
A QPTAS for the Base of the Number of
Crossing-Free Structures on a Planar Point Set

Marek Karpinski1 ?, Andrzej Lingas2 ??, and Dzmitry Sledneu3

1 Department of Computer Science, University of Bonn
marek@cs.uni-bonn.de

2 Department of Computer Science, Lund University
andrzej.lingas@cs.lth.se

3 Centre for Mathematical Sciences, Lund University
dzmitry@maths.lth.se

Abstract. The number of triangulations of a planar n point set S is
known to be cn, where the base c lies between 8.65 and 30. Similarly,
the number of spanning trees on S is known to be dn, where the base d
lies between 12.52 and 141.07. The fastest known algorithm for counting
triangulations of S runs in O∗(2n) time while that for counting span-
ning trees on S enumerates them in Ω(12.52n) time. The fastest known
arbitrarily close approximation algorithms for the base of the number
of triangulations of S and the base of the number of spanning trees of
S, respectively, run in time subexponential in n. We present the first
quasi-polynomial approximation schemes for the base of the number of
triangulations of S and the base of the number of spanning trees on S,
respectively.

1 Introduction

By a crossing-free structure in the Euclidean plane, we mean a planar straight-
line graph (PSLG), i.e., a plane graph whose edges {v, u} are represented by
properly non-intersecting straight-line segments with endpoints v, u, respectively.
Triangulations and spanning trees on finite planar point sets are the two most
basic examples of crossing-free structures in the plane, i.e., PSLGs. The problems
of counting the number of such structures for a given planar n-point set belong
to the most intriguing in Computational Geometry [2–5, 7, 11, 12].

Counting triangulations. A triangulation of a set S of n points in the Eu-
clidean plane is a PSLG on S with a maximum number of edges. Let Ft(S) stand
for the set of all triangulations of S.

The problem of computing the number of triangulations of S, i.e., |Ft(S)|, is
easy when S is convex. Simply, by a straightforward recurrence, |Ft(S)| = Cn−2,
where Ck is the k-th Catalan number, in this special case. However, in the
general case, the problem of computing the number of triangulations of S is
? Research partially supported by DFG grants and the Hausdorff Center grant.

?? Research supported in part by VR grant 621-2011-6179.

neither known to be #P -hard nor known to admit a polynomial-time counting
algorithm.

It is known that |Ft(S)| lies between Ω(8.65n) [4] and O(30n) [11]. See also
Table 1 in Appendix. Since the so called flip graph whose nodes are triangulations
of S is connected [15], all triangulations of S can be listed in exponential time
by a standard traversal of this graph. Only recently, Alvarez and Seidel have
presented an elegant algorithm for the number of triangulations of S running in
O∗(2n) time [3] which is substantially below the aforementioned lower bound on
|F (S)| (the O∗ notation suppresses polynomial in n factors).

Also recently, Alvarez, Bringmann, Ray, and Seidel [2] have presented an
approximation algorithm for the number of triangulations of S based on a recur-
sive application of the planar simple cycle separator [9]. Their algorithm runs in
subexponential 2O(

√
n logn) time and over-counts the number of triangulations

by at most a subexponential 2O(n
3
4
√

logn) factor. It also yields a subexponential-
time approximation scheme for the base of the number of triangulations of
S, i.e., for |Ft(S)| 1n . The authors of [2] observe also that just the inequalities
Ω(8.65n) ≤ |Ft(S)| ≤ O(30n) yield the large exponential approximation factor
O(
√

30/8.65
n
) for |Ft(S)| trivially computable in polynomial time.

Counting spanning trees. A spanning tree U on a set S of n points in the
Euclidean plane is a connected PSLG on S that is cycle-free, equivalently, that
has n− 1 edges. Let Fs(S) stand for the set of all spanning trees on S.

It is known that |Fs(S)| lies between Ω(12.52n) [8] and O(141.07n) [7]. The
fastest known algorithms for computing |Fs(S)| enumerate Fs(S). It is still an
open problem if the enumeration method can be beaten for spanning tree.

The aforementioned approximation algorithm for |Ft(S)| due to Alvarez,
Bringmann, Ray, and Seidel can be adapted to compute |Fs(S)| in the same
asymptotic subexponential 2O(

√
n logn) time within the same asymptotic subex-

ponential 2O(n
3
4
√

logn) approximation factor [2]. The adaption also yields
a subexponential-time approximation scheme for the base of the number of span-
ning trees on S, i.e., for |Fs(S)| 1n .

Our contributions. We take a similar approximation approach to the prob-
lems of counting triangulations of S and counting spanning trees on S as Alvarez,
Bringmann, Ray, and Seidel in [2]. However, importantly, instead of using re-
cursively the planar simple cycle separator [9], we shall apply recursively the so
called balanced α-cheap l-cuts of maximum independent sets of triangles within
a dynamic programming framework developed by Adamaszek and Wiese in [1].
By using the aforementioned techniques, the authors of [1] designed the first
quasi-polynomial time approximation scheme (QPTAS, see Appendix for the
definition) for the maximum weight independent set of polygons belonging to
the input set of polygons with poly-logarithmically many edges.

Observe that a triangulation of S can be viewed as a maximum independent
set of triangles drawn from the set of all triangles with vertices in S that are free
from other points in S (triangles, or in general polygons, are identified with their
open interiors). Also, a spanning tree on S can be easily complemented to a full

triangulation on S. These simple observations enable us to use the aforemen-
tioned balanced α-cheap l-cuts recursively in order to bound an approximation
factor of our approximation algorithm. The parameter α specifies the maximum
fraction of an independent set of triangles that can be destroyed by the l-cut,
which is a polygon with at most l vertices in a specially constructed set of points
of polynomial size.

Similarly as the approximation algorithm from [2], our algorithm may over-
count the true number of triangulations or spanning trees because the same
triangulation or spanning tree, respectively, can be partitioned recursively in
many different ways. In contrast with the approximation algorithm in [2], our
algorithm may also under-count the number of triangulations of S or spanning
trees on S, since our partitions generally destroy a fraction of edges in a trian-
gulation or a spanning tree on S.

Our approximation algorithm for the number of triangulations of (or, the
number of spanning trees on, respectively) a set S of n points with integer
coordinates in the plane runs in n(log(n)/ε)O(1) time. For ε > 0, it returns a
number at most 2εn times smaller and at most 2εn times larger than the number
of triangulations of S (or, the number of spanning trees on S, respectively). Note
that even for ε = (log n)−O(1), the running time is still quasi-polynomial.

As a corollary, we obtain quasi-polynomial approximation schemes for the
base of the number of triangulations of S, i.e., for |Ft(S)| 1n , and the base of
the number of spanning trees on S, i.e., for |Fs(S)| 1n , respectively. This implies
that the problems of approximating |Ft(S)| 1n and |Fs(S)| 1n cannot be APX-hard
(under standard complexity theoretical assumptions).

Organization of the paper. In Preliminaries, we introduce basic concepts
of the dynamic programming framework from [1]. In the following section, we
present five properties of an abstract family of (crossing-free) structures on which
the analysis of our approximation algorithm relies. Section 4 presents our ap-
proximation counting algorithm for the number of such structures on S and its
time-complexity analysis. A comparison of our algorithm with prior algorithms
is moved to Appendix. In Sections 5, upper bounds on the under-counting and
the over-counting of the algorithm are derived, respectively. In Section 6, we ob-
tain our main results by showing that planar triangulations and spanning trees
satisfy these five properties. A short discussion on possible improvements and
extensions of our results is moved to Appendix.

2 Preliminaries

The Maximum Weight Independent Set of Polygons Problem (MWISP) is de-
fined as follows [1]. We are given a set Q of n polygons in the Euclidean plane.
Each polygon has at most k vertices, each of the vertices has integer coordinates.
Next, each polygon P in Q is considered as an open set, i.e., it is identified with
the set of points forming its interior. Also, each polygon P ∈ Q has weight
w(P) > 0 associated with it. The task is to find a maximum weight independent

set of polygons in Q, i.e., a maximum weight set Q′ ⊆ Q such that for all pairs
Pi, Pj of polygons in Q′, if Pi 6= Pj then it holds Pi ∩ Pj = ∅.

The bounding box of Q is the smallest axis aligned rectangle containing all
polygons in Q.

Note that in particular if Q consists of all triangles with vertices in a finite
planar point set S such that no other point in S lies inside them or on their
perimeter, each having weight 1, then the set of all maximum independent sets
of polygons in Q is just the set of all triangulations of S. Recall that the latter
set is denoted by Ft(S) while the set of all spanning trees on S is denoted by
Fs(S).

Adamaszek and Wiese have shown that if k = poly(log n) then MWISP
admits a QPTAS [1].

Fact 1 ([1]). Let k be a positive integer. There exists a (1 + ε)-approximation
algorithm with a running time of (nk)(

k
ε logn)O(1) for the Maximum Weight In-

dependent Set of Polygons Problem provided that each polygon has at most k
vertices.

Recently, Har-Peled generalized Fact 1 to include arbitrary polygons [6].
We need the following tool from [1].

Definition 1. Let l ∈ N and α ∈ R where 0 < α < 1. Let T be a set of pairwise
non-touching triangles. A polygon Γ is a balanced α-cheap l-cut of T if

– Γ has at most l edges,
– the total weight of all triangles in T that intersect Γ does not exceed an α

fraction of the total weight of triangles in T ,
– the total weight of the triangles in T contained in Γ does not exceed two

thirds of the total weight of triangles in T ,
– the total weight of the triangles in T outside Γ does not exceed two thirds of

the total weight of triangles in T .

For a set of triangles T in the plane, the set of DP-points consists of basic
DP-points and additional DP-points. The set of basic DP-points contains the
four vertices of the bounding box of T and each intersection of a vertical line
passing through a corner of a triangle in T with any edge of a triangle in T or
a horizontal edge of the bounding box. The set of additional DP-points consists
of all intersections of pairs of straight-line segments whose endpoints are basic
DP-points. The authors of [1] observe that the total number of DP-points is
O(n4).

Fact 2 (Lemma 3.6 in [1]). Let δ > 0 and let T be a set of pairwise non-
touching triangles in the plane such that the weight of no triangle in T exceeds
one third of the weight of T . Then there exists a balanced O(δ)-cheap (1

δ)
O(1)-cut

with vertices at basic DP-points.

3 An abstract crossing-free structure

Triangulations and spanning trees are special cases of planar straight-line graphs
(PSLGs). We shall consider an abstract family Fa of finite PSLGs having five
properties (satisfied by triangulations and spanning trees as shown in Section 6).

We shall use the following conventions in order to specify these properties
and design an approximation algorithm for counting the number of PSLGs in
Fa whose vertex set is an n-point planar point set S. We shall denote the latter
set by Fa(S).

We shall call a member in Fa a (crossing-free) structure, and a member
in Fa(S) a structure on S. Next, we shall call any subgraph of a structure a
substructure.

Let P be a polygon with holes. The restriction of a structure G to P is the
substructure consisting of all edges and vertices of G within P . (E.g., if G is a
triangulation then the restriction is a partial triangulation, and if G is a spanning
tree then the restriction is a forest, in general).

We say that a substructure is within P if all its vertices and all its edges are
within P . Next, we shall call a substructure H = (VH , EH) within P maximal
if there is no other substructure H ′ = (VH′ , EH′) within P , where VH = VH′ ,
and EH $ EH′ . (E.g., if H is a partial triangulation within P then it cannot be
extended to any larger partial triangulation by adding more edges, similarly, if
H is a forest within P then it cannot be extended to any larger forest within P
by adding more edges.)

We shall assume that the family Fa has the following properties.

1. One can decide if a PSLG with at most n vertices is a structure, i.e., belongs
to Fa, in at most 2O(n logn) time.

2. If a structure has n vertices then it has Ω(n) edges. Two structures with the
same set of vertices have the same number of edges.

3. Any substructure is in particular a substructure of a structure on the vertex
set of the substructure.

4. Any extension of the restriction of a structure G to a simple polygon P with
holes to a maximal substructure on the vertices of G within P uses at most
O(l) additional edges, where l is the number of edges of G with endpoints
in P crossed by the boundaries of P .

5. Suppose that polygons P1, P2 with holes form a partition of a polygon P
with holes. The union of a substructure within P1 with a substructure within
P2 is a substructure.

By the definitions, Fa has also the following properties.

Lemma 1. (Property 6) A maximal substructure H within the bounding box of
the structure that H is a subgraph is a structure.

Lemma 2. (Property 7). Suppose that for j = 1, . . . , l, Rj is a maximal sub-
structure within the polygon Pj with holes, and the polygons P1 through Pl are
pairwise non-overlapping and their union forms a polygon P with holes. Let

R′1, . . . , R
′
l be another sequence of maximal substructures within P, . . . , Pl, re-

spectively, where Rj and R′j have the same vertex set for j = 1, . . . , l. If Ri 6= R′i
for some i ∈ {1, . . . , l}, each edge extension of

⋃l
j=1Rj to a maximal substruc-

ture within P is different from any edge extension of
⋃l
j=1R

′
j to a maximal

substructure within P .

Proof. The proof is by contradiction. The joint edge extension of both sequences
would contain Rj∪Rj′ within Pj which would contradict the maximality of both
Rj and Rj′ within Pj . ut

4 Dynamic programming

Our dynamic programming approximation algorithm for |Fa(S)| is termed
Algorithm 1 and it is depicted in Fig. 1. For the comparison of our algorithm
with those due to Adamaszek and Wiese [1] and to Alvarez, Bringmann, Ray,
and Seidel [2], see Appendix.

Input: A set S of n points with integer coordinates in the Euclidean plane and natural
number parameters k and ∆.

Output: An approximate number of structures on the vertex set S, i.e., an approxi-
mate |Fa(S)|.

1: T ← the set of all triangles with vertices in S that do not contain any other point
in S;

2: P ← a list of polygons (possibly with holes) with at most k vertices in total at DP
points induced by T , topologically sorted with respect to geometric containment;

3: for each polygon Q ∈ P containing at most ∆ points in S do
4: as(Q)← exact number of maximal substructures on the vertex set S ∩Q within

Q;
5: end for
6: for each polygon set Q ∈ P containing more than ∆ points in S do
7: as(Q)← 0;
8: for each partition of Q into polygons Q1, . . . , Ql ∈ P , where l ≤ k, no Qj

contains more than two thirds of points in S ∩ Q, and as(Q1) through as(Ql)
are defined do

9: as(Q)← as(Q) +
Ql

j=1 as(Qj);
10: end for
11: end for
12: Output as(B), where B is the bounding box of T .

Fig. 1. Algorithm 1 for approximately counting structures on a finite planar point set.

Time complexity. The cardinality of T does not exceed n3. Then, by the
analogy with the dynamic programming algorithm of Adamaszek and Wiese
for nearly maximum independent set of triangles [1], we call a polygon in the
list P in Algorithm 1 a DP cell and observe that the number of DP cells is

(3n3)O(k) = nO(k) (see Proposition 2.1 in [1]). Consequently, the number of
possible partitions of a DP cell into at most k DP cells is O(

(
nO(k)

k

)
), i.e., nO(k2).

It follows that if we neglect the cost of computing the exact number of maxi-
mal substructures contained within a DP cell including at most ∆ input points,
then Algorithm 1 runs in nO(k2) time.

We can compute the exact number of maximal substructures contained within
a DP cell with at most ∆ input points in 2O(∆ log∆) time as follows. By enumer-
ating all PSLGs on the subset of S contained in the DP cell, and using Property
1 and the fact that the number of PSLGs on at most ∆ vertices is 2O(∆ log∆), we
can list all structures on this subset in 2O(∆ log∆)×2O(∆ log∆) = 2O(∆ log∆) time.
Hence, by Property 3, we can exactly count all maximal substructures (on this
subset) within the cell by pruning the aforementioned structures and checking
maximality also in 2O(∆ log∆) time. We conclude with the following lemma.

Lemma 3. Algorithm 1 runs in nO(k2)2O(∆ log∆) time.

5 Approximation factor

Under-counting. The potential under-counting stems from the fact that when
a DP cell is partitioned into at most k smaller DP cells then the possible combi-
nations of structure edges crossing the boundaries of the cells are not counted.
Furthermore, in the leaf DP cells, i.e., those including at most ∆ points from S,
we count only maximal substructures while the restriction of a structure on S
to a DP cell does not have to be a maximal substructure within the cell. See Q5

in Fig. 2.

Q1

Q2

Q3

Q4

Q5

Fig. 2. An example of a maximal partial triangulation within a DP cell and a par-
tition of the DP cell into smaller DP cells Q1, . . . , Q5 crossing some triangles in the
triangulation.

Intuitively, the general idea of the proof of our upper bound on under-
counting is as follows. For each structure W ∈ Fa(S), there is a substructure
counted by Algorithm 1 that can be obtained by removal O(εn) edges from W
and augmenting the resulting substructure with O(εn) other edges. The final
substructure is a union of maximal substructures contained in leaf DP cells.

Lemma 4. Let S be a set of n points in the plane and let ε > 0. For each
W ∈ Fa(S), there is a substructure W ∗ ⊆W on S containing at least a 1−O(ε)
fraction of the edges of W and a substructureM(W ∗) on S which is an extension
of W ∗ by O(εn) edges such that the estimation returned by Algorithm 1 with k
set to logO(1)(n)/εO(1) is not less than |

⋃
W∈F (S){M(W ∗)}|.

Proof. Let W ∈ Fa(S) and let T (W) be any triangulation of S that is an exten-
sion of W . By adapting the idea of the proof of the approximation ratio of the
QPTAS in [1], consider the following tree U of DP cells obtained by recursive
applications of balanced α-cheap l-cuts.

At the root of U , there is the bounding box. By Fact 2, there is a balanced
α-cheap l-cut, where l = α−O(1), that splits the box into at most k children DP
cells such that only α fraction of the triangular faces of T (W) is crossed by the
cut. The construction of U proceeds recursively in children DP cells and stops
in DP cells that contain at most ∆ points in S.

Note that the height of U is not greater than log3/2 n.
For a node u of U , let Wu be the substructure that is the restriction of W

to the vertices and edges of W contained in the DP cell Qu associated with u.
Analogously, let T (W)u be the partial triangulation of the points in S∩Qu that
is the restriction of T (W) to (the vertices and edges of T (W) contained in) Qu.
Clearly, Wu is a subgraph of T (W)u. Next, let W ∗u be the substructure that
is the union of Wt over the the leaves t of the subtree of U rooted at u. Note
that W ∗u is a subgraph of Wu. Analogously, let T (W)∗u denote the restriction of
T (W)u to the union of T (W)t over the the leaves t of the subtree of U rooted
at u. Clearly, W ∗u is a subgraph of T (W)∗u.

By induction on the height h(u) of u in U , we obtain that the partial tri-
angulation T (W)∗u ⊆ T (W)u contains a (1 − α)h(u) fraction of triangular faces
of T (W)u. Set α to O(ε)

log(n/ε) . It follows in particular that for the root r of U ,
T (W)∗r ⊆ T (W) contains at least a (1 − α)log3/2 n/ε ≥ 1 − O(ε) fraction of tri-
angular faces in T (W). Set T (W)∗ to T (W)∗r and W ∗ to W ∗r . By Property 2
ensuring that W has Ω(n) edges and the fact that each triangular face has three
edges, we conclude that analogouslyW ∗ contains a 1−O(ε) fraction of the edges
of W . Thus, the number of edges in W missing in W ∗ is O(εn).

For a leaf t of U , let M(Wt) be an (edge) extension of Wt to a maximal sub-
structure within the leaf cell Qt. By Property 4, the number of edges extending
Wt toM(Wt) is bounded by a constant times the number of edges inW crossing
the boundary of Qt and having an endpoint within Qt.

For a node u of U , let M(W ∗u) be a substructure within Qu that is the
union of M(Wt) over the leaves t of the subtree of U rooted at u. We have also
M(W ∗) = M(W ∗r) by W ∗ = W ∗r . It follows that the number of edges extending
W ∗ toM(W ∗) is bounded by a constant times the number of edges ofW missing
in W ∗, i.e., O(εn).

We shall show by induction on h(u) that Algorithm 1 counts at least the
number of M(W ∗u) while computing an estimation for Qu.

If h(u) = 0, i.e., u is a leaf in U thenW ∗u = Wu and consequently in particular
M(W ∗u) = M(Wu) is counted by Algorithm 1.

Suppose in turn that u is an internal node in U with l children u1, . . . , ul.
When the estimation for Qu is computed by Algorithm 1, the sum of products
of estimations yielded by different partitions of Qu into at most k DP cells is
computed. In particular, the partition into Qu1 , . . . , Qul is considered. By the
induction hypothesis, the estimation for Quj includes M(W ∗uj) for j = 1, . . . , l.
Hence, the product of these estimations counts also M(W ∗u) =

⋃l
j=1M(W ∗uj).

By M(W ∗) = M(W ∗r), to obtain the lemma it remains to show that the
bound logO(1)(n/ε)/εO(1) on k is sufficiently large. Following the proof of Lemma
2.1 in [1], observe that each DP cell Qu at each level of U is an intersection of
at most O(log(n/ε)) polygons, each with at most l edges and vertices at basic
DP points. Hence, by α = O(ε)

log(n/ε) and l = α−O(1), the resulting polygons have
at most O(l2 log2(n/ε)) = logO(1)(n/ε)/εO(1) edges and vertices at basic and
additional DP points. ut

Theorem 1. The under-counting factor of Algorithm 1 with k set to
logO(1)(n/ε)/εO(1) is at most 2O(εn logn).

Proof. Consider any structure W ∈ Fa(S). By Lemma 4, the number of edges of
W that are missing in the substructure W ∗ ⊆ W is O(εn). Since all structures
in Fa(S) have the same number of edges by Property 2, the number of edges
completing W ∗ to any structure is O(εn). It follows that the number of ways
of completing W ∗ to a structure in Fa(S) is not greater than the number of
subsets of at most O(εn) edges of the complete Euclidean graph on S, which is
2O(εn logn).

By Lemma 4, the estimation returned by Algorithm 1 with k set to
logO(1)(n/ε)/εO(1) is not less than |

⋃
W∈F (S){M(W ∗)}|.

Now it remains to show that the maximum number of substructures (W ′)∗,
W ′ ∈ Fa(S), for whichM((W ′)∗) = M(W ∗) is at most 2O(εn logn). By Lemma 4,
the number of edges extending (W ′)∗ to M((W ′)∗) is at most O(εn). Conse-
quently, the maximum number of such substructures (W ′)∗ is upper bounded
by the number of subsets of at most O(εn) edges ofM(W ∗) (whose removal may
form a substructure (W ′)∗ satisfying M((W ′)∗) = M(W ∗)). The latter number
is 2O(εn logn).

We conclude that for W ∈ F (S), the number of other structures W ′ ∈ F (S)
for which M((W ′)∗) = M(W ∗) is at most 2O(εn logn)2O(εn logn) = 2O(εn logn).
Now, the theorem follows from Lemma 4. ut

Over-counting. The reason for over-counting in the estimation returned by
our algorithm is as follows. The same structure or more generally substructure
within a DP cell may be cut in the number of ways proportional to the number of
considered partitions of the DP cell into at most k smaller DP cells. This reason
is similar to that for over-counting of the approximation triangulation counting
algorithm of Alvarez, Bringmann, Ray, and Seidel [2] based on the planar simple

cycle separator theorem. Therefore, our initial recurrences and calculations are
similar to those derived in the analysis of the over-counting from [2].

Lemma 5. Let Q be an arbitrary DP cell processed by Algorithm 1 which con-
tains more than ∆ input points. Recall the calculation of the estimation for Q by
summing the products of estimations for smaller DP cells Q1, . . . , Ql over nO(k2)

partitions of Q into Q1, . . . , Ql, l ≤ k. Substitute the true value of the number
of maximal substructures (on input points) within each such smaller cell Qi for
the estimated one in the calculation. Let r be the resulting value. The number of
maximal substructures (on input points) within Q is at least r/nO(k2).

Proof. Note that r is the sum of the number of different combinations of max-
imal structures within smaller DP cells Q1, . . . , Ql over nO(k2) partitions of Q
into smaller cells Q1, . . . , Ql, l ≤ k. Importantly, each such combination can be
completed to some maximal substructure within Q (Property 5) but no two dif-
ferent combinations coming from the same partition Q1, . . . , Ql can be extended
to the same maximal substructure within Q by Property 7 (Lemma 2).

Let M be the set of maximal substructures W within Q for which there is
a partition into smaller DP cells Q1, . . . , Ql, l ≤ k, such that for i = 1, . . . , l,
W constrained to Qi is a maximal substructure within Qi. Note that for each
W ∈ M , the number of the combinations that can be completed to W cannot
exceed that of the considered partitions, i.e., nO(k2), as each of the combinations
has to come from a distinct partition Q1, . . . , Ql.

Thus, there is a binary relationship between maximal substructures within
Q that belong to M and the aforementioned combinations. It is defined on all
the maximal substructures in M and on all the combinations, and a maximal
substructures in M is in relation with at most nO(k2) combinations. This yields
the lemma. ut

By Lemma 5, we can express the over-counting factor L(Q,∆) of Algorithm 1
for a DP cell Q by the following recurrence:

L(Q,∆) =
∑

(Q1,...,Ql)

l∏
j=1

L(Qj , ∆) ≤ nO(k2)
l∗∏
j=1

L(Q∗j , ∆)

where the summation is over all partitions of Q into DP cells Q1, . . . , Ql, such
that l ≤ k, andQ∗1, . . . , Q∗l∗ is a partition that maximizes the term

∏l
j=1 L(Qj , ∆).

When Q contains at most ∆ input points, Algorithm 1 computes the exact
number of maximal substructures on these points within Q. Thus, we have
L(Q,∆) = 1 in this case.

Following [2], it will be more convenient to transform our recurrence by taking
logarithm of both sides. For any DP cell P , let L′(P,∆) = logL(P,∆). We obtain
now:

L′(Q,∆) ≤ O(k2 log n) +
l∗∑
j=1

L′(Q∗j , ∆)

Lemma 6. Let B be a bounding box for a set S of n points in the plane. The
following equality holds

L′(B,∆) = O(k2n log2 n/∆)

Proof. Let U be the recurrence tree and let D be the set of direct ancestors of
leaves in U . For each node d ∈ D, the correspondingDP cell includes at least∆+
1 points in S. It follows that |D| ≤ n/∆. Also, any node in D has depth O(log n)
in U . Consequently, the contribution of the subproblems corresponding to nodes
in D and their ancestors to the estimation for L′(B,∆) can be upper bounded
by O(k2 log n× (n/∆) log n). Finally, recall that the subproblems corresponding
to leaves of U do not contribute to the estimation. ut

Lemma 6 and Property 6 (Lemma 1) immediately yield the following corollary.

Theorem 2. Let B be a bounding box for a set of n points in the plane. Set
the parameter k in Algorithm 1 as in Theorem 1. If for ε > 0 the parameter
∆ in Algorithm 1 is set to c

εk
2 log2 n for sufficiently large constant c then the

over-counting factor is at most 2εn.

6 Main results

Lemma 7. Triangulations and spanning trees on finite planar point sets satisfy
the five properties of Fa.

Proof. Properties 1, 2, 3 and 5 are clearly satisfied by triangulations and span-
ning trees.

To show that Property 4 holds for triangulations, consider an extension of the
restriction of a triangulation G to a simple polygon P with holes to a maximal
partial triangulation on the vertices of G within P . All the edges within P
added by the extension have to be incident to vertices of triangular faces of
G with at least one edge crossed by the boundary of P . Observe, that such a
triangular face has to have at least one vertex within P that is an endpoint of
an edge of G crossed by the boundaries of P . Let l be the number of edges of G
with an endpoint within P crossed by the boundaries of P . It follows that the
number of aforementioned triangles is at most 2l and consequently the number
of the endpoints of the edges within P added by the extension does not exceed
3× 2l = O(l). Hence, the total number of the added edges is also O(l).

To show in turn that Property 4 holds for spanning trees, consider the forest
which is the restriction of a spanning tree G to a simple polygon P with holes.
Let t be the number of connected components of the forest. It follows that the
number l of edges of the spanning tree G with at least one endpoint within P
crossed by the boundaries of P is at least t − 1. On the other hand, any edge
extension of the forest to a maximal forest within P may add at most t− 1 ≤ l
edges to the forest. ut

By combining Lemmata 7 and 3 with Theorems 1, 2 with ε set to ε/ log n,
we obtain our main result.

Theorem 3. There exists an approximation algorithm for the number of tri-
angulations of (or, the number of spanning trees on) a set S of n points with
integer coordinates in the plane with a running time of at most n(log(n)/ε)O(1)

that returns a number at most 2εn times smaller and at most 2εn times larger
than the number of triangulations of (or, spanning trees on, respectively) S.
Corollary 1. There exists a (1 + ε)-approximation algorithm with a running
time of at most n(log(n)/ε)O(1) for the base of the number of triangulations of (or,
spanning trees on) a set of n points with integer coordinates in the plane.
Proof. Let cn be the number of triangulations of (or, the number of spanning
trees on) the input n point set, and let Λ be the number returned by the algorithm
from Theorem 3. We have max{ c

n

Λ ,
Λ
cn } ≤ 2εn by Theorem 3. By taking the n-th

root on both sides, we obtain max{ c

Λ
1
n
, Λ

1
n

c } ≤ 2ε. Now it is sufficient to observe
that 2ε < 1 + ε for ε < 1

2 . ut

References
1. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of

polygons with polylogarithmically many vertices. SODA 2014.
2. Alvarez, V., Bringmann, K., Ray, S., Seidel, R.: Counting triangulations approxi-

mately. CCCG 2013.
3. Alvarez, V., Seidel, R.: A simple aggregative algorithm for counting triangulations

of planar point sets and related problems. SoCG’13.
4. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C. D.: Bounds on the maximum

multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2),
802–826. (2013)

5. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Dis-
crete Mathematics 204(1-3), 203–229. (1999)

6. Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets of
polygons. SoCG’14.

7. Hoffmann, M., Sharir, M., Sheffer, A., Tóth, C. D., Welzl, E.: Counting plane
graphs: Flippability and its applications. WADS 2011.

8. Huemer, C., de Mier, A.: Lower bounds on the maximum number of non-crossing
acyclic graphs. http://arxiv.org/abs/1310.5882. (2013)

9. Miller, G. L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32(3), 265–279. (1986)

10. Olaverri, A. G., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free
subgraphs of Kn. Comput. Geom. 16(4), 211–221. (2000)

11. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electr. J.
Comb. 18(1). (2011)

12. Sharir, M., Sheffer, A., Welzl, E.: On degrees in random triangulations of point
sets. J. Comb. Theory, Ser. A 118(7), 1979–1999. (2011)

13. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: Perfect matchings, span-
ning cycles, and kasteleyn’s technique. J. Comb. Theory, Ser. A 120(4), 777–794.
(2013)

14. Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and par-
titions. SIAM J. Comput. 36(3), 695–720. (2006)

15. Sibson, R.: Locally equiangular triangulations. Comput. J. 21(3), 243–245. (1978)

Appendix

Bounds on the number of different types of plane graphs

The following table is based on [4].

Table 1. Bounds on the number of different types of plane graphs

Graph type Lower bound Reference Upper bound Reference

Triangulations Ω(8.65n) [4] 30n [11]
Spanning cycles Ω(4.64n) [10] O(54.55n) [13]
Perfect matchings Ω(3n) [10] O(10.05n) [14]
Spanning trees Ω(12.52n) [8] O(141.07n) [11], [7]

QPTAS definition

An algorithm is called quasi-polynomial-time if its worst case running time is
n(logn)c for some fixed c.

A quasi-polynomial-time approximation scheme (QPTAS) for an optimiza-
tion or counting problem P is a family of algorithms {Aε} satisfying the follow-
ing condition. For every ε > 0, there is a natural number N such that for each
instance I of P with size n ≥ N , if Opt(I) is the measure of an optimal solution
to I when P is an optimization problem or just the exact (positive) number
in case of counting problem then the measure Aε(I) of the approximation so-
lution or just the approximate solution returned by Aε, respectively, satisfies
max{ Aε(I)Opt(I) ,

Opt(I)
Aε(I)

} ≤ 1 + ε and Aε runs in quasi-polynomial-time for the fixed
ε.

A comparison of Algorithm 1 with prior algorithms

The QPTAS of Adamaszek and Wiese for maximum weight independent set of
polygons [1] is based on dynamic programming. For each polygon (possibly with
holes) with at most k vertices at the DP points induced by the input polygons,
termed a DP cell, an approximate maximum weight independent subset of the
input polygons contained in the DP cell is computed. The computation is done
by considering all possible partitions of the DP cell into at most k smaller DP
cells. For each such partition, the union of the approximate solutions for the
component DP cells is computed. Then, a maximum weight union is picked as
the approximate solution for the DP cell.

Our algorithm, termed Algorithm 1, is in part similar to that of Adamaszek
and Wiese [1]. For each DP cell, an approximate number of maximal substruc-
tures within the cell is computed instead of an approximate maximum number of
non-touching input triangles within the cell. Further modification of the dynamic
programming of Adamaszek and Wiese are as follows.

1. Solely those partitions of a DP cell into at most k component DP cells
are considered where no component cell contains more than two thirds of
the input points in the partitioned cell. (Alternatively, one could generalize
the concept of a DP cell to a set of polygons with holes and consider only
partitions into two DP cells obeying this restriction.)

2. While a partition of a DP cell into at most k cells is processed, instead of
the union of the solutions to the subproblems for these cells, the product of
the numerical solutions for the component DP cells is computed.

3. Instead of taking the maximum of the solutions induced by the partition of a
DP cell into at most k DP cells, the sum of the numerical solutions induced
by these partitions is computed.

4. When the number of points contained in a DP cell does not exceed the
threshold number ∆ then the exact number of maximal substructures within
the cell is computed.

Algorithm 1 also in part resembles the approximation counting algorithm for
the number of triangulations of a planar point set due to Alvarez, Bringmann,
Ray, and Seidel [2]. The main difference is in the used implicit recursive partition
tool. Algorithm 1 uses balanced α-cheap l-cuts within the dynamic programming
framework from [1] instead of the simple cycle planar separator theorem [2, 9].
Thus, Algorithm 1 recursively partitions a DP cell defining a subproblem into at
most k smaller DP cells while the algorithm in [2] recursively splits a subproblem
by a simple cycle that yields a balanced partition. The new partition tool gives
a better running time since the number of possible partitions is much smaller
so the dynamic programming/recursion has lower complexity and the threshold
for the base case can be much lower. Since the algorithm in [2] in particular
lists all simple cycles on O(

√
n) vertices, it runs in at least 2O(

√
n logn) time

independently of the precision of the approximation.

Improvements and extensions

One can a bit refine the dynamic programming (Algorithm 1) and consider solely
partitions of a DP cell obtained by intersection with polygons with holes on most
k DP-points. The number of such partitions is only nO(k), so the whole dynamic
programming would take nO(k)2O(∆ log∆) time. This however does not change
the form of the main results.

Adamaszek and Wiese presented also an extension of their theorem on α-
cheap cut of an independent set of triangles (Fact 2) to include independent
polygons with at most K edges (Lemma 3.1 [1]). This makes possible to gen-
eralize our QPTAS for counting triangulations to include the approximation of
the number of maximum weight partitions into K-gons.

The other popular crossing-free structures like perfect matchings and cycle
covers (see also Table 1 in Appendix) do not satisfy all the five properties of
Fa. It is an intriguing open problem if they admit similar quasi-polynomial time
approximation algorithms.

