly-logarithmic compet-
itive online algorithm [91].

Hardness: NP-Hard [90],[40]. NP-hard to approximate within (1 −
ε) ln(k) for every ε > 0 [54].

Comment: Node Weighted Steiner Tree in Unit Disk Graphs is ap-
proximable within approximation ratio (5 + ε). Admits a PTAS for the
special case when the set of vertices is c-local.
A set of vertices S is called c-local in a node weighted graph if in the
minimum node weighted spanning tree for S, the weight of longest edge
is at most c [84].

1.15 Node Weighted Generalized Steiner Tree

Instance: Graph G = (V,E), node weight function w : V → R+,
proper function f : P (V )→ {0, 1}

Solution: A subgraph F = (VF , EF ) of G such that EF ∩δ(S) ≥ f(S)
for all S ⊆ V

Cost function:
∑

v∈VF w(v)

Objective: Minimize.

Approx.: Approximable within approximation ratio 1.6103 ln k [54].

Hardness: NP-hard to approximate within (1− ε) ln(k) for every ε > 0
[54].
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1.16 Node Weighted Steiner Network

Instance: Graph G = (V,E), node weights w : V → R+, edge costs
c : E → R+, k terminal sets R1, . . . , Rk ⊆ V

Solution: A forest F = (VF , EF ) in G such that each Ri is contained
in a connected component of F

Cost function:
∑

v∈VF w(v) +
∑

e∈EF
c(e)

Objective: Minimize

Approx.: Approximable within approximation ratio O(log k) [76]

Hardness: NP-hard to approximate within (1− ε) ln(k) for every ε > 0
[54].

1.17 Node Weighted Prize Collecting Steiner

Tree

Instance: Graph G = (V,E), node weights w : V → R+, penalties
π : V → R+

Solution: A tree T = (VT , ET ) in G

Cost function:
∑

v∈VT w(v) +
∑

v∈V \VT π(v)

Objective: Minimize

Approx.: Approximable within approximation ratio O(ln |V |) [77]

Hardness: NP-hard to approximate within c · ln |V | for some c > 0 [77]
For the online version of the problem, there exists an algorithm with
polylogarithmic competitive ratio [59].

1.18 Packing Edge-Disjoint Steiner Trees

Instance: An undirected multigraph G = (V,E), set of terminals S
⊆ V.
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Solution: A set T = {T1, ..., Tm} of Steiner trees Ti for S in G which
have pairwise disjoint sets of edges.

Cost function: |T |

Objective: Maximize.

Approx.: Approximable within O(
√
n log n), where n denotes the num-

ber of nodes [34].

Hardness: Not approximable within (1−ε) ln(n) unlessNP ⊆ DTIME(nlog logn).
APX-hard for four terminals [34].

1.19 Packing Directed Node-Disjoint Steiner

Trees

Instance: Directed multigraph G = (V,E), set of terminals S ⊆ V ,
root r ∈ V .

Solution: A set T = {T1, ..., Tm} of directed Steiner trees Ti for S
rooted at r in G with pairwise disjoint sets of Steiner nodes.

Objective: Maximize.

Approx.: Approximable within approximation ratio O(m1/2+ε) , where
m denotes the number of edges[34].

Hardness: NP- hard to approximate within m1/3−ε [34].

1.20 Buy-at-Bulk k-Steiner Tree

Instance: Graph G(V,E), set of terminals S ⊆ V , root s ∈ S, an
integer k ≤ |S|, a buy cost function b : E → R+ , a distance cost
dist : E → R+.

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E,
s ∈ VT , |S ∩ VT | ≥ k.

Cost function:
∑

e∈T b(e) +
∑

T∈S−s dist(t, s).

11



Objective: Minimize.

Approx.: Approximable within approximation ratio O(log4 n) [58].

Hardness: NP- hard to approximate within c · log(n) for some constant
c [58] .

1.21 Shallow-Light k-Steiner Tree

Instance: Graph G = (V,E), a set of terminals S ⊆ V ,a buy cost
function b : E → R+ , a distance cost r : E → R+, cost bound B and
length bound D.

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E,
s ∈ VT , |S ∩VT | ≥ k, such that the diameter under r-cost is at most D
and buy cost is at most B.

Cost function:
∑

e∈ET
b(e)

Objective: Minimize.

Approx.: Admits an (O(log2 n), O(log4 n))-approximation algorithm [58].

Hardness: NP-hard to approximate within c · log(n) for some constant
c [58].

1.22 General Steiner Tree Star Problem

Instance: Graph G = (V,E), set of terminals S ⊆ V , steiner nodes
Y ⊆ V , the edge weights c : E → R+, cost function w : Y → R+.

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E
and degT (v) ≤ 1 for every v ∈ VT \ Y

Cost function:
∑

e∈ET
c(e) +

∑
v∈Y ∩VT w(v).

Objective: Minimize .

Approx.: Approximable with 5.16 and 5 [75].
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Hardness: Includes the Metric Steiner Tree Problem as a special case,
hence it is NP-hard to approximate within an approximation ration
96/95 [36].

Comment: Special case where S and Y are disjoint is called the Steiner
Tree Star Problem. This is already NP-hard [75].

1.23 Polymatroid Steiner Problem

Instance: Graph G = (V,E), the edge weights c : E → R+, a poly-
matroid P = P (V ).

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E
and T spans base of P .

Cost function:
∑

e∈ET
c(e)

Objective: Minimize.

Approx.: Approximable within O(log3 k) [24], [27], [32].

Hardness: NP-hard to approximate within log2-ε n for every ε > 0 [61],
[24].

Comment: The problem contains the Group Steiner Tree Problem as
a special case [24].

1.24 Polymatroid Directed Steiner Problem

Instance: Graph G = (V,E), the edge weights c : E → R+, a poly-
matroid P = P (V ).

Solution: A tree T = (VT , ET ) in G such that S ⊆ VT ⊆ V , ET ⊆ E,
connecting a given root r ∈ V to all vertices of a least one base of P.

Cost function:
∑

e∈ET
c(e).

Objective: Minimize.
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Approx.: Approximable within O(kε) for any ε > 0 ,
approximable within O(nc lgn) in quasi-polynomial time [24], [27].

Hardness: NP-hard to approximate within log2-ε n for every ε > 0 [61],
[24]

Comment: The problem contains the Directed Steiner Tree Problem as
a special case [24].

1.25 Quality of Service Multicast Tree Prob-

lem

Instance: Graph G = (V,E, l, r), source s ∈ V , sets of terminals
S0, ..., SN with node rates r0, ..., rN and edge lengths l : E → R+.

Solution: A tree T = (VT , ET ) in G such that
⋃
i≥1 Si ⊆ VT ⊆ V ,

ET ⊆ E.

Cost function:
∑

e∈ET
c(e), where c(e) = l(e)re (see comment).

Objective: Minimize.

Approx.: Approximable within 1.960 for the case of two non-zero rates.
Approximable within 3.802 for the case of unbounded number of rates
[72]. For the case of three non-zero rates, the problem admits an 1.522
approximation algorithm [89] [41].

Hardness: NP-hard to approximate within 96/95 [36].

Comment: r0 = 0 < r1 < r2 < ... < rN are the distinct rates. For i =
1, . . . , N , Si denotes the set of all nodes with rate ri. The cost of an
edge in the solution tree T is c(e) = l(e)re, where re (rate of edge e)is
the maximum rate in the component T − e

1.26 Zero Skew Tree Problem

Instance: Metric space (M,d), set of sinks S ⊆ M , edge costs cost :
E → R+.
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Solution: A stretched tree T = (VT , ET , π, c) consisting of an ar-
borescence (VT , ET ), a mapping π : VT →M such that π is a one-to-one
mapping between the leaves of T and S and a cost function c : ET → R+

such that for every edge (u, v) of T , c(u, v) ≥ d(π(u), π(v)) and fur-
thermore, for each pair P, P ′ of root-to-leaf paths in T , c(P ) = c(P ′).

Cost function:
∑

(u,v)∈ET
c(u, v)

Objective: Minimize.

Approx.: Approximable within approximation ratio 4 when the root is
not fixed as a part of the instance [110]. Approximable within approx-
imation ratio 2e if the root is fixed [28].

Hardness: NP-hard [28].

Comment: The complexity of the rectilinear zero skew tree problem
is not known. For a fixed tree topology, the problem can be solved in
linear time by using the Deferred-Merge Embedding (DME) [17], [26],
[43].

1.27 Bounded Skew Tree Problem

Instance: Metric space (M,d), set of sinks S ⊆ M , edge costs cost :
E → R+, boundb.

Solution: A stretched tree T = (VT , ET , π, c) consisting of an ar-
borescence (VT , ET ), a mapping π : VT →M such that π is a one-to-one
mapping between the leaves of T and S and a cost function c : ET → R+

such that for every edge (u, v) of T , c(u, v) ≥ d(π(u), π(v)) and further-
more, for each pair P, P ′ of root-to-leaf paths in T , |c(P )− c(P ′)| ≤ b

Cost function:
∑

(u,v)∈E cost(u, v)

Objective: Minimize.

Approx.: Approximable within approximation ratio 14 when the root
is not fixed as a part of the instance [110]. Approximable within 16.86
when the root is given as part of the input [28].
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Hardness: NP-hard [28]. Also NP-hard in the two-dimensional recti-
linear case [110].

1.28 Stochastic Steiner Tree Problem

Instance: Graph G = (V,E), the root r, first stage edge costs ce ≥
0, e ∈ E, inflation parameter σ and probability distribution π on the
set of scenarios K, where a scenario k is a set of terminal nodes.

Solution: A subset of edges E0 ⊆ E to be purchased in the first stage

Cost function:
∑

e∈E0
ce +E[

∑
e∈Ek

ceσ] while Eo ∪Ek spans Sk for
every k ∈ K, where Ek is the set of edges that have to be bought in
the second stage to connect all terminal nodes.

Objective: Minimize.

Approx.: Approximable within 3.39 [101], [56].

Hardness: NP-hard.

Comment: In this model there are two separate stages: First stage,
where G, r, ce, σ and π are known. In this stage one must purchase set
of edges E0 that is predicted to be useful for connecting unknown set
of vertices k that will be drawn from K according to π. Second stage,
where k is revealed, cost of every edge increases by a factor of σ and a
set of edges Ek has to be bought to connect all terminals. [49], [18].

1.29 Group Steiner Tree Problem

Instance: Graph G = (V,E), edge cost c : E → R+ , and sets
S1, ..., Sn ⊆ V , also called groups.

Solution: A tree T = (VT , ET ) in G which contains at least one
terminal from every group Si

Cost function:
∑

e∈ET
c(e).

Objective: Minimize.
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Approx.: Approximable withinO(log3 n). Approximable withinO(log2 n)
if G is a tree [53], [40].

Hardness: Not approximable within Ω(log2-ε n) unless NP admits quasipolynomial-
time Las Vegas algorithm [61].

Comment: Approximable within O(log npolylog log n) when the graph
is planar and each group is the set of nodes on a face [40].

1.30 Two-Level Rectilinear Steiner Tree

Instance: Set of terminals S ⊂ R2 in the plane, partition of S into k
subsets S1, . . . , Sk.

Solution: Two-Level rectilinear Steiner Tree T for S in R2 consist-
ing of Steiner Trees Ti for Si (i = 1, . . . , k) and a top-level tree T0
connecting the trees T1, . . . , Tk

Cost function: c(T0) +
∑k

i=1 c(Ti), where c( ) denotes the L1-length
of the trees

Objective: Minimize.

Approx.: Approximable within 1.63, based on the PTAS for Rectilinear
Steiner Tree in the plane [66].

Comment: Admits a PTAS for the case when k is fixed [66].

1.31 Fractional Steiner Tree Problem with Prof-

its

Instance: Graph G = (V,E), a cost function c : E → R+, a revenue
function r : V → R+, fixed cost c0 ≥ 0

Solution: A tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E.

Cost function:

∑
v∈VT

r(v)

c0+

∑
e∈ET

c(e)

.
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Objective: Maximize.

Hardness: NP-hard [39].

1.32 Budget Steiner Tree Problem with Prof-

its

Instance: Graph G = (V,E), a cost function c : E → R+, a revenue
function r : V → R+, budget B.

Solution: A tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E and∑
e∈ET

c(e) ≤ B.

Cost function:
∑

v∈VT r(v)

Objective: Maximize.

Approx.: Approximable within (4 + ε) for every ε > 0 [83]

Hardness: NP-hard.

1.33 Quota Steiner Tree Problem with Profit

Instance: Graph G = (V,E), a cost function c : E → R+, a revenue
function r : V → R+, quota Q.

Solution: A tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E and∑
v∈VT r(v) ≥ Q.

Cost function:
∑

e∈ET
c(e).

Objective: Minimize.

Approx.: Approximable within approximation ratio 2.5 [71].

Hardness: NP-hard to approximate within 96/95 [36].

Comment: The lower bound follows from the fact the the Quota Steiner
Tree Problem with Profit contains the Steiner Tree Problem as a special
case.
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1.34 Steiner Tree Problem in Phylogeny

Instance: C = 1, · · ·m set of Characters, for each i ∈ C, set of states
Ai of character i, S ⊆ A1 × · · · × Am set of species.

Solution: A tree T = (VT , ET ) with S ⊆ VT ⊆ A1 × · · · × Am

Cost function:
∑

e=u,v∈ET

dH(u, v), where dH denotes the Hamming

distance [48].

Objective: Minimize.

Approx.: Approximable within approximation ratio ln(4) + ε for every
ε > 0 [4],[65].

Hardness: NP-hard [48].

Comment: A phylogeny for a set of n distinct species S is a tree whose
leaves are all elements of S and where S ⊆ V (T ) ⊆ A1 × · · · × Am.

1.35 Steiner Tree Problem in Phylogeny with

Given Topology

Instance: Set of characters C = 1, · · ·m, for each i ∈ C a set Ai
of states of character i, λ : S → L(T ) between S and the set L(T ) of
leaves of T

Solution: An assignment a : V (T ) \ L(T )→ A1 × · · · × Am.

Cost function:
∑

e=u,v∈ET

dH(a(u), a(v)), where dH denotes the Ham-

ming distance

Objective: Minimize.

Approx.: Admits a PTAS [104].

Comment: This is a special case of the Tree Alignment with a Given
Phylogeny.
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1.36 Tree Alignment with a Given Phylogeny

Instance: Finite set of strings S ⊂ Σ∗ over a given finite alphabet,
arborescence T , bijection λ : S → L(T ) between S and the set L(T ) of
leaves of T , scoring scheme µ : (Σ ∪ {−})2 → R

Solution: An assignment a : V (T ) \ L(T ) → (Σ ∪ {−})∗ such that
for each internal node u of T , a(u) is an alignment of the strings a(v)
assigned to all the children v of u in T

Cost function:
∑

e=u,v∈ET

µ(a(u), a(v))

Objective: Minimize.

Approx.: Admits a PTAS when the cost function given by the scoring
scheme µ is a metric [104].

Hardness: NP-hard. In the case of general scoring schemes, the problem
becomes APX-hard [104].

Comment: Augmenting the construction with a local optimization tech-
nique, for each t > 1, has a performance ratio 1 + 3/t [104].

1.37 Minimum-Cost 2-Edge-Connected Aug-

mentation of Tree with Constant Radius

Instance: Graph G = (V,E), edge costs c : E → R+, a tree F on V
disjoint to E.

Solution: A tree T = (VT , ET ) in G such that VT ⊆ V , ET ⊆ E, and
T ∪ F is 2-edge-connected.

Cost function:
∑

e∈ET
c(e)

Objective: Minimize.

Approx.: Approximable within 1 + ln(2) [38].

Hardness: NP-hard to approximate for trees with radius ≥ 2 [50].
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1.38 Minimum-Cost (k, p)-Steiner Tree with

Limited Number of Branching Nodes

Instance: Graph G = (V,E), edge costs c : E → R+, a set S ⊂ V of
k terminals.

Solution: A Steiner tree T = (VT , ET ) for S in G such that T contains
at most p branching nodes.

Cost function:
∑

e∈ET
c(e)

Objective: Minimize.

Approx.: For p being constant, solvable in polynomial time when the
input graph is acyclic or when k is also fixed and the input graph is of
bounded treewidth [106]

Hardness: NP-hard to approximate within n1-ε for every ε > 0 when k
is not fixed, even in planar graphs with unit edge costs [106]

1.39 Minimum-Cost (k, p)-Directed Steiner Tree

with Limited Number of Branching Nodes

Instance: Directed Graph G = (V,E), edge costs w : E → R+, root
r ∈ V , set of terminals S ⊂ V of size k ≥ 2.

Solution: A directed tree T = (VT , ET ) in G rooted at r such that
S ⊆ VT ⊆ V and T contains at most p branching nodes

Cost function:
∑

e∈ET
c(e)

Objective: Minimize.

Hardness: NP-hard to approximate within n1-ε for every ε > 0 when k
is not fixed, even for planar graphs with unit edge costs [106]

Comment: When both k and p are fixed, deciding existence of a feasible
solution is in P [106].
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1.40 Packing Element-Disjoint Steiner Trees

on Bounded Terminal Nodes

Instance: Graph G = (V,E), set of terminals S ⊆ V .

Solution: A set T = {T1, ..., Tm} of Steiner trees Ti for S in G with
pairwise disjoint sets of Steiner nodes.

Cost function: m (the number of trees)

Objective: Maximize.

Approx.: Approximable within d |S|
2
e [67].

Hardness: APX-hard even for |S| = 3 [1]. NP-hard to approximate
within O(log|V |) [34].
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Chapter 2

Steiner Forest Problems

2.1 Steiner Forest Problem

Instance: Graph G = (V,E), cost function c : E → R+, set of k
terminal pairs S = {(s1, t1), ..., (sk, tk)}.

Solution: A forest F ⊆ E such that for all 1 ≤ j ≤ k, vertices sj and
tj are contained in the same connected component of F

Cost function:
∑

e∈F ce.

Objective: Minimize.

Approx.: Approximable within 2− 1/k [3].

Hardness: NP-hard to approximate within 96/95 [36].

Comment: When G is a planar graph [9] obtained a PTAS.

2.2 k-Steiner Forest Problem

Instance: Graph G = (V,E), cost function c : E → R+, set of
demands D = {(s1, t1), ..., (sl, tl)}, integer k ≤ l

Solution: A forest F in G such that at least k pairs from D are
connected by F .

Cost function:
∑

e∈F ce.
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Objective: Minimize.

Approx.: Approximable within O(min{n2/3,
√
l} log k) [111].

Hardness: NP-hard.

2.3 Steiner Forest with Distances One and

Two

Instance: Graph G = (V,E), and a collection R of subsets R ⊆ V
called required sets, where

⋃
R∈RR is the set of terminals.

Solution: A set of unordered node pairs F such that each R ∈ R is
contained in a connected component of (V, F ).

Cost function: |F ∩ E|+ 2|F − E|.

Objective: Minimize.

Approx.: Approximable within 3/2 [12].

Hardness: APX- hard.[87],[13]

Comment: G defines a {1, 2}-Metric on V where E is the set of node
pairs which are at distance one from each other, and all other node
pairs are at distance 2

2.4 Degree Bounded Survivable Network De-

sign

Instance: Graph G = (V,E), edge costs c : E → R+, degree bounds
bv, v ∈ V , requirements ruv, u, v ∈ V

Solution: A subgraph H of G which contains for each pair of vertices
u, v at least ruv edge-disjoint paths from u to v and such that for all
v ∈ V , dH(v) ≤ bv

Cost function: c(H)
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Objective: Minimize.

Approx.: There exists an algorithm which constructs a subgraph H
of cost at most 2 times the optimum cost such that H satisfies all
the connectivity requirements ruv and such that dH(v) ≤ min{bv +
3rmax, 2bv + 2}, where rmax = maxu,v ruv [82].

Comment: There exists a (O(1), O(1)) bicriteria approximation algo-
rithm for Degree Bounded Survivable Network Design with element-
connectivity requirements, where the paths satisfying the connectivity
requirements have to be element disjoint [45]. For the Degree Bounded
Survivable Network Design problem with node-connectivity require-
ments, there exists a (O(k3 log n), O(k3 log n)) bicriteria approximation
algorithm, where k is the maximum connectivity requirement of any
pair [45].

2.5 Strongly Connected Steiner Subgraph

Instance: A directed graph G = (V,E), edge weights ce, e ∈ E, set of
terminals S = {s1, . . . , sp}

Solution: A set of edges H ⊂ E such that for all 1 ≤ i, j ≤ p, i 6= j
the induced subgraph G[H] contains a directed si, sj-path

Cost function: c(H)

Objective: Minimize.

Approx.: Approximable within pε for every ε > 0 [27].

Hardness: For every fixed ε > 0, the SCSS cannot be approximated
within ratio log2-ε n, unless NP ⊆ ZTIME(npolylog(n)) [61].

Comment: In a variant 2-SCSS(k1, k2), the number of terminals is
p = 2, and the task is to construct a subset H ⊆ E such that G[H]
contains k1 s1, s2-paths and k2 s2, s1-paths. The objective is to mini-
mize

∑
e∈H ce ·φ(e), where φ(e) is the maximum number of s1, s2-paths

or s2, s1-paths using edge e. The 2-SCSS(k, 1) can be solved in nO(k)

time but does not have an f(k) · no(k) algorithm for any computable
function f , unless the Exponential Time Hypothesis (ETH) fails [35].
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2.6 Directed Steiner Forest (DSF)

Instance: A directed graph G = (V,E), an edge cost function c :
E → R+, a collection D ⊆ V ×V of ordered node pairs, and an integer
k = |D|.

Solution: A subgraph F of G that containes an shortest path for (at
least) k pairs (s, t) ∈ D.

Cost function:
∑

e∈F ce.

Objective: Mininimize.

Approx.: Approximable within O(n
2
3
+ε) for every ε > 0 [10].

Hardness: NP-hard to approximate within log(n)2−ε.

Comment: The k-Directed Steiner Forest (k-DSF) is approximable
within O(k1/2+ε) for every ε > 0 [47].

2.7 Prize-Collecting Steiner Forest

Instance: Graph G = (V,E), set of terminal pairs S = {(si, ti)}1≤i≤k
, cost function c : E → R+, penalty function π : S → R+.

Solution: A pair (F,Q), where F is a forest and Q ⊆ S contains all
the terminal pairs that are not connected by F

Cost function: c(F ) + π(Q).

Objective: Minimize.

Approx.: Approximable within approximation ratio 3 using a primal-
dual approach. Approximable within approximation ratio 2.54 by an
LP-Rounding algorithm [100],[57].

Hardness: NP-hard to approximate within 96/95 [36].

Comment: PTAS exists for the special case when G is planar graph
[29].

26



2.8 Prize-Collecting Node Weighted Surviv-

able Network Design

Instance: Graph G = (V,E), connectivity requirements r(u, v) ∈ Z≥0
and penalties π(u, v) ≥ 0 for all u, v ∈ V , node weights w : V → R+

Solution: Subgraph H in G

Cost function: weight w(H) of H plus the sum of penalties π(u, v)
for which H does not contain at least r(u, v) edge-disjoint u− v paths

Objective: Minimize

Approx.: Approximable within approximation ratio O(k2 log n), where
k = maxu,v∈V r(u, v) [31]. Approximable within approximation ratio
O(k) for minor-closed families of graphs [30].

2.9 Packing Steiner Forest

Instance: Undirected multigraph G = (V,E), set S = {S1, ..., St} of
pairwise disjoint subsets Si of V

Solution: A set F of pairwise edge-disjoint Steiner forests Fi for S
in G

Cost function: |F| (the number of Steiner forests)

Objective: Maximize.

Approx.: APX [81].

Hardness: NP-hard.

Comment: If each Si is Qk-edge-connected in G, then there are k edge-
disjoint S-forests in G. The best upper bound achieved on Q is 32.
This yields the first polynomial time constant factor approximation
algorithm for the Steiner Forest Packing problem. [81]
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2.10 Stochastic Steiner Forest

Instance: A graph G = (V,E), an edge cost function c : E → R+,

a probability distribution π over sets of source-sink pairs 2(V
2), and an

inflation parameter λ ≥ 1.

Solution: A set of first-stage edges E0 and for each D ∈ 2(V
2), a set

of second-stage edges ED such that (i) the edges in E0

⋃
ED connect

each of the pairs in D.

Cost function:
∑

e∈E0
ce + ED←π[

∑
e∈E0

ce].

Objective: Minimize.

Approx.: Approximable within 5 [55][49].

Hardness: NP hard.

Comment: A basic building block is an s-star consisting of a non-
terminal c, called the center, s terminals t1, ..., ts and edges (c, t1), ..., (c, ts).

2.11 Steiner Activation Network

Instance: Graph G = (V,E), monotone activation function fe : R+×
R+ → {0, 1} for each edge e ∈ E, terminal sets R1, . . . , Rk ⊆ V

Solution: Assignment x = (xv)v∈V ∈ R|V | such that the subgraph
induced by the activated edges e = {u, v} (i.e. fe(xu, xv) = 1) connects
every terminal set Ri

Cost function:
∑

v∈V xv

Objective: Minimize

Approx.: Approximable within approximation ratio O(log k) [93]

Hardness: NP-hard to approximate within o(log k) [93]
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2.12 Bifamily Edge Cover Activation

Instance: Graph G = (V,E), monotone activation functions fe : R+×
R+ → {0, 1} for the edges e ∈ E, bifamily F of subsets of V

Solution: assignment x = (xv)v∈V ∈ R|V | such that the set Ex of
activated edges e = {u, v} (i.e. fe(xu, xv) = 1) covers F

Cost function:
∑

v∈V xv

Objective: Minimize

Approx.: Admits an O(log |CF |)-approximation algorithm for the case
when F is an uncrossable family, where CF is the set of all subsets X for
which X̂ ∈ F and X does not contain two distinct inclusion-minimal
members of the family {X|X̂ ∈ F} [92]

Comment: A bifamily F of subsets of V is a set of pairs X̂ = (X,X+)
of subsets of V such that for each X̂ = (X,X+), X ⊆ X+ and the
following property holds: For all X̂ = (X,X+) and Ŷ = (Y, Y +) in F ,
X = Y implies X+ = Y + and X ⊆ Y implies X+ ⊆ Y +. A set of
edges E ′ ⊆ E covers F if for each X̂ = (X,X+) in F , there is an edge
e ∈ E ′ which goes from V \X+ to X.

2.13 Network Activation with Property Π

Instance: Graph G = (V,E), monotone activation functions fe : R+×
R+ → {0, 1} for the edges e ∈ E, monotone property Π of subgraphs
of G

Solution: Assignment x = (xv)v∈V ∈ R|V | such that the subgraph
induced by the activated edges e = {u, v} (i.e. fe(xu, xv) = 1) is
contained in Π

Cost function:
∑

v∈V xv

Objective: Minimize

Approx.: If every inclusion minimal edge-set F ⊆ E with (V, F ) ∈
Π has maximum degree at most ∆ and the underlying Edge-Costs
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Network Design Problem with property Π admits a θ-approximation
algorithm, the problem is approximable within approximation ratio θ∆
[92, 51].

2.14 Euclidean Steiner Forest Problem

Instance: Finite set of k terminal pairs S = {(s1, t1), ..., (sk, tk)} ⊂
R2.

Solution: A forest F such that for all 1 ≤ j ≤ k, vertices sj and tj
are contained in the same connected component of F, F ⊂ R2.

Cost function: The Euclidean length d2(F ) =
∑
{u,v}∈F

||u− v||2 of

F , where || · ||2 denotes the Euclidean Norm in R2.

Objective: Minimize

Approx.: Admits a PTAS [20].

Hardness: NP-hard [7].

Comment: d-dimensional version where S ⊂ Rd admits a PTAS for d
being constant. For d = log(|S|)/ log log(|S|) the problem is APX-hard
[102].
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Chapter 3

Broadcast

3.1 Minimum Broadcast Time

Instance: Graph G = (V,E) and a source node v0 ∈ V .

Solution: A broadcasting scheme. At time 0 only v0 contains the
message that is to be broadcast to every vertex. At each time step any
vertex that has received the message is allowed to communicate the
message to at most one of its neighbours.

Cost function: The broadcast time, i.e., the time when all vertices
have received the message.

Objective: Minimize.

Approx.: Approximable within O(log2 |V |/ log log |V |) [96].

Hardness: NP-hard [52].

Comment: Approximable within 2B if the degree of G is bounded by
a constant B [96]. Approximable within O(log V ) if G is chordal, k-
outerplanar [78]. Approximable within O(log |V |/ log log |V |) if G has
bounded tree width [88].
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3.2 Minimum-Energy Broadcast Tree Prob-

lem

Instance: Wireless ad-hoc network M = (N,L) consisting of set of
nodes N , location function L : N → Z2

+, for each node vi ∈ N, k power
levels wi,1 ≤ wi,2 ≤ ... ≤ wi,k, a receiver sensitivity ϑ > 0 propagation
function γ : Z2 × Z2 → R+

Solution: An arborescence T = (N,E), power assignment p = (pi)vi∈N
with pi ∈ {wi,1, . . . , wi,k} for all vi ∈ N such that for each directed edge
e = (vi, vj) in T , pi − γ(L(vi), L(vj)) ≥ ϑ

Cost function:
∑

vi non-leaf in T pi

Objective: Minimize.

Approx.: Approximable within O((k + 1)1/εn3/ε, where n = |N | is the
number of nodes in the wireless network, k is the number of power
levels at each node, and ε is constant with 0 < ε < 1 [86].

Hardness: NP-hard [86].

Comment: When every node is equipped with the same type of battery,
an approximation algorithm has a better performance ratio than that
in the general case setting, and the algorithm takes O(kn2 log n)time
[86].

3.3 Minimum-Energy Multicast Tree Prob-

lem

Instance: Wireless ad-hoc network M = (N,L) consisting of set of
nodes N , location function L : N → Z2

+, for each node vi ∈ N, k
power levels wi,1 ≤ wi,2 ≤ ... ≤ wi,k, a receiver sensitivity ϑ > 0
propagation function γ : Z2 × Z2 → R+, set of destinations D ⊆ N , a
source s ∈ N \D

Solution: An arborescence T = (V,E) rooted at s with D ⊆ V ⊆ N ,
power assignment p = (pi)vi∈V with pi ∈ {wi,1, . . . , wi,k} for all vi ∈ V
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such that for each directed edge e = (vi, vj) in T , pi−γ(L(vi), L(vj)) ≥
ϑ

Cost function:
∑

vi non-leaf in T pi

Objective: Minimize.

Approx.: Approximable within O(((k + 1)n)1/ε|D|2/ε + kn2 [86].

Hardness: NP-hard [86].

Comment: When every node is equipped with the same type of battery,
an approximation algorithm has a better performance ratio than that
in the general case setting, and the algorithm takes O(kn|D| log |D|)
time [86].

3.4 Restricted Minimum-Energy Broadcast Prob-

lem

Instance: A 4-tuple (G, s, d,K) where G = (V,E) is a simple graph,
s ∈ V is the source node, d < |V |, K < |V |2 are positive integers.

Solution: A spanning broadcast tree rooted at s.

Cost function: Total energy in which each transmission radius is at
most d.

Objective: Minimize energy, at most K

Hardness: NP-hard [44].

Comment: Proof of NP-completeness of the Restricted Minimum-Energy
Broadcast (RMEB) based on reduction from vertex cover problem to
RMEB [44].

3.5 Unrestricted Minimum-Energy Broadcast

Problem

Instance: A 3-tuple (G, s,K) where G = (V,E) is a simple graph,
s ∈ V is the source node, K < |V |2 is a positive integer.
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Solution: A spanning broadcast tree rooted at s.

Cost function: Total energy

Objective: Minimize energy, at most K

Approx.: Optimal solution can be found within O(nk+2)[44]

3.6 Minimum Broadcast Cover

Instance: A directed graph G = (V,E), a set P consisting of all power
levels at which a node can transmit, edge costs cij : E(G) → R+, a
source node r ∈ V , an assignment operation pvi : V (G)→ P and some
constant B ∈ R+.

Solution: A node power assignment vector A = [pv1, p
v
2...p

v
|V |] inducing

a directed graph G′ = (V,E ′), where E ′ = {(i, j) ∈ E : cij 6 pvi }, in
which there is a path from r to any node of V (all nodes are covered)

Cost function:
∑

i∈V p
v
i

Objective: Minimize cost, at most B

Approx.: There exists approximation algorithm that achieves theO(logN)
approximation ratio [22].

Hardness: NP-complete [22].

Comment: There exists an approximation algorithm for the general
version which achieves approximation ratio of 18 logN .

3.7 Minimum-Energy Broadcast Problem in

Multi-hop Wireless Networks

Instance: A wireless ad hoc network M = (N,L), a source node s,
and a terminal set D = N − {s}.

Solution: Broadcast a message from any source node to all the other
nodes.
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Cost function: Sum of transmission powers at all nodes.

Objective: Minimize.

Approx.: For any source s, approximable within 2H(n− 1) [94].

Hardness: NP-hard [94].

3.8 Quality of Service Multicast Tree

Instance: Graph G = (V,E, l, r), the length function on each edge
l : E → R+, the rate function on each node r : V → R+, source s, sets
Si of terminals with rate ri

Solution: A tree T = (VT , ET , l, r) spanning all terminals.

Cost function:
∑

e∈ET
l(e)re, where re = max(ri, rj).

Objective: Minimize.

Approx.: Approximable within 3.802 [72]

Hardness: NP-hard to within an approximation ratio 96/95 [36].

Comment: Approximable within 1.960 for two non-zero rates.

3.9 Min Power Strong Connectivity

Instance: Directed graph G = (V,E), cost function c : E → R+

Solution: Strongly connected spanning subgraph H of G

Cost function: p(H) =
∑

u∈V pH(u), where pH(u) = max{c(u, v)|(u, v) ∈
H}

Objective: Minimize

Approx.: Approximable within approximation ratio 2. Approximable
within approximation ratio 1.85 provided G is bidirected [23].
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3.10 Min Power Symmetric Connectivity

Instance: Graph G = (V,E, c), cost function c : E → R+, transmis-
sion range function r : V → R+, some constant k ≥ 1.

Solution: A connected graph T = (V,ET , c) s.t. r(e1) ≥ c(e) and
r(e2) ≥ c(e), e1, e2 ∈ V .

Cost function:
∑

v∈V r(v)k.

Objective: Minimize.

Approx.: Approximable within 5/3 + ε for every ε > 0 [95] [5].

Hardness: NP-hard for geometric instances in R2 [37] and APX-complete
for instances in R3 [37].

Comment: More practical approximation algorithm exist with approx-
imation ratio 11/6 [5] , [108].

A variant called Min Power Symmetric Connectivity with Asymmetric
Power Requirements is NP-hard to approximate within (1 − ε) ln |V |
[5].

Min Power Symmetric Unicast is efficiently solvable in timeO(|E| log |V |)
[5]
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