SAMPLING TECHNIQUES FOR APPROXIMATING CSP PROBLEMS.

MAREK KARPINSKI,

UNIVERSITY OF BONN.

MAREK KARPINSKI UNIV. OF BONN

マレク カルピンスキー

ボン大学

GENERAL FRAMEWORK:

- PROBLEM WITH MASSIVE DATA.
 TOO LARGE TO BE STORED IN RAM,
 MUST READ FROM EXTERNAL MEMORY.
- NATURAL APPROACH:
 - DRAW A **SMALL** SAMPLE STORABLE IN RAM.
 - A SPECIAL APPROXIMATION ALGORITHM
 - PROCESSES SAMPLE AND YIELD A GOOD ESTIMATE
 - OF AN ANSWER TO THE WHOLE PROBLEM.

BASIC QUESTION OF PROPERTY TESTING OR EQUIVALENTLY ABSOLUTE APPROX. HISTORICALLY, THE FIRST RESULTS WERE DISCOVERED FOR DENSE GRAPHS (AT FIRST LACKING THE HARD CORE ESTIMATES)

- FIRST-CONNECTION TO THE DENSE INSTANCES
 OF OPTIMIZATION PROBLEMS
- SUBDENSE AND NONDENSE INSTANCES
- SAMPLE SIZES
- Metric & Quasimetric Instances

<u>Part</u> I: First-Try:
<u>Dense Max-CSP</u> Instances And Smooth Integer Programs
<u>Part</u> II: <u>Min-CSP</u> Instances

PART III: APPLICATIONS: METRIC AND QUASI-METRIC PROBLEMS

MAX/MIN TCSP EQUIVALENT TO THE FOLLOWING: GIVEN A SET OF T-ARY BOOLEAN FNCT'S f., f2, ..., fm. CONSTRUCT AN ASSIGNMENT XE {O, I} SO AS TO MAXIMIZE/MINIMIZE THE NUMBER OF SATISFIED FNCT'S f.

PRELIMINARIES:

COPING WITH

COMPUTATIONAL

HARDNESS

• <u>New Approx.</u> Methods (<u>U.B.'s.</u>)

• <u>New PCP-Techn.</u>

 $(\underline{L}.\underline{B}.\underline{S}.)$

Dense <u>Instances</u>

<u>Are</u> In Many

CASES -VERY-

"NATURAL" <u>INSTANCES</u>.

 $\Rightarrow (DENSITY IN MANY CASES-$ A SENSIBLE PARAMETER)

APPROXIMATION SCHEMES FOR DENSE GRAPHS AND SOME CSP PROBLEMS - p.12/48

⇒PTAS: A IS CALLED A PTAS FOR TT IF FOR EVERY FIXED E>O, & ISA POLY TIME ALGORITHM IN THE SIZE OF I (AN INSTANCE OF IT WITH APPROX. RATIO 1+E (MEANING DO OUTPUTS A SOLUTION 5 TO I <u>S.T.</u> MAX $\left\{ \begin{array}{c} S \\ OPT(I) \\ S \end{array} \right\}$ $\leq 1+\epsilon$

OUGHT TO BE "SMALL" GROWTH FUNCTION.

AN EPTAS CONSTANT IS TIME AS (CTAS) ITS RUNNING IF TIME IS $f(\frac{1}{\varepsilon})$

8-ABSOLUTE PTAS (g-APTAS) CONDITION: $|OPT - Y| \leq \epsilon e$, FOR ALL E>O. OPT IS OF IF ORDER 9 (OPT= $\Theta(9)$) (>DENSE INSTANCES), EXIST. OF G-APTAS => EXIST. OF PTAS)

(♥) • DENSE INST. OF MAX-CSP HAVE CTASS (O~(1/24) SAMPLE 20~(1/22) TIME)

- <u>Approximation Hardness</u>
 - (WITH RESPECT TO <u>APPROX</u>. <u>RATIO</u> r):

ACHIEVING A.R. r

IN (RANDOMIZED) POLY TIME

 $\Rightarrow NP = P \quad (NP = RP, NP = coRP, ...)$

<u>APPROXIMATION HARDNESS</u>
 (WITH RESPECT TO <u>APPROX. RATIO</u> r):

ACHIEVING A.R. rIN (RANDOMIZED) <u>POLY TIME</u> \Rightarrow <u>NP=P</u> (NP=RP, NP=coRP, ...) (PCP-TH. $\Rightarrow \forall X$ MAX-SNP-HARD $\exists \varepsilon > 0$ [X IS APPROX. HARD WITHIN $1+\varepsilon$].)

"<u>WORLDS</u>" OF <u>MAX-OPT.</u> <u>APPROXIMATION</u>:

• **Dense** <u>Instances</u>:

 α -<u>Dense</u> <u>Graphs</u>

 $(\underline{\operatorname{Min}} \underline{\operatorname{Degree}} \operatorname{Of} G = (V, E) \text{ is } \geq \alpha |V|)$

• A <u>Graph</u> Is <u>Dense</u>

IF ITS MIN DEGREE IS $\Theta(n)$

(A <u>Graph</u> Is <u>Dense In Average</u> If It Has $\Theta(n^2)$ Edges)

• Longest Path

• TSP

- MAX-CUT
- **BISECTION**

- SET COVER
- STEINER TREE

• BANDWIDTH

REF. [7]

(<u>A MAP</u> OF "DENSE" (ABSOLUTE) APPROXIMATIONS:

PROBLEM	Approx. Ratio	Approx. Hardness	Ref.
DENSE MAX-SNP	PTAS		[AKK95]
DENSE MAX-CUT	PTAS		[AKK95],[FV96]
DENSE MAX-DCUT	PTAS		[AKK95]
DENSE MAX-HYPERCUT(d)	PTAS		[AKK95]
DENSE DENSE-K-SUBGRAPH	PTAS		[AKK95]
EVERYWHERE DENSE SEPERATOR	PTAS		[AKK95]
EVERYWHERE DENSE BISECTION	PTAS		[AKK95]
EVERYWHERE DENSE MIN-K-CUT	PTAS		[AKK95]
Problem	Approx. Ratio	Approx. Hardness	Ref.
--------------------------------------	------------------------------------	---------------------	---------
DENSE MIN-LINEAR- ARRANGEMENT	PTAS		[AFK96]
DENSE d-DIMENSIONAL- ARRANGEMENT	PTAS		[AFK96]
DENSE MIN-CUT- LINEAR-ARRANGEMENT	PTAS		[AFK96]
DENSE SET COVER	$\bigcap_{c} c \cdot \ln n$	OPEN	[KZ97b]
DENSE STEINER TREE	PTAS		[KZ97b]
DENSE VERTEX COVER	$\frac{2}{2-\sqrt{1-\varepsilon}}$	MAX-SNP-hard	[KZ97b]
EVERYWHERE DENSE VERTEX COVER	$\frac{2}{1+\varepsilon}$	MAX-SNP-hard	[KZ97b]
EVERYWHERE DENSE BANDWIDTH	3	OPEN	[KWZ97]
EVERYWHERE DENSE DBANDWIDTH	2	OPEN	[KWZ97]

(GEOMETRIC AND METRIC

GRAPH PROBLEMS)

• PARTITIONING PROBLEMS

 $(\Rightarrow <u>'0'-CLASS</u>$

DENSE 'METRIC' TSP,

LONGEST PATH.)

QUALITATIVE RESULTS <u>CONNECTED</u> TO <u>BOTH</u> DENSE AND VERY SPARSE SITUATIONS (!)

NP-<u>Hardness</u> And Density

α -<u>Dense</u> <u>Graphs</u>

(<u>Min Degree</u> of G = (V, E) is $\geq \alpha |V|$)

- <u>HC</u> (HAMILTONIAN CYCLE PROBLEM) <u>Is</u> In P For $\alpha \ge 1/2$,
- <u>HC</u> IS <u>NP-HARD</u> FOR $\alpha < 1/2$.

- LONGEST-PATH IS APPROX. HARD FOR $\alpha < 1/2$ ([FVK98]).
- (1,2)-TSP <u>IS APPROX. HARD</u> FOR $\alpha < 1/2$ ([FVK98]).

 \Rightarrow ANOTHER 'METRIC' PROBLEM DENSE (1,2)-TSP SUBGRAPH SPANNED BY THE EDGES OF LENGTH 1 IS DENSE THEOREM ([FVK98], [FS98]). For Every 0 < d < 1/2, (1,2)-TSP[INST. OF MIN. DEG. $\geq dn$ HAS A <u>PTAS</u> \Rightarrow (1,2)-TSP HAS A PTAS. • <u>APPROX. HARDNESS</u> OF (1,2)-TSP: $r^* \cong 1 + 1.34 \cdot 10^{-3}$ (743/742) [EK00] \downarrow <u>1/4-DENSE-TSP:</u> $r^* = 1 + 1.07 \cdot 10^{-3}$ [FVK98] (BEST <u>UPPER BOUND</u>:

1.1429 (8/7), [**BK06**].)

3-OCC-E3-LIN2 Lower B.: 1.0163 [BK99]

$$\begin{split} r_d^* &= 1 + \varepsilon^* \cdot \frac{1}{1+d} \\ \underline{\text{FOR}} \\ r^* &= 1 + \varepsilon^* \,. \end{split}$$

CLASSES OF DENSE OPT. PROBLEMS

\Rightarrow <u>1st Class</u> (<u>Local</u>-<u>Constraint</u>)

- <u>Max-Cut</u>
- **BISECTION**
- <u>MAX-SNP</u>
- $\Rightarrow 2ND CLASS (COVERING PROBLEMS)$
 - <u>Set Cover</u>
 - **STEINER TREE**
 - VERTEX COVER
- \Rightarrow <u>3rd Class</u> (<u>Bandwidth</u> <u>Problems</u>)
 - **BANDWIDTH**
 - **DBANDWIDTH**

• **BISECTION**

 $\underbrace{\text{MIN} \text{ In } "50/50"-\text{CUT}}_{(EQUI-CUT)} |V_1| = |V_2|$ ("STATUS" WIDE OPEN!)

["DENSE"-IDEA::]

 $O(\log n)$ -Sample

PLACEMENT METHOD By Exhaustive Sampling:

- <u>TAKE</u> A <u>SAMPLE</u> OF $O(\log n)$ VERTICES.
- <u>EXHAUSTIVELY</u> TRY ALL
 POSSIBLE <u>PLACEMENTS</u> (IN L, R),
 2^{O(log n)}-MANY <u>DECIDE</u>
 WHERE <u>EACH VERTEX</u> OF THE
 SAMPLE BELONGS IN OPT CUT.

DENSITY \Rightarrow WITH <u>HIGH</u> <u>PROBABILITY</u> (1 - $n^{-\beta}$, β CONST.) SOME OF THE NEIGHBORS OF V WHERE SAMPLED.

 $\begin{array}{ll} \underline{\mathrm{EASY}} & \underline{\mathrm{DECISIONS}}\\ \\ \underline{\mathrm{IF}} & |\Gamma_{\mathrm{L}}(V)| \ll |\Gamma_{\mathrm{R}}(V)|\\ \\ \\ \mathrm{OR} & |\Gamma_{\mathrm{L}}(V)| \gg |\Gamma_{\mathrm{R}}(V)| \end{array}$

"<u>DIFFICULTY</u>"

IF

 $|\Gamma_{\rm L}(V)| \approx |\Gamma_{\rm R}(V)|$

SMOOTH POLYNOMIAL INTEGER PROGRAMS.

SPIPs. PEZ[X,,X,...,X] LET DEGREEK BE POLYNOMIAL WITH INTEGER COEFF.'S. EI ai

IS <u>CALLED</u> C-SMOOTH, FOR A CONSTANT C>O, IFF K - DEG(Mi) $|\alpha_i| \leq c \cdot n$ 1sisn.

DEF. A POLYNOMIAL INTEGER PROGRAM OF DEGREE K IS A SPIP (OF DEGREE K) IF BOTH "OBJECTIVE AND "CONSTRAINT" POLYNOMIALS ARE C-SMOOTH FOR SOME CONSTANT C>0.

MAX/MIN P(X), P E Z [x,..., xn], C-SMOOTH, $DEG(P) \leq k$, X: E { 0, 1 } ; 9; (x) ≥0 FOR $q_j \in \mathbb{Z}[x_1, \dots, x_n]$ C-SMOOTH, AND OF DEG. <K.

EXAMPLE:

$\Rightarrow \text{ WRITE A}$ QUADRATIC INT. PROGRAM:

P::

$$\begin{array}{c}
\max_{x_i} \left\{ \sum_{i < j} \left(a_{ij} \cdot \left(x_i (1 - x_j) \right) + x_j (1 - x_i) \right) \right\} \\
\bullet \left[x_i \in \{0, 1\} \right] \\
\bullet \left[x_i \in \{0, 1\} \right] \\
\bullet \left[A = [a_{ij}] \text{ IS THE} \\
\underline{ADJ. \text{ MATRIX OF } G} \right]$$

$$s_{ij} = x_i(1 - x_j) + x_j(1 - x_i)$$

$$s_{ij} = 1 \iff x_i \neq x_j, \quad (x_i, x_j \in \{0, 1\})$$

$$(s_{ij} = x_i + x_j - 2x_i x_j)$$

$$Q = \sum_{i < j} a_{ij} s_{ij}$$
$$= \sum_{i < j} -2a_{ij} x_i x_j + \sum_i b_i x_i$$

- <u>Coefficients</u> Of <u>Deg. 2</u> Monomials $\in \{0, -2\}$
- <u>Coefficients</u> Of <u>Deg. 1</u> Monomials = O(n)

DEF.

A <u>Polynomial</u> $P \in \mathbb{Q}[x_1, \dots, x_n]$ OF <u>Deg. d</u> Is <u>c-Smooth</u> (c-<u>Const</u>)

$$P = \sum_{i=1}^{m} a_i M_i$$
$$\frac{AND}{|a_i| \le c \cdot n^{d - DEG(M_i)}}$$

For <u>All</u> $1 \le i \le m$.

$$\Rightarrow Q = \sum_{i < j} a_{ij} s_{ij}$$
For Max-Cut
Is 2-Smooth.

- $(\bullet |-2| \leq 2n^0 \text{ For } \underline{\text{Deg}} = 2;$
 - $|cn| \leq 2n^{2-1}$ For $\underline{\text{Deg}} = 1$ $(c \leq 1)$).

DEF.

A <u>Polynomial Integer Program</u> (<u>PIP</u>) OF <u>Deg.</u> *d* <u>Is</u> <u>*c*-Smooth IF <u>Its</u> <u>Objective</u> <u>Fnct.</u> *P* <u>Is</u> A *c*-Smooth Polynomial Of Deg. *d*.</u>

ABS. APPROX. OF **SPIPs** NEEDED

FOR BOTH MAX- & MIN-CSP.

SPIP-THEOREM (ARORA, KARGER, KARPINSKI '95) Let P be an **SPIP** of Deg. d. Let OPT Be The Opt-Value Of P. Then For Every $\varepsilon > 0$ There Is A POLY TIME APPROX. ALG. PRODUCING AN <u>ASSIGNMENT</u> $s \in \{0, 1\}^n$, S.T. $P(\mathbf{s}) \geq \mathbf{OPT} - \varepsilon n^d$

• <u>RUNNING TIME</u>: $n^{O(1/\varepsilon^2)}$ (As OF '95)

• <u>RUNING TIME</u>: O(1/24), [AFKK'03], <u>REF[1]</u>.

IMPROVEMENT OF ABSOLUTE APPROX. RATIO Entocn To |P(S) - OPT |≤ En/Logn (DE LAVEGA, KARPINSKI 2006) $\rightarrow cf. REF[4].$

DENSE $\underline{MAX-CUT} \in \underline{PTAS}$

$\blacksquare (\underline{1ST \ CLASS}).$

Approximation Schemes For Dense Graphs and Some CSP Problems – p.48/48

PART II. MIN-OPTIMIZATION (MIN-CSP)

AKE 2 DNF - CONJ. MIN-CSP (XAY, 7XA7Y) MIN-2CNF-DELETION! KNOWN TO BE MAX-SNP-HARD ([KPRT'96]). FOR & AN INSTANCE OF +) WITH n VAR'S X,...,X, CONSTRUCT A DENSE INST. F' BY ADDING ALL CLAUSES X: AY: FOR IS i, j & n. WE HAVE CLEARLY OPT (F)= OPT (F)

NEW VAR'S $f' = f \bigwedge_{i,j} (x_i \wedge \gamma_j)$ IN OPT (f) SET TO O. F'IS "EVERYWHERE" DENSE =>> DENSE MIN-2DNF IS MAX-SNP-HARD.

WO OUTSTANDING PROBLEMS: MIN-KSAT AND MIN-KLIN EKNCP NEAREST CODEWORD PROBLEM

HERE "DENSE" MEANS "EVERYWHERE DENSE" (EVERY VAR. Xi OR ITS NEGATION Occurs O(nK-1) TIMES).

1IN-KSA IS MAX-SNP - HARD AND APPROX. WITHIN 2(1-1/2K) FOR EVERY KZ2 ([BTV96], [KKM94]).

>(`06:) APPROX. UPPER : O(1/LOGN APPROX. SUMas, 3NCP) = $M_{IN}-CSP(\times \oplus \gamma \oplus Z = 0),$ $X \oplus Y \oplus Z = 1$ SET OF CONSTRAINT APPLICATIONS IS A SYSTEM OF LIN. EQUATIONS WITH EXACTLY 3 VAR'S PER EQUATION → REF. [7].

LOW ABOUT DENSE MIN-KSAT 2 (MAX-SNP-HARD OR EXISTENCE OF PTAS?) (IT IS NP-HARD IN EXACT SETTING) · "OPTIMALITY" PTAS (YE>0) OF

ALIKE low MIN-KDNF ABOUT 2 DENSE MIN-KSAT 2 (MAX-SNP-HARD OR EXISTENCE OF PTAS?) (IT IS NP-HARD IN EXACT SETTING) · "OPTIMALITY" OF PTAS (YE>O)

SUGGESTS PARTITION INSTANCES OF OF MIN-KSAT INTO INSTANCES WITH $OPT(f) \ge \alpha n^{k}$ AND OPT(f) < ank

METHOD:

SAMPLER DESIGN FOR RETRACT DENSITY OF (K-1)-UNIFORM HYPERGRAPHS. OBJ. FNCT. Socn^K

THEOREM. DENSE MIN-KSAT AND KNCP PROBLEMS HAVE PTASS (FOR EVERY K>2)

PIAS FOR DENSE NEAREST CODEWORD PROBLEM.

DAMPLER: (FOR a E {0,13(5, US21) 7Z) 5 FOR EACH VAR. X¢SUS CONSTRUCT Х A GRAPH $G_x = (S_1 \cup S_2, E_x),$ Ex = {{y,z} |× @y@z=b IS AN EQ., YES AND ZES, OR YES, AND ZESK OF EDG'SIN Ex SAT. BY X=0, $m_0^a = #$ $m_1^a = #$ X = (.

FOR ALL a e {0,13 15, v 5, 1 Do:

X DEC. WHETHER :=0 OR X:=1)/

8'

· TEST $m_0 \ge \frac{2}{3}(m_0^a + m_1^a)$ • IF THEN SET X := 1; $m_{i}^{\alpha} \geq \frac{2}{3} \left(m_{o}^{\alpha} + m_{i}^{\alpha} \right)$ • IF THEN SET X := O; OTHERWISE SET X:= UNDEFINED PLACEMENT OF UNDEFINED VAR'S. $U^{a} = S_{1} \cup S_{2} \cup D^{a}$ VAR'S WHICH ARE ALREADY DEFINED

D° S, q [] Suppose YEXIU (Y IS UNDEF.) U[°] CONSTRUCT A SET OF EQ.'s Sy X, WITHY AS A VARIABLE $IF J_y = \emptyset WE SET$ Y TO O (OR I ARBITR) No = # OF EQ'S SAT. IN Sy FOR = #

IF $n_0^* \ge n_1^*$ THEN SET Y:=1 ELSE SET Y:= O. DENOTE THE RESULTING ASSIGNMENT BY Xa (ESO,13") OUTPUT X* ST. N= 4. $M_{IN}(\overline{X_{1}^{*}}, M_{IN}(\overline{X_{a}^{*}}))$ Χ, $N^* = \# \text{ of } EQ.'S SAT.$ BY X*. $N^* \leq (1+\varepsilon) \cdot OPT (\forall \varepsilon > c)$ CLAIM :

13)

PART III. CONSTANT TIME ALGORITHMS APPLICATIONS, GETTING BEYOND ABSOLUTE APPROX BOUNDS.

GETTING THE RUNING TIME OF SPIP-THEOREM DOWN TO $O^{(1/24)}$ SEE FOR THE INTERMEDIATE RESULTS, AND THEIR APPLIC'S REF[1]

SPECIAL LINEAR ALGEBRAIC TECHNIQUES NEEDED-COMBINED WITH SOME CONSTANT TIME SAMPLING METHOD FOR LPS (LINEAR PROGRAMS)

FIRST A LOOK AT THE METHOD OF SPIP-THEOREM: LINEARIZING QUADRATIC PROGRAM FOR MAX-CUT P: MAX { Z X: Z X: (i,j)EE $a_{ij}(1-x_j)$ $x_i, x_j \in \{0, 1\}$.

BE OPT. × ET ASSIGNMENT OF P. BY P LINEARIZE ESTIMATING $z_i - \varepsilon_n \leq \sum (1 - x_j^*) \leq z_i + \varepsilon_n$ (i,j)EE BY TAKING A RANDOM SAMPLESOF SIZE @ (LOGN/E2) AND $\mathbf{z}_{i} = \frac{n}{|\mathbf{S}|} \sum_{i,j \in \mathbf{E}, j \in \mathbf{S}} (|-\mathbf{x}_{i}^{*}|)$ SETTING

GETTING DOWN TO CONSTANT TIME.

NOTATION : GIVEN FINITE SETS V_1, V_2, \dots, V_r , AN T-DIMENSIONAL ARRAY A ON VI,..., Vr IS A FUNCTION $A: V_1 \times V_2 \times \ldots \vee V_r \to \mathbb{R}$ $(A(i_1, i_2, ..., i_r) IS AN$ ENTRY OF A).

FROBENIUS NORM OFA : $\|A\|_{E} = SQUARE$ ROOT OF THE SUM OF SQUARES OF ALL ENTRIES.

LET $S, \leq V_1, S_2 \leq V_2$, $\dots, S_r \leq V_r, D \in FINE$ THE QANTITY: $(A(S_{1}, S_{2}, ..., S_{r}) =$ $\sum_{(i_1,\ldots,i_r)\in S_1\times S_2\times\ldots\times S_r} A(i_1,i_2,\ldots,i_r).$ (A CUT-NORM OFA: $\|A\|_{c} = M_{AX} |A(S_{1},...,S_{2})|$ $S_{1} \leq V_{1},...,S_{T} \leq V$

EXAMPLE :

r=2, A IS A MATRIX WITH A SET OF ROWS INDEXED BY E' AND A SET OF COLUMNS INDEXED BY V, FOR A GIVEN GRAPH G = (V, E), $V = \{V_1, V_2, \dots, V_n\},$ $E = \{e_1, e_2, ..., e_m\}, AND$ $E' = \{e_1, ..., e_m, e'_1, ..., e'_m\}$

aki ORIENT G = (V, E)ARBITRARILY, E.G. VI IFF i>j. LET $e_{\kappa} = (\underbrace{V_i, V_j}),$ $\frac{\text{SET}: \left(a_{2K-1}, i = 1 \right)}{a_{2K}, j = 1}$ AND $a_{2K-1,j} = a_{2K,i} = -1$
2K-1 2K -D THE <u>REST</u> OF <u>ENTRIES</u> ARE <u>ALL</u> <u>SET TO O.</u>

MAX-TCSP CAN BE REDUCED TO THE PROBLEMS OF MAXIMIZING POLYNOMIALSOF DEGREET OVER THE BOOLEAN CUBE (AS WE DID USING AN SPIP FOR MAX-CUT PROBLEM, AND COMPUT. OF I All, FOR T-DIM. ARRAYS A.

PPROXIMATION OF IAIL. $(ON \land RANDOM)$ SUBSET OF <u>SIZE</u> $O(LOG(1/2)/2^4)(=9).$ ASSUMPTIONS (*) ON A: $\|A\|_{c} \leq \epsilon n^{T}, \|A\|_{o} \leq \frac{1}{\epsilon} B(r)$ $\|A\|_{F} \leq 2^{T} n^{T/2}$

THEN, A RANDOM INDUCED SUBARRAY H OF A SATISFIES $\|H\|_{C} \leq C(r) \cdot q^{T}$ N.H.P. THE OTHER DIRECTION IS EASY: IF IIAIL IS HIGH, THEN SO IS I'HILC.

THE COMPUTATION OF II HIL (WE NEED ONLY ABS. APPROX.) ON A SMALL SAMPLE CAN BE DONE BY KNOWN METHOD OF CUT-ARRAY DECOMPOSITION. RESULTING TIME: 0(1/22)

HOW <u>ABOUT</u> REVERSED ("UP-STAIRS") DIRECTION? TO <u>RELATE</u> ||H|| <u>WITH</u> THE ILAILC (OPT OF AN INSTANCE).

LET F BE AN INST. OF MAX-TCSP WITH n VAR.'S. FOR A RANDOM SAMPLE Q OF THE SET OF VAR'S {X,...,X LET FQ BE A RANDOM SUB-INST. INDUCED BY Q. MAIN RESULT: $\left|\frac{n}{qr}OPT_{FQ} - OPT_{F}\right| \leq \epsilon n'$ $For |Q| = q = O(LOG(\frac{1}{2})/\frac{2}{2})$

VERY RECENT IMPROVEMET OF A-PART TO HARD CORE SIZE O(1/2) BY RUDELSON AND LISING VERSHYNIN SOME NEW TECHNIQUES OF BOURGAIN AND TZAFRIRI.

RECENT EXT.'S UNBOUNDED To WEIGHT CLASSES INCLUDING METRIC AND QUASIMETRIC CASES. [FKKV05] (REF. [3])

• THERE ARE PTASS FOR GENERAL QUASIMETRIC K-CLUSTERING PROBLEMS. (BY "NON-HARD-CORE METHOD) [FKKR03]

> NO GENERAL SUBLINEAR PTASS KNOWN.

J

INTRA-CLUSTER DISTANCES

INTRA-CLUSTER DISTANCES

MIN-SUM CLUSTERING

<u>GETTING</u> <u>BEYOND</u> THE <u>ABSOLUTE</u> BOUNDS. GIVEN A $\Theta(\frac{n^{r}}{\Delta})$ -DENSE INST. OF MAX-rCSP, THERE EXISTS 20(A)-TAS WITH $\Theta(\Delta)$ SAMPLE SIZE. (FOR SUBDENSE CLASS, A=LOGN, WE HAVE PTAS .

PROOF METHOD BASED ON NEW ANALYSIS OF SPECIAL SPIPS FOR THAT PROBLEMS. (FK05] (cf. REF.[4])

FURTHER RESEARCH: (IMPROVING THE HARD CORE COMPLEXITY OF THE ALGORITHMS ARE THERE ANY "MYSTERIOUS" INTRACTABILITY BARRIERS FOR GETTING DOWN TO, SAY, O(1/22) HARD CORE BOUNDS?

ANY SUBLINEAR HARD CORE PTASS (CTASS WITH METRIC PREPROCESSING) FOR K-CLUSTERING PROBLEMS?