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Abstract

We present a unified framework on the limits of constraint satisfaction prob-
lems (CSPs) and efficient parameter testing which depends only on array ex-
changeability and the method of cut decomposition without recourse to the
weakly regular partitions. In particular, we formulate and prove a representa-
tion theorem for compact colored r-uniform directed hypergraph (r-graph) limits,
and apply this to rCSP limits. We investigate the sample complexity of testable
r-graph parameters, we discuss the generalized ground state energies and demon-
strate that they are efficiently testable.

1 Introduction

We study the limits and efficient parameter testing properties of Maximum Constraint Sat-
isfaction Problems of arity r (MAX-rCSP or rCSP for short), c.f. e.g., [2]. These two topics,
limiting behavior and parameter estimation, are treated in the paper to a degree separately,
as they require a different set of ideas and could be analyzed on their own right. The es-
tablishment of the underlying connection between convergence and testability is one of the
main applications of the limit theory of dense discrete structures, see [8], [9].

In the first part of the paper we develop a general framework for the above CSP problems
which depends only on the principles of the array exchangeability without a recourse to the
weakly regular partitions used hitherto in the general graph and hypergraph settings. Those
fundamental techniques and results were worked out in a series of papers by Borgs, Chayes,
Lovász, Sós, Vesztergombi and Szegedy [8],[9],[26], and [29] for graphs including connections
to statistical physics and complexity theory, and were subsequently extended to hypergraphs
by Elek and Szegedy [13] via the ultralimit method. The central concept of r-graph con-
vergence is defined through convergence of sub-r-graph densities, or equivalently through
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weak convergence of probability measures on the induced sub-r-graph yielded by uniform
node sampling. Our line of work particularly relies on ideas presented in [12] by Diaconis
and Janson, where the authors shed some light on the correspondence between combina-
torial aspects (that is, graph limits via weak regularity) and the probabilistic viewpoint of
sampling: Graph limits provide an infinite random graph model that has the property of
exchangeability. The precise definitions, references and results will be given in Section 2,
here we only formulate our main contribution informally: We prove a representation theo-
rem for compact colored r-uniform directed hypergraph limits. This says that every limit
object can be transformed into a measurable function on the (2r − 2)-dimensional unit cube
that takes values from the probability distributions on the color palette, see Theorem 2.11.
This extends the result of Diaconis and Janson [12], and of Lovász and Szegedy [28]. As
an application, the description of the limit space of rCSPs is presented subsequent to the
aforementioned theorem.

The second part of the paper, Sections 3 to 5, is dedicated to the introduction of a
notion of efficient parameter testability of r-graphs and rCSP problems. We use the limit
framework from the first part of the paper to formulate several results on it, which are proved
with the aid of the cut decomposition method. We set our focus especially to parameters
called ground state energies and study variants of them. These stand in close relationship to
MAX-rCSP problems, our results can be regarded as continuous generalization of the former.
We rely on the notion of property testing and sample complexity, that was introduced by
Goldreich, Goldwasser, and Ron [14] and was employed in the graph limit theory in [9].
A graph parameter is testable in the sense of the last mentioned paper, when its value is
estimable through a uniform sampling process, where the sample size only depends on the
desired error gap, see Definition 3.1 below for the precise formulation. The characterization
of these functions on the graph space was done in [9], the original motivation of the current
paper was to provide an analogous characterization for efficiently testable parameters, that
are parameters, whose required sample size for the estimation is at most polynomial in the
multiplicative inverse of the error.

The investigation of such parameters has been an active area of research for the finite
setting in complexity theory. The method of exhaustive sampling in order to approximately
solve NP-hard problems was proposed by Arora, Karger and Karpinski [4], their upper bound
on the required sample size is still logarithmic in the size of the problem. Subsequently the
testability of MAX-CUT was shown in [14], explicit upper bounds for the sample complexity
in the general boolean MAX-rCSP were given by Alon, F. de la Vega, Kannan and Karpinski
[2] using cut decomposition of r-arrays and sampling, that was inspired by the introduction
of weak regularity by Frieze and Kannan [17]. In [2] and [17], an the design of polyno-
mial time approximation schemes (PTAS) was an important subject, we did not pursue the
generalization regarding this aspect in the current work. The achievements of these two
aforementioned papers took also a key role in the first elementary treatment of graph limits
and in the definition of the δ�-metric that defines an equivalent topology on the limit space
as the subgraph density convergence.

The best currently known upper bound on the sample complexity of MAX-rCSP is
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O(ε−4), and was shown by Mathieu and Schudy [30], see also Alon, F. de la Vega, Kan-
nan and Karpinski [2]. Unfortunately, their approach does not seem to have a natural
counterpart in the continuous setting, although one can use their result on the sample to
achieve an improved upper bound on the sample complexity. We mention that for the orig-
inal problem we do not aim to produce an assignment for MAX-rCSP, or a partition for
the ground state energy whose evaluation is nearly optimal as opposed to the above works,
although we believe this could be done without serious difficulties.

Our contribution in the second part of the paper is the following. By employing a refined
version of the proof of the main result of [2] adapted to the continuous setting we are able
to prove the analogous efficient testability result for a general finite state space for ground
state energies, see Theorem 4.4 for a precise formulation. Among the applications of this
development we analyze the testability of the microcanonical version of ground state energies
providing the first explicit upper bounds on efficiency. For the finite version a similar question
was investigated by F. de la Vega, Kannan and Karpinski [15] by imposing additional global
constraints (meaning a finite number of them with unbounded arity). Furthermore, the
continuous version of the quadratic assignment problem is treated the first time in a sample
complexity context, this subject is related to the recent contributions to topic of approximate
graph isomorphism and homomorphism, see [24] and [6].

1.1 Outline of the paper

The organization of this paper is as follows. In Section 2 we develop the limit theory for K-
decorated r-uniform directed hypergraphs with reference to previously known special (and
in some way generic) cases, and use the representation of the limit to describe the limit
space of rCSP problems. In Section 3 the basic notion of efficiency in context of parameter
testing is given with additional examples. The subsequent Section 4 contains the proof of
Theorem 4.4 regarding ground state energies of r-graphons, and in the following Section 5
generalizations and special cases are examined, in particular microcanonical energies and
the quadratic assignment problem. We summarize possible directions of further research in
Section 6.

2 Limit theory and underlying notation

We will consider the objects called rCSP formulas that are used to define instances of the
optimization problems called MAX-rCSP. In the current framework a formula consists of
a variable set and a set of boolean or integer valued functions. Each of these functions is
defined on the subset of the variables, and the sets of possible states of the variables are
identical. Additionally, it will be required that each of the functions, which we will call
constraints in what follows, depend exactly on r of the variables.

When considering the optimization problem MAX-rCSP, then the rCSP formulas are
related to the objective function given by the instance, whose domain is the whole variable
set instead of the collection of functions on small subsets. This viewpoint is of course highly
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dependent on the optimization problem in question. The precise definitions will be provided
next.

Let K be a finite set, and f be an r variable boolean-valued function f : Kr → {0, 1} (or
equivalently f ⊆ Kr). We call f a constraint-type on K in r variables, C = C(K, r) denotes
the set of all such objects.

Definition 2.1 (rCSP formula). Let V = {x1, x2, . . . , xn} be the set of variables, e =
(i1, . . . , ir) ∈ V r and f a constraint-type on K in r variables. We call an n vari-
able function ω = (f ; e) : Kn → {0, 1} with ω(l1, . . . , ln) = f(li1 , . . . , lir) a constraint on
V in r variables determined by an r-vector of constrained variables and a constraint type.
We call a set F of constraints on V (F ) in r variables an rCSP formula.

In the above definition the set of states K of the variables in V (F ) is not specified for
each formula, it will be considered as fixed similar to the dimension r. We say that F is
symmetric, if it contains only constraints with constraint-types which are invariant under
the permutations of the constrained variables. When we relax the notion of the constraint
types to be real- or K-valued functions on Kr with K being a compact space, then we speak
of weighted rCSP formulas.

The motivation for the name CSP is immediately clear from the notation used in Def-
inition 2.1 if we consider constraints to be satisfied at some point in Kn, whenever they
evaluate to 1 there. Most problems defined on these objects ask for parameters that are, in
the language of real analysis, global or conditioned extreme values of the objective function
given by an optimization problem and a formula (which can be regarded as an instance of the
former). Such problems are for example MAX-rCSP, rCSP, MAX-CUT, MAX-BISECTION.
They can also be viewed as directed r-graphs, whose edges are decorated with constraint
types (perhaps with multiple types), and we will exploit this representation in our analysis.

Typically, we will not store and recourse to an rCSP formula F as it is given by its
definition above, but we will only consider the r-array tuple (F z)z∈Kr , where F z(e) =∑

(f ;e)∈F f(z1, . . . , zr) for each e ∈ V r. The data set (F z)z∈Kr is called the evaluation repre-

sentation of F , or short eval(F ). We impose a boundedness criteria on CSPs that will apply
throughout the paper, that means we fix d ≥ 1 for good, and require that ‖eval(F )‖∞ ≤ d
for all CSPs F in consideration.

Our main concern is parameter estimation via sampling: we pick a set of variables of
fixed size at random from the constrained set V (F ) of an rCSP formula F defined on a
large number of variables, and ask for all the constraints in which the sampled variables
are involved and no other, that is, the induced subformula on the sample. Then we try to
produce some quantitative statement about the parameter of the original formula by relying
only on the estimation of the corresponding value of the parameter on a subformula, see
Definition 3.1 below.

Let G(k, F ) denote the random induced subformula of F on the set S ⊂ V (F ) that is
chosen uniformly among the subsets of V (F ) of cardinality k.
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2.1 Limits of K-decorated r-uniform directed hypergraphs

Let K be a compact Polish space and r ≥ 1 an integer. Recall that a space K is called
Polish if it is a separable completely metrizable topological space. In what follows we will
consider the limit space of K-decorated r-uniform directed hypergraphs, or with different
words r-arrays with non-diagonal entries from K with all the diagonal entries occupied by a
special element which also can be in K, but in general this does not have to be the case.

Our motivation for what follows originates from the aim of presenting a structural de-
scription of rCSP limits. The content of the current section will start with the more general
setting given above, CSPs will be considered as a special case in this topic derived at the
end. Some of the basic cases are already settled regarding the representation of the lim-
its. Without claiming to provide a complete list of previously established results we refer
to Lovász and Szegedy [26], [28], [25] for the r = 2, general K, undirected case, to Elek
and Szegedy [13] for the general r, K = {0, 1}, undirected case; and Diaconis and Janson
[12] for r = 2, K = {0, 1}, directed and undirected case. These three approaches are fun-
damentally different in their proof methodology (they rely on weak regularity, ultralimits,
and exchangeability principles respectively) and were further generalized or applied by Zhao
[32] to general r; respectively by Aroskar [5] to the directed case; respectively by Austin [7]
general r and by Janson [20] to the directed case where the graph induces a partial order on
the vertex set.

It is worth to mention that when utilizing tools from exchangeability theory (as we will
do in the following) with regard to the directedness, the results are mostly proven first for
the directed case, and afterwards contain the analysis regarding in what form the symmetry
emerges in the limit.

Let C denote space of continuous functionals on K, and let F ⊂ C be a countable
generating set with ‖f‖∞ ≤ 1 for each f ∈ F , that is, the linear subspace generated by F
is dense in C in the L∞-norm.

Denote by Π(S) = Πr(S) the set of all unlabeled S-decorated directed r-uniform hyper-
graphs for some arbitrary set S, where we will suppress r in the notation, when it is clear
which r is meant (alternatively, Π(S) denotes the isomorphism classes of the node labeled
respective objects).

Definition 2.2. If F ∈ Π(C) uniform directed graph with V (F ) = [k] and G ∈ Π(K), then
the homomorphism density of F into G is defined as

t(F,G) =
1

|V (G)|k
∑

φ : [k]→V (G)

k∏
i1,...,ir=1

Fi1,...,ir(Gφ(i1),...,φ(ir)). (2.1)

The injective homomorphism density tinj(F,G) is defined similarly, with the difference
that the average of the products is taken over all injective φ maps.

Let the map τ be defined as τ(G) = (t(F,G))F∈Π(F) ∈ [0, 1]Π(F) for each G ∈ Π(K). We

set Π(K)∗ = τ(Π(K)) ⊂ [0, 1]Π(F), and Π(K)∗ to the closure of Π(K)∗. Also, let Π(K)+ =
{(τ(G), 1/|V (G)|) : G ∈ Π(K)} ⊂ [0, 1]Π(F) × [0, 1], and let Π(K)+ be the closure of Π(K)+.
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The function τ+(G) = (τ(G), 1/|V (G)|) will be useful for our purposes, because, opposed
to τ , it is injective, which can be verified easily. For any F ∈ Π(F) the function t(F, .) on
Π(K) can be uniquely continuously extended to a function t(F, .) on Π(K)+, this is due to
the compactness of [0, 1]Π(F) × [0, 1]. For an element Γ ∈ Π(K)+ \ Π(K)+, let t(F,Γ) for
F ∈ Π(F) denote the real number in [0, 1] that is the coordinate of Γ corresponding to F .

The sets Πinj(K) = τinj(Π(K)) and Πinj(K)+, and the functions τinj(G) and τ+
inj(G) are

defined analogously.
It was shown in [26] that

|t
inj

(F,G)− t(F,G)| ≤ 2|V (F )|‖F‖∞
|V (G)|

(2.2)

for any pair F ∈ Π(C) and G ∈ Π(K).
The correspondence analogous to that of Diaconis and Janson in [12] between elements

of the limit space Π(K)+, that is compact, and extreme points of the space of random
exchangeable infinite r-arrays with entries in K will now be established. These are arrays,
whose distribution is invariant under finite permutations of the underlying index set.

Definition 2.3 (Exchangeable r-array). Let (Hi1,...,ir)1≤i1,...,ir<∞ be an infinite r-array of
random entries taking values in a Polish space S. We call the random array separately
exchangeable if

(Hi1,...,ir)1≤i1,...,ir<∞
law
= (Hρ1(i1),...,ρr(ir))1≤i1,...,ir<∞

for any permutations ρ1, . . . , ρr ∈ SN, and jointly exchangeable (or just exchangeable), if the
former holds only for all ρ1 = · · · = ρr ∈ SN.

Let M be an arbitrary set and k ≥ 1, and let s(M,k) denote the set of non-empty subsets
of M of cardinality at most k, furthermore let s0(M,k) = s(M,k) ∪ {∅}. It is clear that if
we consider a measurable function f : [0, 1]s0([r],r) → S, and independent random variables
uniformly distributed on [0, 1] that are associated with each of the subsets of N of cardinality
at most r, then by plugging in these random variables into f for every e ∈

(N
r

)
in the right

way suggested by a fixed natural projection pe : e → [r], the result will be an exchangeable
random array. The shorthand Samp(f) denotes this law of the infinite directed r-hypergraph
model induced by f .

The next theorem, states that all exchangeable arrays with values in S arise from some
f in the former way.

Theorem 2.4. Let S be a Polish space. Every S-valued exchangeable r-array (He)e∈(N
r)

has

law µ equal to Samp(f) for some measurable f : [0, 1]s0([r],r) → S, that is, there exists a
function f , so that if (Us)s∈s0(N,r) are independent uniform [0, 1] random variables, then

He = f(U∅, U{i1}, U{i2}, . . . , Ue\{ir}, Ue) (2.3)

for every e = (i1, . . . , ir), where He are the entries of the infinite r-array and (He)e∈Nr has
law µ.
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Theorem 2.4 was first proved by de Finetti [11] (in the case S = {0, 1}) and Hewitt and
Savage [18] (in the case of general S) for r = 1, independently by Aldous [1] and Hoover [19]
for r = 2, and by Kallenberg [21] for arbitrary r ≥ 3. For equivalent formulations, proofs
and further connections to related areas see the recent survey of Austin [7].

In general, there are no symmetry assumptions on f , in the directed case He might differ
from He′ , even if e and e′ share a common base set. In this case these two entries do not have
the property of conditional independence over a σ-algebra given by some lower dimensional
structures, that means for instance for an exchangeable r-array with law Samp(f) given by
a function f as above the independence over {Uα : α ( e}.

With the aid of Theorem 2.4 we will provide a form of representation of the limit space
Π(K)+ through the points of the space of random infinite exchangeable r-arrays. The corre-
spondence will be established through a sequence of theorems analogous to the ones stated
and proved in Section 2 to 5 of [12], using also the compactification argument regarding the
limit space from [28], see also Chapter 17.1 in [25] for the complete argumentation. The
proofs in our case are mostly ported in a straightforward way, if not noted otherwise we
refer the reader for the details in [12]. The definition of convergence will be given right after
the next theorem. The expression G(k,G) denotes for some G ∈ Π(K) the random induced
sub-r-graph of G with the vertex set chosen uniformly among all subsets of V (G) that have
cardinality k.

Theorem 2.5. Let (Gn)n≥1 be a random sequence in Π(K) with |V (Gn)| tending to infinity
in probability. Then the following are equivalent.

(1) τ+(Gn) converges in distribution in Π(K)+.

(2) For every F ∈ Π(F), the sequence t(F,Gn) converges in distribution.

(3) For every F ∈ Π(C), the sequence t(F,Gn) converges in distribution.

(4) For every k ≥ 1, the sequence G(k,Gn) of random elements of Π(K) converges in
distribution.

If any of the above apply, then the respective limits in (2) and (3) are t(F,Γ) with Γ being a
random element of Π(K)+ given by (1), and also Γ ∈ Π(K)+ \ Π(K)+, almost surely.

If t(F,Gn) in (2) and (3) is replaced by tinj(F,Gn), then the equivalence of the four
statements still persists and the limits in (2) and (3) are t(F,Γ).

If every Gn is concentrated on one element of Π(K) (non-random case), then the equiv-
alence holds with the sequences in (1), (2), and (3) being numerical, while (4) remains un-
changed.

Proof. The equivalence of (1) and (2) is immediate. The implication from (3) to (2) is also
clear by definition.

For showing that (2) implies (3), we consider first an arbitrary F ∈ Π(〈F〉), where 〈F〉 is
the linear space generated by F . Then there exist F 1, . . . , F l ∈ Π(F) on the same vertex set
as F , say [k], and λ1, . . . , λl ∈ R such that for any non-random G ∈ Π(K) and φ : [k]→ V (G)
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it holds that
∏k

i1,...,ir=1 Fi1,...,ir(Gφ(i1),...,φ(ir)) =
∑l

j=1 λj
∏k

i1,...,ir=1 F
j
i1,...,ir

(Gφ(i1),...,φ(ir)). So

therefore we can express t(F,G) =
∑l

j=1 λjt(F
j, G). We return to the case when Gn is

random. The weak convergence of t(F,Gn) is equivalent to the convergence of each of
its moments, its t’th moment can be written by linearity as a linear combination of a fi-
nite number of mixed moments of the densities corresponding to F 1, . . . , F l ∈ Π(F). For
an arbitrary vector of non-negative integers α = (α1, . . . , αl), let Fα be the element of
Π(F) that is the disjoint union α1 copies of F 1, α2 copies of F 2, and so on. It holds that
t(F 1, Gn)α1 . . . t(F l, Gn)αl = t(Fα, Gn), and in particular the two random variables on the
two sides are equal in expectation. Condition (2) implies that E[t(Fα, Gn)] converges for
each α, therefore the mixed moments of the t(F i, Gn)’s and the moments of t(F,Gn) also
do. This implies that also t(F,Gn) converges in distribution for any F ∈ Π(〈F 〉). Now let
F ′ ∈ Π(C) and ε > 0 be arbitrary, and F ∈ Π(〈F 〉) on the same vertex set [k] as F ′ be
such that its entries are at most ε-far in L∞ from the corresponding entries of F ′. Then
|t(F ′, G) − t(F,G)| ≤ krεmax{(‖F ′‖∞ + ε)k

r−1, ‖F ′‖∞ + ε} for any G ∈ Π(K) (random or
non-random), which implies (3), as ε > 0 was chosen arbitrarily.

We turn to show the equivalence of (3) and (4). Let Πk(K) ⊂ Π(K) the set of elements
with vertex set of cardinality k. The sequence (G(k,Gn))n≥1 converges in distribution exactly
when for each f ∈ C(Πk(K)) continuous function on Πk(K) the expectation E[f(G(k,Gn))]
converges as n→∞. For each F ∈ Π(C) and α ≥ 1, the function tαinj(F,G) is continuous on

Π|V (F )|(K) and tinj(F,G) = tinj(F,G(|V (F )|, G)), so (3) follows form (4).
For the other direction let us fix k ≥ 1. We claim that the linear function space M =

〈t(F, .)|F ∈ Π(C)〉 ⊂ C(Πk(K)) is an algebra containing the constant function, and that
it separates any two elements of Πk(K). It follows that 〈t(F, .)|F ∈ Π(C)〉 is L∞-dense
in C(Πk(K)) by the Stone-Weierstrass theorem, which implies by our assumptions that
E[f(G(k,Gn))] converges for any f ∈ C(Πk(K)), since we know that E[tinj(F,G(k,Gn))] =
E[tinj(F,Gn)] whenever |V (F )| ≤ k. We will see in a moment that tinj(F, .) ∈M , convergence
of E[tinj(F,Gn)] follows from (2.2) and the requirement that |V (Gn)| tends to infinity in
probability.

Now we turn to show that our claim is indeed true. For two F1, F2 ∈ Π(C) we have
t(F1, G)t(F2, G) = t(F1F2, G) for any G ∈ Πk(K), where the product F1F2 denotes the
disjoint union of the two C-colored graphs. Also, t(F,G) = 1 for the graph F on one node
with a loop colored with the constant 1 function. Furthermore we have that hom(F,G) =
k|V (F )|t(F,G) ∈M for |V (G)| = k, so therefore

inj(F,G) =
∑

P partition of V (F )

(−1)|V (F )|−|P |
∏
S∈P

(|S| − 1)! hom(F/P,G) ∈M,

where inj(F,G) = tinj(F,G)k(k − 1) . . . (k − |V (F )| + 1) and F/P ∈ Π|P |(C) with edges
colored by the product of the colors of F on the edges between the respective classes.
This equality is the consequence of the Mobius inversion formula, and that inj(F,G) =
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∑
P partition of V (F ) hom(F/P,G). For G and F defined on the node set [k] recall that

inj(F,G) =
∑
φ∈Sk

k∏
i1,...,ir=1

Fi1,...,ir(Gφ(i1),...,φ(ir)). (2.4)

Now fix G1, G2 ∈ Πk(K) and let F ∈ Πk(C) such that {Fi1,...,ir((Gj)φ(i1),...,φ(ir))} are
algebraically independent elements of R (such an F exists, we require a finite number of
algebraically independent reals, and can construct each entry of F by polynomial interpola-
tion). If G1 and G2 are not isomorphic, than for any possible node-relabeling for G2 there
is a at least one term in inj(F,G1)− inj(F,G2) that does not get canceled out, so therefore
inj(F,G1) 6= inj(F,G2).

We examine the remaining statements of the theorem. Clearly, Γ /∈ Π(K)+, because
|V (Gn)| → ∞ in probability. The results for the case where the map in (1) and the densities
in (2) and (3) are replaced by the injective version are yielded by (2.2), the proof of the
non-random case carries through in a completely identical fashion.

We are now ready to formulate the definition of convergence in Π(K).

Definition 2.6. If (Gn)n≥1 is a sequence in Π(K) with |V (Gn)| → ∞ and any of the condi-
tions above of Theorem 2.5 holds, then we say that (Gn)n≥1 converges.

We would like to add that, in the light of Theorem 2.5, the convergence notion is inde-
pendent from the choice of the family F .

The next lemma gives information about the limit behavior of the sequences where the
vertex set cardinality is constant.

Lemma 2.7. Let (Gn)n≥1 be a random sequence in Πk(K), and additionally be such that
for every F ∈ Π(F) the sequences tinj(F,Gn) converge in distribution. Then there exists
a random H ∈ Πk(K), such that for every F ∈ Π(F) we have t(F,Gn) → t(F,H) and
tinj(F,Gn)→ tinj(F,H) in distribution.

Proof. We only sketch the proof. The distributional convergence of (Gn) follows the same
way as in the proof of Theorem 2.5, the part about condition (2) implies (3) and (3) implies
(4). The existence of a random H satisfying the statement of the lemma follows from the
Riesz representation theorem.

Let L∞ denote the set of all node labeled countably infinite K-decorated r-uniform di-
rected hypergraphs. Set the common vertex set of the elements of L∞ to N, and define the
set of [n]-labeled K-decorated r-uniform directed hypergraphs as Ln. Every G ∈ Ln can be
viewed as an element of L∞ simply by adding isolated vertices to G carrying the labels N\[n],
therefore we think about Ln as a subset of L∞ (and also of Lm for every m ≥ n). Conversely,
if G is a (random) element of L∞, then by restricting G to the vertices labeled by [n], we
get G|[n] ∈ Ln. If G is a labeled or unlabeled K-decorated r-uniform directed hypergraph
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(random or not) with vertex set of cardinality n, then let Ĝ stand for the random element
of Ln (and also L∞) which we obtain by first throwing away the labels of G (if there where
any), and then apply a random labeling chosen uniformly from all possible ones with the
label set [n].

A random element of L∞ is exchangeable if its distribution is invariant under any permu-
tation of the vertex set N that only moves finitely many vertices, for example such infinite
hypergraphs are whose edge-colors are independently identically distributed. An element of
L∞ can also be regarded as an infinite r-array whose diagonal elements are decorated with
a special element ι that is not contained in K, therefore the corresponding r-arrays will be
K ∪ {ι}-decorated.

The next theorem relates the elements of Π(K)+ to exchangeable random elements of
L∞.

Theorem 2.8. Let (Gn)n≥1 be a random sequence in Π(K) with |V (Gn)| tending to infinity
in probability. Then the following are equivalent.

(1) τ+(Gn)→ Γ in distribution for a random Γ ∈ Π(K)+ \ Π(K)+.

(2) Ĝn → H in distribution in L∞, where is H is a random element of L∞.

If any of these hold true then Et(F,Γ) = Etinj(F,H|[k]) for every F ∈ Π(C) with V (F ) = [k],
and also H is exchangeable.

Proof. If G ∈ Π(K) and F ∈ Π(F) with V (F ) = [k] with |V (G)| ≥ k then Etinj(F, Ĝ|[k]) =

tinj(F,G), where the expectation is taken with respect to the random (re-)labeling Ĝ of G.
For completeness we mention that for a labeled, finite G the quantity t(F,G) is understood
as t(F,G′) with G′ being the unlabeled version of G. Therefore by our assumptions regarding
(Gn)n≥1 and the fact that 0 ≤ t(F,G) ≤ 1 (as ‖F‖∞ ≤ 1) we have that |Etinj(F, Ĝn|[k]) −
Etinj(F,Gn)| ≤ P(|V (Gn)| < k) for each n ≥ 1 and F ∈ Πk(F). The expectation in the first
term is taken with respect to the distribution ofGn and the random labeling and in the second
only with respect to Gn, it will be meant also this way in the following if not noted otherwise.
That implies, together with P(|V (Gn)| < k) → 0 and (1), that Etinj(F, Ĝn|[k]) → Et(F,Γ)

(see Theorem 2.5). This implies that Ĝn|[k] → Hk in distribution for some random Hk ∈ Lk
with Etinj(F,Hk) = Et(F,Γ), see Lemma 2.7, furthermore, with appeal to the consistency of
the Hk’s, there exists a random H ∈ L∞ such that H|[k] = Hk for each k ≥ 1, so (1) yields
(2).

Another consequence is that H is exchangeable: the exchangeability property is equiv-
alent to the vertex permutation invariance of the distributions of H|[k] for each k. This
is granted by the fact that H|[k] = Hk and Hk is the weak limit of a vertex permutation
invariant random sequence, for each k.

For the converse direction we perform the above steps backwards using |Et(F, Ĝn|[k]) −
Et(F,Gn) ≤ P(|V (Gn)| < k) again that. Theorem 2.5 certifies now the existence of the
suitable random Γ ∈ Π(K)+ \ Π(K)+, this shows that (2) implies (1).
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We built up the framework in the preceding statements to formulate the following theo-
rem, which is the crucial ingredient to the desired representation of limits.

Theorem 2.9. There is a one-to-one correspondence between random elements of Π(K)+ \
Π(K)+ and random exchangeable elements of L∞. Furthermore, there is a one-to-one corre-
spondence between elements of Π(K)+ \ Π(K)+ and extreme points of the set of random
exchangeable elements of L∞. The relation is established via the equalities Et(F,Γ) =
Etinj(F,H|[k]) for every F ∈ Π(C) with V (F ) = [k].

Proof. Let Γ a random element of Π(K)+ \ Π(K)+. Then by definition of Π(K)+ there is
a sequence (Gn)n≥1 in Π(K) with |V (Gn)| → ∞ in probability such that τ+(Gn) → Γ in
distribution in Π(K)+. Then Theorem 2.8 implies that there exists a random H ∈ L∞ so
that Ĝn → H in distribution in L∞, and H is exchangeable. The distribution of H|[k] is
determined by the numbers Etinj(F,H|[k]), see Theorem 2.5,Lemma 2.7, and the claims inside
their proofs, and these numbers are provided by the correspondence.

For the converse direction, let H be random exchangeable element of L∞. Then let
Gn = H|[n], we have Gn → H in distribution, and also Ĝn → H in distribution by the vertex
permutation invariance of Gn as a node labeled object. Now again we appeal to Theorem 2.8,
so τ+(Gn)→ Γ for a Γ random element of Π(K)+ \Π(K)+, which is determined completely
by Et(F,Γ) provided by the correspondence, see Theorem 2.8.

The second version of the relation between non-random Γ’s and extreme points of ex-
changeable elements is proven similarly, the connection is given via t(F,Γ) = Etinj(F,H|[k])
between the equivalent objects.

The characterization of the aforementioned extreme points in Theorem 2.9 was given
[12], we state it next, but refrain from giving the proof here, as it is completely identical to
that of Theorem 5.5. in [12].

Theorem 2.10. The distribution of H that is exchangeable random element of L∞ is exactly
in then an extreme point of the set of exchangeable measures if the random objects H|[k] and
H|{k+1,... } are independent for any k ≥ 1. In this case the its representing function from
Theorem 2.3 is not dependent on the variable corresponding to the empty set.

Let W : [0, 1]s([r],r) → K be measurable function, we will refer to such an object as a
(K, r)-graphon. We define the random exchangeable r-array HW in L∞ as the element that
has law Samp(W ). Furthermore, we define ΓW ∈ Π(K)+\Π(K)+ to be the element associated
with HW through Theorem 2.8.

Now we are able to formulate the representation theorem for K-decorated r-uniform
directed hypergraph limits using the representation of exchangeable arrays, see (2.3). It is
an immediate consequence of Theorem 2.8 and Theorem 2.3 above.

Theorem 2.11. Let (Gn)n≥1 be a sequence in Π(K) with |V (Gn)| → ∞ such that for every
F ∈ Π(F) the sequence t(F,Gn) converges. Then there exists a function W : [0, 1]s([r],r) → K
such that t(F,Gn)→ t(F,ΓW ) for every F ∈ Π(F).
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Alternatively we can also use the form W : [0, 1]s([r],r−1) → P(K) for (K, r)-graphons
whose values are probability measures, this was done in [28]. For K = {0, 1} the set P(K) can
be identified with [0, 1] to get the usual r-graphon form as a function W : [0, 1]2

r−2 → [0, 1].
In previous works, for example in [12], the limits of simple directed graphs without loops

were represented by a 4-tuple of 2-graphons (W00,W10,W01,W11) that satisfy
∑

i,jWij(x, y) =

1 and W10(x, y) = W01(y, x) for each (x, y) ∈ [0, 1]2. A generalization of this representation
can be given in our case of the Π(K) limits the following way. We only present here the
case when K is infinite, the easier finite case can be established analogously. We have to fix
a strictly positive measure µ on K, we set this to be the uniform distribution if K ⊂ Rd is
a domain or K is finite. The limit space consists of collections of (R, r)-graphons (Wα)α∈A,
where A is the set of all functions α : Sr → K. Additionally the (Wα)α∈A has to satisfy∫
α∈AWα(x)dµ⊗Sr(α) = 1 and 0 ≤ Wφα(x) = Wα(xφ) for each φ ∈ Sr and x ∈ [0, 1]s([r],r−1).

As before, the action of φ on [0, 1]s([r],r−1) is the induced coordinate permutation by φ, with
the unit cubes coordinates indexed by non-trivial subsets of [r]. Without going into further
details we state the connection between the limit form above and that in Theorem 2.11:∫

A

Wα((uS)S∈s([r],r−1))dµ
⊗Sr(α) = P[(W ((uφ(S))S∈s([r],r−1), Y )φ∈Sr) ∈ A]

for every measurable A ⊂ A and (uS)S∈s([r],r−1) ∈ [0, 1]S∈s([r],r−1), where Y uniform on [0, 1].
In several applications, among them some presented in the current paper, it is more

convenient to use a naive form for the limit representation, from which the limit ele-
ment in question is not retrievable. The naive limit space consists of naive (K, r)-graphons
W̄ : [0, 1]r → P(K), where now the arguments of W are indexed with elements of [r]. From a
proper r-graphonW : [0, 1]s([r],r) → K we get its naive counterpart by averaging, that is theK-
valued random variable E[W (x1, . . . , xr, (US)S([r],|S|>1, Y )|Y ] has distribution W̄ (x1, . . . , xr),
where (US)S([r],|S|>1 and Y are i.i.d. uniform on [0, 1]. On a further note we introduce aver-

aged naive (K, r)-graphons for the case, when K ⊂ R, these are of the form W̃ : [0, 1]r → R
and are given by complete averaging, that is E[W (x1, . . . , xr, (US)S⊆[r],|S|>1] = W̃ (x1, . . . , xr)
, where (US)S⊆[r],|S|>1 are i.i.d. uniform on [0, 1].

We introduce the naive (K, r)-graphon corresponding to a G ∈ Π(K). The function WG

is constructed from the adjacency r-array of G in the natural way, that is by subdividing the
unit cube into |V (G)|r congruent cubes and assigning the corresponding value of G to each
of the subcubes as point measures, diagonals receive the point measure concentrated on the
special element ι or 0 in the real case. The map WG can be also viewed as a true r-graphon
by adding coordinates to the domain that have no effect on the value it takes.

2.2 Representation of rCSPs as hypergraphs, the limit space

Recall Definition 2.1 for the way we look at rCSPs. Next we elaborate how homomorphism
and sampling is meant in the CSP context.

Let F [xi1 , . . . , xik ] be the induced subformula of F on the variable set {xi1 , . . . , xik}, and
let G(k, F ) denote the random induced subformula F [Y1, . . . , Yk] of F , where Y1, . . . , Yk are
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independently and uniformly chosen elements from V (F ). It is clear using this notation
that the relation ω = (f ; e) ∈ F [xi1 , . . . , xik ] is equivalent to the relation φ(ω) = (fφ, φ(e)) ∈
F [xi1 , . . . , xik ] for any permutation φ ∈ Sr, where fφ(l1, . . . , lr) = f(lφ(1), . . . , lφ(r)) and φ(e) =
(eφ(1), . . . , eφ(r)). This emergence of symmetry will naturally be reflected in the limit, we will
demonstrate this shortly. For |K| = q we identify the set of rCSP formulas with the set of
arrays whose entries are the sums of the evaluation tables of the constraints on r-tuples, that
is F with V (F ) = [n] corresponds to a map eval(F ) : [n]×· · ·× [n]→ {0, 1, . . . , d}([q]r). This
will be the way throughout the paper we look at these objects. It seems that storing the
whole structure of an rCSP formula does not provide any further insight, in fact splitting
up constraints would produce non-identical formulas in that vaguely described complete
structure representation, which does not seem sensible.

We denote the set {0, 1, . . . , d}([q]r) by L for simplicity, which one could also interpret as
the set of multisets whose base set is [q]r and whose elements have multiplicity at most d.
This perspective allows us to treat rCSPs as directed r-uniform hypergraphs whose edges are
decorated by the aforementioned elements of L, and leads to a representation of rCSP limits
that is derived from the general representation of the limit set of Π(L). We will show in a
moment that the definition of convergence in the previous subsection is basically identical
to the convergence via densities of sub-multi-hypergraphs.

The convergence of a sequence of rCSP formulas or equivalently of elements of Π(L)
is given in Definition 2.6. The map ψ : H → F is a homomorphism between two rCSPs
H and F if it maps edges to edges of the same color from the color set [q]r and is con-
sistent when considered as a mapping between vertex sets, ψ′ : V (H) → V (F ), for r = 2
this is a multigraph homomorphism. Let H be an rCSP, and let H̃ be the correspond-
ing element in C(L) on the same vertex set such that if an entry at the edge e of H is
((He)(i1, . . . , ir))1≤i1,...,ir≤q with matrix elements being non-negative integers, then the en-

try of H̃ at e is
∏

1≤i1,...,ir≤q
x

(He)(i1,...,ir)
i1,...,ir

, more precisely, for an element A ∈ L the value is

given by H̃e(A) =
∏

1≤i1,...,ir≤q
A(i1, . . . , ir)

(He)(i1,...,ir). The linear space generated by the set

L̃ = {
∏

1≤i1,...,ir≤q
x
di1,...,ir
i1,...,ir

: 0 ≤ di1,...,ir ≤ d} forms a dense subset of C(L), therefore Theorem

2.5 applies and for a sequence (Gn)n≥1 requiring the convergence of t(F,Gn) for all F = H̃
with H ∈ Π(L) provides an equivalent formulation of the convergence of rCSPs.

2.3 The limit objects of rCSPs

The limit object will be given through Theorem 4.4 as the space of measurable functions
W : [0, 1]s([r],r) → L, where, as in the general case, the coordinates of the domain of W are
indexed by the non-empty subsets of [r]. In our case not every such W will serve as a limit of
some sequence, the above mentioned symmetry of the finite object is inherited in the limit.

We state the rCSP version of Theorem 2.11 for completeness.

Theorem 2.12. Let (Fn)n≥1 be a sequence of rCSP formulas that evaluate to at most d
on all r-tuples with |V (Fn)| → ∞ such that for every H finite rCSP formula with the
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same boundedness property the sequence t(H̃, Fn) converges. Then there exists a function
W : [0, 1]s([r],r) → {0, 1, . . . , d}([q]r) such that t(H̃, Fn)→ t(H̃,ΓW ) for every H.

We should keep the notion of the naive and the weighted naive form of the representation
of the limit object in mind, as seen above. They will be utilized in further sections, we will
not write them out explicitly, as their structure and relationship with true rCSP limits is
analogous to the general case.

We conclude the section with a remark that is motivated by the array representation of
rCSPs. The next form presented seems to be the least redundant in some aspect, since no
symmetry conditions has to be fulfilled.

Remark 2.13 (Exchangeable partition-indexed processes). The most natural exchangeable
infinite random object for the one-to-one correspondence of Theorem 2.8 with rCSP limits
is the following process.

Definition 2.14. Let N r
q = {P = (p1, . . . , pq) : the sets pi ⊂ N are pairwise disjoint and∑q

i=1 |pi| = r} be the set of directed partitions of r-subsets of N. We call the random
(XP )P∈Nr

q
that takes values in some compact Polish space K a partition indexed process.

The process (XP )P∈Nr
q

has the exchangeability property if its distribution is invariant under

the action induced by finite permutations of N, i.e., (XP )P∈Nr
q

d
= (Xρ(P ))P∈Nr

q
for any ρ ∈

Sym0(N).

Unfortunately, the existence of a representation theorem for partition-indexed exchange-
able processes that offers additional insight over the directed decorated r-array version is not
established, and there is little hope in this direction. The reason for this again is the fact
that there is no standard way of splitting up elements XP and XP ′ non-trivially with P and
P ′ having the same underlying vertex set but are different as partitions into two random
parts with the first being identical for the both and the second ones being conditionally
independent over the first.

3 Graph and graphon parameter testability

First we will recount the method of sampling from K-valued r-graphs and r-graphons, as
well as look into the metrics that will occur.

Let (US)S∈s([k],r) be an independent uniform sample from [0, 1]. Then for an r-graph G,
respectively an r-graphon W , the random r-graphs G(k,G) and G(k,W ) have vertex set
[k], and edge weights WG((Upe(S))S∈s(ê,r)), respectively W ((Upe(S))S∈s(ê,r)), for the edge e =
(i1, . . . , ir) for every 1 ≤ i1, . . . , ir ≤ k, where ê = {i1, . . . , ir}. Keep in mind that G(k,G) 6=
G(k,WG), first term correspond to sampling without, the second with replacement, but it is
true that P(G(k,G) 6= G(k,WG)) ≤ r2

|V (G)| .

Additionally we define the averaged sampled r-graph for K ⊂ R denoted by H(k,W ),
it has vertex set [k], and the weight for the edge e ∈ [k]r without multiple entries is the
conditional expectation E[W ((Upe(S))S∈s(ê,r))|(US)S∈s(ê,1)], and therefore the random r-graph
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is measurable with respect to (US)S∈s([k],1). The sampled random r-graphs for the naive
r-graphons are defined analogously. Note that H(k,WG) = G(k,WG) for some G, because
its values are all point measures. We will sometimes use the notation Ui for U{i} for the
elements of the sample indexed by singleton sets.

We also mention the definitions of the norms and distances that will play a important
role in what follows, here each object is real-valued. The cut norm of an n× · · · × n r-array
A is

‖A‖� = max
S1,...,Sr⊂[n]

|A(S1, . . . , Sr)| .

The cut distance of two labeled r-graphs or r-arrays F and G on the same vertex set [n] is

d�(F,G) =
1

nr
‖F −G‖�,

where F (S1, . . . , Sr) =
∑

ij∈Sj F (i1, . . . , ir). The edit distance of the same pair is

d1(F,G) =
1

nr
‖F −G‖1.

The cut norm of an r-graphon W is

||W ||� = max
S1,...,Sr⊂[0,1]

∣∣∣∣∣∣
∫

S1×···×Sr

W (x)dx

∣∣∣∣∣∣ ,
the cut distance of two r-graphons W and U is

δ�(W,U) = inf
φ,ψ
||W φ − Uψ||�,

where the infimum runs over all measure-preserving permutations of [0, 1], and the graphon
W φ is defined as W φ(x1, . . . , xr) = W (φ(x1), . . . , φ(xr)). The cut distance for arbitrary
unlabeled r-graphs or r-arrays F and G is

δ�(F,G) = δ�(WF ,WG).

We remark that the above definition of the cut norm and distance is not satisfactory in
an important aspect for r ≥ 3: not all sub-r-graph densities are continuous functions in the
topology induced by this norm even in the most simple case, when K = {0, 1}. A norm that
is sufficient regarding this issue could be given in a similar fashion, see [32], but it would be
computationally inefficient to work with.

Originally, in [8], testability of (K, r)-graph parameters (which are real functions invariant
under r-graph-isomorphisms) was defined as follows.

Definition 3.1. An (K, r)-graph parameter f is testable, if for every ε > 0 there exists a
k = k(ε) ∈ N such that for every simple (K, r)-graph G on at least k vertices

P(|f(G)− f(G(k,G))| > ε) < ε.
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An (K, r)-graphon parameter f is a functional on the space of r-graphons that is invariant
under the action induced by measure preserving maps from [0, 1] to [0, 1], that is, f(W ) =
f(W φ). Their testability is defined analogously to Definition 3.1.

A characterization of this property in terms of graph limits was developed in [8] for
K = {0, 1} in the undirected case.

Theorem 3.2. [8] Let f be a simple graph parameter, then the following statements are
equivalent.

(i) f is testable.

(ii) For every convergent sequence (Gn)n≥1 of simple graphs with |V (Gn)| → ∞, f(Gn)
also converges.

(iii) For every ε > 0 there exist ε′ > 0 and n0 ∈ N such that for every pair G1 and
G2 of simple graphs with |V (G1)|, |V (G2)| ≥ n0 and δ�(G1, G2) < ε′ together imply
|f(G1)− f(G2)| < ε.

(iv) There exists a δ�-continuous functional f ′ on the space of graphons, so that f(Gn)→
f ′(W ) whenever Gn → W .

A closely related notion to parameter testing is property testing. A simple graph property
P is characterized by the subset of the set of simple graphs containing the graphs which have
the property, in what follows P will be identified with this subset.

Definition 3.3. P is testable, if there exists another graph property P ′, such that

(a) P(G(k,G)) ∈ P ′) ≥ 2
3

for every G ∈ P, and

(b) for every ε > 0 there is a k(ε) such that for every k ≥ k(ε) and G with d1(G,P) ≥ ε we
have that P(G(k,G)) ∈ P ′) ≤ 1

3
.

Note that 2
3

and 1
3

in the definition can be replaced by arbitrary constants 1 > a > b > 0,
this change may alter the corresponding certificate P ′.
Lemma 3.4. [29] P is a testable graph property if and only if d1(.,P) is a testable graph
parameter.

The link between the two notions can be proven by definition without serious difficulties.
These concepts may be extended to the infinitary space of graphons, where a similar notion
of sampling is available.

We list some simple consequences of Theorem 3.2.

Remark 3.5. 1. In the case r = 2, testability of a graphon parameter is equivalent to
continuity in the δ� distance.

2. In the case r ≥ 3, testability of a hypergraph parameter f implies that for any left
convergent sequence (Hn)n≥1 of hypergraphs f(Hn) also converges. The other direction
is open, as there is no analogous notion of distance to the 2-dimensional δ� in higher
dimensions, since there is no standard way to compare a large hypergraph Hn to the
random induced subgraph on a uniform sample of the vertices of V (Hn) of fixed size.
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3.1 Examples of efficiently testable parameters

We introduce now a notion of efficient parameter testability. Definition 3.1 of testability
does not ask for a specific upper bound on k(ε) in terms of ε, but in applications the order
of magnitude of this may be an important issue. Therefore we introduce a more restrictive
class of graph parameters, we refer to them as being efficiently testable.

Definition 3.6. An r-graph parameter f is called β-testable for a family of measurable
functions β = {βi : R+ → R+ : i ∈ I}, if there exists a βi such that for every ε > 0 and
r-graph G

P (|f(G)− f(G(βi(ε), G))| > ε) < ε.

With slight abuse of notation we will also use the notion of β-testability for a family
containing only a single function β. The term efficient testability will serve as shorthand for
β-testability for some (family) of functions β(ε) that are polynomial in 1

ε
. We refer to the

smallest β also as the sample complexity of f for which it is β-testable.
We will list some examples of graph parameters, for which we have information about

their sample complexity.

Example 3.7. One of the most basic testable graph parameters are subgraph densities
fF (G) = t(F,G), where F is a simple graph. Lemma 4.4 from [8] states that

P(|t(F,G)− t(F,G(k,G))| > ε) < 2 exp

(
− ε2k

4|V (F )|2

)
, (3.1)

which implies that for any F , fF is O(log(1
ε
)ε−2)-testable. In the case of (K, r)-graphs for

r ≥ 3 the same as (3.1) holds, no modifications in the proof of the above result are required.

Example 3.8. For r = 2, q ∈ N, J ∈ Rq×q and h ∈ Rq we consider

Ê(G, J, h) = max
φ : V (G)→[q]

1

n2

∑
1≤i,j≤q

Jije(φ
−1(i), φ−1(j)) +

1

n

∑
1≤i≤q

hi|φ−1(i)|,

the ground state energy of the graph G (cf. [9]), where e(S, T ) denotes the number of edges
going form S to T . These graph functions originate from statistical physics, for the rigorous
mathematical treatment of the topic see e.g. Sinai’s book [31]). In the literature this notion
is also often to be found with negative sign or different normalization.

This graph parameter can be expressed in the terminology applied for MAX-2CSP. Let
the corresponding 2CSP formula to the pair (G,J) be F with domain K = [q]. F consists
of the constraints (g0; (i, j)) for every edge (i, j) of G, where g0 is the constraint type whose
evaluation table is J , and additionally it contains n copies of (g1; i) for every vertex i of G,
where g1 is the constraint type in one variable with evaluation vector h. Then the optimal
value of the objective function of the MAX-2CSP problem of the instance F is equal to
Ê(G, J, h). Note that this correspondence is consistent with the sampling procedure, that
is, to (G(k,G),J) corresponds the 2CSP G(k, F ). Therefore for q = 2, Ê(., J, h) has sample
complexity O( 1

ε4
)(see [2],[30]).
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These energies are directly connected to the number hom(G,H) of admissible vertex
colorings of G by the colors V (H) for a certain small weighted graph H. This was pointed
out in [9], (2.16), namely

1

|V (G)|2
ln hom(G,H) = Ê(G, J, 0) +O

(
1

|V (G)|

)
, (3.2)

where the edge weights of H are βij(H) = exp(Jij). The former line of thought of turning
ground state energies into 2CSPs is also valid in the case of r-graphs.

The results on MAX-rCSP sample complexity for q = 2 can be extended beyond the
case of simple hypergraphs, higher dimensional Hamiltonians are also expressible as rCSP
formulas. The generalization for arbitrary q and to r-graphons will follow in the next sub-
section. Additionally we note, that an analogous statement to (3.2) on testability of coloring
numbers does not follow immediately for r ≥ 3.

On the other hand, with the notion of ground state energy available, we are able to
rewrite the MAX-2CSP in a compact form as an energy problem. We will execute this task
right away for limit objects. First, we introduce the ground state energy of a 2-graphon with
respect to an interaction matrix J .

Definition 3.9. Let q ≥ 1, J ∈ Rq×q. Then the ground state energy of the 2-graphon W
with respect to J is

E(W,J) = max
φ

∑
z∈[q]2

Jz

∫
[0,1]2

2∏
m=1

φzm(xm)W (x)dx,

where φ runs over all q-fractional partitions of [0, 1].

Let K = [q], L = {0, 1, . . . , d}[q]2 and (Fn)n≥1 be a convergent sequence of 2CSPs.
Consider the corresponding sequence of graphs eval(Fn) = (F̃ z

n)z∈[q]2 for each n, and let W =
(W z)z∈[q]2 be the respective limit. Let f be the (L, 2)-graph parameter so that f(eval(F )) is
equal to the density of the MAX-2CSP value for the instance F . Then it is not hard to see
that f can be extended to the limit space the following way

f(W ) = max
φ

q∑
i,j=1

∫
[0,1]2

φi(x)φj(y)W i,j(x, y)dxdy,

where φ runs over all q-fractional partitions of [0, 1]. The formula is a special case of layered
ground state energy with the interaction matrices defined by J i,j(k, l) = δi(k)δj(l) that is
defined below.

Example 3.10. We will investigate the efficiency of graph parameters that obey some ad-
ditional continuity condition in the δ� metric. Direct consequence of results from [8] will be
presented in the next lemma.
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Lemma 3.11. Let f be a simple graph parameter that is α-Hölder-continuous in the δ�
metric in the following sense: for every ε > 0 there exists n0(ε), such that there is a C > 0
so that for every G1, G2 with |V (G1)|, |V (G2)| > n0(ε) and δ�(G1, G2) < ε, then |f(G1) −
f(G2)| < Cεα. Then f is max{2O

(
1

ε2/α

)
, n0(ε)}-testable.

Proof. To see this, let us fix ε > 0. Then for an arbitrary simple graph G with |V (G)| ≥ n0(ε)
and k ≥ n0(ε) we have

|f(G)− f(G(k,G))| < C [δ�(G,G(k,G))]α < C

(
10√
log2 k

)α

, (3.3)

with probability at least 1 − exp(− k2

2 log2 k
). The last probability bound is the statement of

Theorem 2.9 of [8]. We may rewrite (3.3) by setting ε = C

(
10√
log2 k

)α
, the substitution

implies that f is 2O(ε−2/α)-testable, whenever n0(ε) < 2O(ε−2/α).

This latter approach is hard to generalize to r-graphs for r ≥ 3 because of the absence
of a suitable metric.

4 Testability of the ground state energy

Next we introduce a generalization of the notion of the ground state energy of graphs from
[9], see Definition 3.9, and restate the results of [2] on sample complexity of MAX-rCSP in
that framework. The parameter derived from the maximal constraint satisfaction problem
will also serve as an example for an efficiently testable colored hypergraph parameter. We
will further generalize the main result of [2] in several directions.

First we provide the basic definition of the energy of a (K, r)-graphon W with respect to
some q ≥ 1, an r-array J ∈ C(K)q×···×q, and a fractional partition φ = (φ1, . . . , φq). With
slight abuse of notation, the graphons in the upcoming parts of the section assume both the
K-valued and the probability measure valued form, it will be clear from the context which
one of them is meant.

A fractional partition satisfies the properties that the φi’s are measurable functions from
[0, 1] to [0, 1], and for each x ∈ [0, 1] the equality

∑
i φi(x) = 1 holds. Let

Eφ(W,J) =

q∑
z1,...,zr=1

∫
[0,1]s([r],r)

Jz1,...,zr(W (x))
r∏
j=1

φzj(x{j})dx.

The value of the above integral can be determined by first integrating over the coordinates
corresponding to subsets of [r] with at least two elements, and then over the remaining ones.
The first partial integral is not dependent on φ, so it can be calculated in advance.
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When dealing with an integer partition φ = (IT1 , . . . , ITq), one is able to rewrite the
former expression as

Eφ(W,J) =

q∑
z1,...,zr=1

∫
p−1
s([r],1)

(Tz1×···×Tzr )

Jz1,...,zr(W (x))dx,

where pD stands for the projection to the coordinates contained in the set D.
The energy of a K-valued r-graph G on k vertices with respect to J ∈ C(K)q×···×q

and q-fractional partition xn = (xn,1, . . . , xn,q) for n = 1, . . . , k (i. e., xn,m ∈ [0, 1] and∑
m xn,m = 1) is defined as

Ex(G, J) =
1

kr

q∑
z1,...,zr=1

k∑
n1,...,nr=1

Jz1,...,zr(Gn1,...,nr)
r∏
j=1

xnj ,zj . (4.1)

Remark 4.1. Ground state energies and subgraph densities are Lipschitz continuous graph
parameters in the sense of Lemma 3.11 ([8],[9]), but that result implies much weaker upper
bounds on the sample complexity, than the best ones known to date. This is due to the fact,
that δ�(G,G(k,G)) decreases logarithmically slowly in k, which is the result of the hard-
ness of finding a near optimal overlay between two graphons through a measure preserving
permutation of [0, 1] in order to calculate their δ� distance. On the other hand, if the sam-
ple size k(ε) is exponentially large in 1/ε, then the distance δ�(G,G(k,G)) is small enough
with high probability, therefore all Hölder-continuous graph parameters can be estimated
simultaneously with high success probability.

Next we introduce the layered version of the ground state energy. This is a generalized
optimization problem where we wish to obtain the optimal value corresponding to fractional
partitions of the sums of energies over a finite layer set.

Definition 4.2. Let E be a finite layer set, K be a compact set, and W = (W e)e∈E be a tuple
of (K, r)-graphons. Let q be a fixed positive integer and J = (Je)e∈E with Je ∈ C(K)q×···×q

for every e ∈ E. For a φ = (φ1, . . . , φq) q-fractional partition of [0, 1] let

Eφ(W,J) =
∑
e∈E

Eφ(W e, Je)

and let
E(W,J) = max

φ
Eφ(W,J),

denote the layered ground state energy , where the maximum runs over all q-fractional
partitions of [0, 1]. We define for G = (Ge)e∈E the energy Ex(G, J) analogously as the energy
sum over E, see (4.1) above, and Ê(G, J) = maxx Ex(G, J) where the maximum runs over q-
integer partitions (xn,m ∈ {0, 1} ), respectively E(G, J) = maxx Ex(G, J), where the maximum
is taken over all q-fractional partitions x.
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Now we will rewrite the boolean limit MAX-rCSP as a layered ground state energy
problem. Let E = {0, 1}r, K = {0, 1, . . . , d}, W = (W z)z∈{0,1}r with W z being (K, r)-
graphons, and let

α(W ) = max
φ

∑
z∈{0,1}r

∫
[0,1]s([r],r)

r∏
j=1

φ(x{j})
zj(1− φ(x{j}))

1−zjW z(x)dx,

where the maximum is taken over all measurable functions φ : [0, 1] → [0, 1]. If F is a
(K({0,1}r), r)-graph induced by an rCSP formula, then the finite integer version of α denoted
by α̂(F ) (see Ê(G, J) above) is equal to the density of the optimum of the MAX-rCSP
problem of F .

We list the involved parameters in the layered ground state energy problem. These are
the dimension r, the layer set E, the number of states q, the color set K, the finite or
limit case. Our main theorem will be a generalization of the following theorem on sample
complexity of rCSPs with respect to these factors.

Theorem 4.3. [2] Let F be a Boolean rCSP formula. Then for any ε > 0 and δ > 0 we
have that for every k ≥ 106r12δ−5ε−4 log(ε−1) we have

P (|α̂(eval(F ))− α̂(G(k, eval(F )))| > ε) < δ.

We will see in what follows that also the infinitary version of the above statement is
true. It will be stated in terms of generalized ground state energies of colored hypergraphs,
and will settle the issue regarding the efficiency of testability in the greatest generality with
respect to the previously highlighted aspects. In order to simplify the analysis we introduce
the canonical form of the problem, that is ground state energies of [q]r-layered ([−d, d], r)-
graphons with the special interaction r-arrays Ĵz for each z ∈ [q]r, that have the identity
function f(x) = x as the (z1, . . . , zr) entry and the constant 0 function as the other entries.

Theorem 4.4. Let E be a finite layer set, K a compact color set, q ≥ 1, r-arrays J = (Je)e∈E
with Je ∈ C(K)q×···×q, and ε > 0. Then we have that for any E-layered (K, r)-graphon
W = (W e)e∈E and k ∈ O(ε−4 log(ε−1)) that

P(|E(W,J)− Ê(G(k,W ), J)| > ε|E|‖J‖∞‖W‖∞) < ε.

The proof of Theorem 4.4 will go along the lines of the proof of Theorem 4.3 from [2] with
most of the required lemmas being refinements of the respective ones in the proof of that
theorem. We will formulate and verify these auxiliary lemmas one after another, afterwards
we will compile them to prove the main statement. The arguments made in [2] carry through
adapted to our continuous setting with some modifications, and we will also draw on tools
from [8] and [9].

The first lemma tells us that in the real-valued case the energy of the sample and that
of the averaged sample do not differ by a large amount.
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Lemma 4.5. Let W be a ([−d, d], r)-graphon, q ≥ 1, J ∈ Rq×···×q. Then for every k ≥ 1
there is coupling of G(k,W ) and H(k,W ) such that

P
(
|Ê(G(k,W ), J)− Ê(H(k,W ), J)| > ε‖J‖∞‖W‖∞

)
≤ 2 exp

(
−k
(
ε2k

2
− log q

))
Proof. Let us fix a q-integer partition x of [k], and furthermore let the two random r-graphs
be generated by the same sample (US)S∈s([k],r). Then

Êx(G(k,W ), J) =
1

kr

q∑
z1,...,zr=1

k∑
n1,...,nr=1

Jz1,...,zrW ((US)S∈s({n1,...,nr},r))
r∏
j=1

xnj ,zj ,

and

Êx(H(k,W ), J)

=
1

kr

q∑
z1,...,zr=1

k∑
n1,...,nr=1

Jz1,...,zrE[W ((US)S∈s({n1,...,nr},r))|(US)S∈s({n1,...,nr},1)]
r∏
j=1

xnj ,zj .

Let us enumerate the elements of
(
k
2

)
as e1, e2, . . . , e(k2)

, and define the martingale Y0 =

E[Êx(G(k,W ), J)]{Uj|j ∈ [k]}], and Yt = E[Êx(H(k,W ), J)|{Uj|j ∈ [k]} ∪ ∪tj=1{US|ej ⊂ S}]
for each 1 ≤ t ≤

(
k
2

)
, so that Y0 = Êx(H(k,W ), J) and Y(k2)

= Êx(G(k,W ), J). for any t ∈
(
k
2

)
we can upper bound the difference, |Yt−1 − Yt| ≤ 1

k2
‖J‖∞‖W‖∞. By the Azuma-Hoeffding

inequality it follows that

P(|Yt − Y0| ≥ ρ) ≤ 2 exp

(
− ρ2k4

2
(
k
2

)
‖J‖2

∞‖W‖2
∞

)
≤ 2 exp

(
− ρ2k2

2‖J‖2
∞‖W‖2

∞

)
, (4.2)

for any ρ > 0.
There are qk distinct q-integer partitions of [k], hence

P
(
|Ê(G(k,W ), J)− Ê(H(k,W ), J)| > ε‖J‖∞‖W‖∞

)
≤ 2 exp

(
−k
(
ε2k

2
− log q

))
.

(4.3)

In the following lemmas every r-graph of graphon is meant as bounded real-valued and
directed.

We would like to point out in the beginning that in the finite case we are able to shift
from the integer optimization problem to the relaxed one with having a reasonably good
upper bound on the difference of the optimal values of the two.
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Lemma 4.6. Let G be a real-valued r-graph on [k] and J ∈ Rq×···×q. Then

|E(G, J)− Ê(G, J)| ≤ r2 1

2k
||G||∞||J ||∞.

Proof. Trivially we have E(G, J) ≥ Ê(G, J). We define G′ by setting all entries of G to 0
which have at least two coordinates which are the same (for r = 2 these are the diagonal
entries). Thus, we get that

|E(G, J)− E(G′, J)| ≤
(
r

2

)
1

k
||G||∞||J ||∞.

Now assume that we are given a fractional partition x for that the maximum E(G′, J) is
attained. We fix all the entries xn,1, . . . xn,q with n = 2, . . . , k and regard Ex(G′, J) as a
function of x1,1, . . . , x1,q. This function will be linear in the variables x1,1, . . . , x1,q, and with
the additional condition

∑r
j=1 x1,j = 1 we obtain a linear program. By standard arguments

this program possesses an integer valued the optimal evaluation, so we are allowed to replace
x1,1, . . . , x1,q by integers without letting Ex(G′, J) decrease. We repeat this procedure for each

n ∈ [k], obtaining an integer optimum for Ex(G′, J), which implies that E(G′, J) = Ê(G′, J).
Hence, the claim follows.

Next lemma is the continuous generalization of Theorem 4 from [2].

Lemma 4.7. Let ε > 0 arbitrary. For any bounded measurable function W : [0, 1]r → R
there exist an s ≤ 1

ε2
, measurable sets Sji ⊂ [0, 1] with i = 1, . . . , s, j = 1, . . . , r, and real

numbers d1, . . . , ds so that with B =
∑s

i=1 diIS1
i×···×Sri it holds that

(i) ||W ||2 ≥ ||W −B||2,

(ii) ||W −B||� < ε||W ||2, and

(iii)
∑s

i=1 |di| ≤
1
ε
||W ||2.

Proof. We construct stepwise the required rectangles and the respective coefficients implic-
itly. Let W 0 = W , and suppose that after the t’th step of the construction we have already
obtained every set Sji ⊂ [0, 1] with i = 1, . . . , t, j = 1, . . . , r, and the real numbers d1, . . . , dt.
Set W t = W −

∑t
i=1 diIS1

i×···×Sri . We proceed to the (t + 1)’st step, where two possible
situations can occur. The first case is when

||W t||� ≥ ε||W ||2.

This implies by definition that there exist measurable subsets S1
t+1, . . . , S

r
t+1 of [0, 1] such that

|
∫
S1
t+1×···×Srt+1

W t(x)dx| ≥ ε||W ||2. We define dt+1 to be the average of W t on the product

set S1
t+1 × · · · × Srt+1, and proceed to the (t+ 2)’nd step. In the case of

||W t||� < ε||W ||2
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we are ready with the construction and set s = t.
We analyze the first case to obtain an upper bound on the total number of steps required

by the construction. Suppose that at some step we are not ready with the construction.
Then

||W t||22 − ||W t+1||22 =

∫
S1
t+1×···×Srt+1

(W t)2(x)dx−
∫

S1
t+1×···×Srt+1

(W t(x)− dt+1)2dx

= d2
t+1λ(S1

t+1) . . . λ(Srt+1) ≥ ε2||W ||22. (4.4)

This means that the square of the 2-norm decreases in every step when the first case occurs
in the construction by at least ε2||W ||22, therefore it can happen only at most 1

ε2
times, with

other words s ≤ 1
ε2

. It is also clear that the 2-norm decreases in each step, so we are left to
verify the upper bound on the sum of the absolute values of the coefficients di. From (4.4)
we get, that

||W ||22 =
s∑
t=1

||W t−1||22 − ||W t||22 ≥
s∑
t=1

d2
tλ(S1

t ) . . . λ(Srt ).

We also know for every t ≤ s that |dt|λ(S1
t ) . . . λ(Srt ) ≥ ε||W ||2. Hence,

s∑
t=1

|dt|ε||W ||2 ≤
s∑
t=1

d2
tλ(S1

t ) . . . λ(Srt ) ≤ ||W ||22,

and therefore
∑s

t=1 |dt| ≤
1
ε
||W ||2.

Next we state that the cut approximation provided by Lemma 4.7 is invariant under sam-
pling. This is a crucial point of the whole argument, and is the r-dimensional generalization
of Lemma 4.6 from [8].

Lemma 4.8. For any ε > 0 and bounded measurable function W : [0, 1]r → R we have that

P

(∣∣∣∣ 1

kr
||H(k,W )||� − ||W ||�

∣∣∣∣ > ε||W ||∞
)
< ε,

where k ≥ c
ε4

for some c large enough.

Proof. Let us denote H(k,W ) by G. We will need the following lemma from [2].

Lemma 4.9. G is a real r-array on some finite product set V1×· · ·×Vr, where Vi are copies
of V of cardinality k. Let S1 ⊂ V1, . . . , Sr ⊂ Vr be fixed subsets and Q1 a uniform random
subset of V2 × · · · × Vr of cardinality p. Then

G(S1, . . . , Sr) ≤ EQ1G(P (Q1 ∩ S2 × · · · × Sr), S2, . . . , Sr) +
kr/2
√
p
||G||2,

where P (Q1) = PG(Q1) = {x1 ∈ V1 :
∑

(y2,...yr)∈Q1
G(x1, y2, . . . , yr) > 0}.
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If apply Lemma 4.9 repeatedly r times to the r-arrays G and −G, then we arrive at
an upper bound on G(S1, . . . , Sr) ((−G)(S1, . . . , Sr) respectively) for any collection of the
S1, . . . , Sr which does not depend on the particular choice of these sets any more, so we get
that

||G||� ≤ EQ1,...,Qr max
Q′i⊂Qi

max{G(PG(Q′1), . . . , PG(Q′r)); (−G)(P−G(Q′1), . . . , P−G(Q′r))}

+
rkr
√
p
||G||∞, (4.5)

since ||G||2 ≤ kr/2||G||∞.
Let us recall that G stands for the random H(k,W ). We are interested in the expectation

E of the left hand side of (4.5) over the sample that defines G. Now we proceed via the
method of conditional expectation. We establish an upper bound on the expectation of right
hand side of (4.5) over the sample U1, . . . , Uk for each choice of the tuple of sets Q1, . . . , Qr.
This bound does not depend on the actual choice of the Qi’s, so if we take the average (over
the Qi’s), that upper bound still remains valid.

In order to do this, let us fix Q1, . . . , Qr, set Q to be the set of elements of V (G) which
are contained by at least of the Qi’s, and fix also the sample points of Ui with i ∈ Q. Take
the expectation only over the remaining Ui sample points.

To this end, by Fubini we have the estimate

EU[k]
||G||� ≤ EQ1,...QrEUQ [EUQc max

Q′i⊂Qi
max{G(PG(Q′1) ∩Qc, . . . , PG(Q′r) ∩Qc);

(−G)(P−G(Q′1) ∩Qc, . . . , P−G(Q′r) ∩Qc)}] +
rkr
√
p
||G||∞ + prkr−1||G||∞, (4.6)

where US = {Ui : i ∈ S}.
Our goal is to uniformly upper bound the expression in the brackets in (4.6) so that in

the dependence on the particular Q1, . . . Qr and the sample points from UQ vanishes. To
achieve this, we consider additionally a tuple of subsets Q′i ⊂ Qi, and introduce the random
variable Y (Q′1, . . . , Q

′
r) = G(PG(Q′1) ∩ Qc, . . . , PG(Q′r) ∩ Qc), where the randomness comes

from UQc exclusively. Let

Ti = {xi ∈ [0, 1] :
∑

(y1,...,yi−1,yi+1,...yr)∈Q′i

W (Uy1 , . . . , Uyi−1
, xi, Uyi+1

, . . . Uyr) > 0}

for i ∈ [r]. Note that ti ∈ PG(Q′i) is equivalent to Uti ∈ Ti. Then

EUQcY (Q′1, . . . , Q
′
r) ≤

∑
t1,...,tr∈Qc

ti 6=tj

EUQcG(t1, . . . , tr)IPG(Q′1)(t1) . . . IPG(Q′r)(tr) + r2kr−1||W ||∞

≤ kr
∫

T1×···×Tr

W (x)dx+ r2kr−1||W ||∞ ≤ kr||W ||� + r2kr−1||W ||∞.
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By the Azuma-Hoeffding inequality we also have high concentration of the random variable
Y (Q′1, . . . , Q

′
r) around its mean.

P(Y (Q′1, . . . , Q
′
r) ≥ EUQcY (Q′1, . . . , Q

′
r) + ρkr) < exp(− ρ2k

8r2||W ||∞
). (4.7)

Analogous upper bounds on the expectation and the tail probability hold for each of the
expressions (−G)(P−G(Q′1), . . . , P

G
(Q′r)).

With regard to the maximum expression in (4.6) over the Q′i’s we have to this end either
that the concentration event from (4.7) holds for each possible choice of the Q′i’s for both

expressions, this has probability at least 1− 2pr+1 exp(− ρ2k
8r2||W ||∞ ), or it fails for some choice.

In the first case we can employ the upper bound kr||W ||� + rkr−1||W ||∞+ ρkr. In the event
of failure we still have the trivial upper bound of kr||W ||∞. Eventually we presented an
upper bound on the expectation that is not dependent on Q1, . . . Qr, and the sample points
from UQ. Hence by taking expectation and assembling the terms, we have

1

kr
EU[k]
||G||� ≤ ||W ||� + ||W ||∞

(
r
√
p

+
pr3

k
+
r

k
+ 2pr+1 exp

(
− ρ2k

8r2||W ||∞

))
+ ρ.

Let k = cε−4, p = dε−2 and ρ = eε||W ||∞. With appropriate choice of the constants we have
1
kr

E||G||� ≤ ||W ||� + ε/2.
The converse direction, 1

kr
E||G||� ≥ ||W ||� − ε/2 follows from a standard sampling

argument, the idea is that we can project each set S ⊂ [0, 1] to a set Ŝ ⊂ [k] through
the sample, which will fulfill the desired conditions, we leave the details to the reader.
Concentration follows by the Azuma-Hoeffding inequality. We conclude that

P

(∣∣∣∣ 1

kr
||G||� − ||W ||�

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ 1

kr
E||G||� −

1

kr
||G||�

∣∣∣∣ > ε/2

)
≤ 2 exp

(
− ε2k

16r2||W ||∞

)
.

Next we state a result on the relationship of a continuous LP and its randomly sampled
finite subprogram. Measurability for all of the following functions is assumed.

Lemma 4.10. Let cm : [0, 1]→ R, Ui,m : [0, 1]→ R for i = 1, . . . , s, m = 1, . . . , q, u ∈ Rs×q,
α ∈ R. If the optimum of the linear program

maximize

1∫
0

q∑
m=1

fm(t)cm(t)dt

subject to

1∫
0

fm(t)Ui,m(t)dt ≤ ui,m for i ∈ [s] and m ∈ [q]
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0 ≤ fm(t) ≤ 1 for t ∈ [0, 1] and m ∈ [q]
q∑

m=1

fm(t) = 1 for t ∈ [0, 1]

is less than α, then for any ε > 0 and k ∈ N and a uniform random sample {X1, . . . , Xk} of
[0, 1]k the optimum of the sampled linear program

maximize
∑

1≤n≤k

q∑
m=1

1

k
xn,mcm(Xn)

subject to
∑

1≤n≤k

1

k
xn,mUi,m(Xn) ≤ ui,m − ε||U ||∞ for i ∈ [s] and m ∈ [q]

0 ≤ xn,m ≤ 1 for n ∈ [k] and m ∈ [q]
q∑

m=1

1

k
xn,mcm(Xn) for n ∈ [k]

is less than α + ε||c||∞ with probability at least 1− exp(− ε2k
2

).

Proof. We require a continuous version of the Farkas lemma.

Claim 1. Let (Af)i,m =
∫ 1

0
Ai,m(t)fm(t)dt for the bounded measurable functions Ai,m on

[0, 1] for i ∈ [s] and m ∈ [q] , and let v ∈ Rsq. There is no q fractional partition solution
f = (f1, . . . , fq) to Af ≤ v if and only if, there exists a non-zero y ≥ 0 with ||y||1 = 1 such
that there is no q- fractional partition solution f to yT (Af) ≤ yTv.

For clarity we remark that in the current claim and the following one Af and v are indexed
by a pair of parameters, but are regarded as 1-dimensional vectors in the multiplication
operation.

Proof. One direction is trivial: if there is a solution f to Af ≤ v, then it is also a solution
to yT (Af) ≤ yTv for any y ≥ 0.

We turn to show the opposite direction. Let C = {Af |f : [0, 1]→ [0, 1]}. The set C is a
nonempty convex closed subset of Rsq containing 0. Let B = {x|xi,m ≤ vi,m} ⊂ Rsq, this set
is also a nonempty convex closed set. The absence of a solution to Af ≤ v is equivalent to
saying that C ∩ B is empty. It follows from the Separation Theorem for convex closed sets
that there is a 0 6= y′ ∈ Rsq such that y′T c < y′T b for every c ∈ C and b ∈ B. Additionally
every coordinate y′i,m has to be non-positive. To see this suppose that y′i0,m0

> 0, we pick a
c ∈ C and b ∈ B, and send bi0,m0 to minus infinity leaving every other coordinate of the two
points fixed (b will still be an element of B), for bi0 small enough the inequality y′T c < y′T b
will be harmed eventually. We conclude that for any f we have y′T (Af) < y′Tv, hence for
y = −y′

||y′||1 the inequality yT (Af) ≤ yTv has no solution.

From this lemma the finitary version follows without any difficulties.
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Claim 2. Let B a real sq × k matrix, and let v ∈ Rsq . There is no q-fractional partition
x ∈ Rkq so that Bx ≤ v if and only if, there is a non-zero y ≥ 0 with ||y||1 = 1 such that
there is no q-fractional partition x ∈ Rkq so that yTBx ≤ yTv.

Proof. Let Ai,m(t) =
∑k

n=1

B(i,m),n

k
I[n−1

k
,n
k

)(t) for i = 1, . . . , s. The nonexistence of a q-

fractional partition x ∈ Rkq so that Bx ≤ v is equivalent to nonexistence of a q-fractional
partition f so that Af ≤ v. For any nonzero 0 ≤ y, the nonexistence of a q-fractional
partition x ∈ Rkq so that yTBx ≤ yTv is equivalent to the nonexistence of a q-fractional
partition f so that yT (Af) ≤ yTv. Applying Claim 1 verifies the current claim.

The assumption of the lemma is by Claim 1 equivalent to the statement that there exists
a nonzero 0 ≤ y ∈ Rn×q and β ≥ 0 such that

1∫
0

s∑
i=1

q∑
m=1

yi,mUi,m(t)fm(t)dt−
1∫

0

β

q∑
m=1

cm(t)fm(t) ≤
s∑
i=1

q∑
m=1

yi,mui,m − βα

has no solution f among q-fractional partitions. This is equivalent to the condition

1∫
0

h(t)dt > A,

where h(t) = min
m

[
∑s

i=1 yi,mUi,m(t)− βcm(t)], and A =
∑s

i=1

∑q
m=1 yi,mui,m − βα. By the

Azuma-Hoeffding inequality it follows that with probability at least 1− exp(−kε2

2
) we have

that
1

k

k∑
n=1

h(Xn) > A− ε(||h||∞).

This last inequality implies the statement of our lemma by Claim 2.

We start the proof of the main theorem in this topic.

Proof of Theorem 4.4. We make no specific restrictions on the color set K and on the set
E of layers except for finiteness of the second, therefore it will be convenient to rewrite the
layered energies Eφ(W,J) into a more universal form as a sum of proper Hamiltonians in
order to suppress the role of K and E. Let

Eφ(W,J) =
∑
e∈E

∑
z1,...,zr∈[q]

∫
[0,1]s([r],r)

∏
j∈[q]

φzj(x{j})J
e
z1,...,zr

(W e(x))dx

=
∑

z1,...,zr∈[q]

∫
[0,1]s([r],r)

∏
j∈[r]

φzj(x{j})

[∑
e∈E

Jez1,...,zr(W
e(x))

]
dxs([r],r).
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Motivated by this reformulation we introduce for every (W,J) pair a special auxiliary instance
of the ground state problem that is defined for a [q]r-layered ([−d, d], r)-graphon, where
d = |E|‖J‖∞. For any z ∈ [q]r let W̃ z(x) =

∑
e∈E J

e
z1,...,zr

(W e(x)) for each x ∈ [0, 1]s([r],r),

and the interaction matrices J̃z of the canonical form. We obtain for any fractional partition
φ of [0, 1] into q parts that Eφ(W,J) = Eφ(W̃ , J̃), and also Ex(G(k,W ), J) = Ex(G(k, W̃ ), J̃)
for any fractional partition x, where the two random r-graphs are obtained via the same
sample. Therefore, without lost of generality, we are able to restrict our attention to ground
state energies of canonical form. In most of what follows we will drop the dependence on J in
the energy function when it is clear that we mean the aforementioned J̃ , and will employ the
notion Eφ(W ), E(W ), Ex(G) and E(G), where W and G are [q]r-layered [−d, d]-edge colored
objects.

The canonical reformulation allows us to employ first Lemma 4.5 to replace the energy
Ê(G(k,W ), J) by the energy of the averaged sample Ê(H(k,W ), J) without altering the
ground state energy of the sample substantially. From this point we may regard W as a [q]r

layered ([−d, d], r)-graphon without losing generality thanks to H(k,W ) not relying on the
structural additional value of a proper graphon. Subsequently, we apply Lemma 4.6 to change
from the integer version of the energy Ê(H(k,W ), J) to the relaxed one E(H(k,W ), J).

We are beginning the argument by showing that the ground state energy of the sample
can not be substantially smaller than that of the original, formally E(H(k,W )) ≥ E(W ) −
O( 1

k
)||W ||∞ with high probability. Here here and in what follows E denotes the expectation

with respect to the uniform independent random sample (US)S∈s([k],r) from [0, 1]. To see the
correctness of the inequality, we consider a fixed fractional partition φ of [0, 1], and define
the random fractional partition of [k] as yn,m = φm(Un) for every n ∈ [k] and m ∈ [q]. Then
we have that

EE(H(k,W )) ≥ EEy(H(k,W ))

= E
1

kr

∑
z∈[q]r

k∑
n1,...,nr=1

W z((US)S∈s({n1,...,nr},r))
r∏
j=1

ynj ,zj

≥ k!

kr(k − r)!
∑
z∈[q]r

∫
[0,1]s([r],r)

W z((tS)S∈s([r],r))
r∏
j=1

φzj(tj)dt−
r2

k
‖W‖∞

≥ Eφ(W )− r2

k
‖W‖∞.

This argument proves the claim in expectation, concentration will be provided by stan-
dard martingale arguments. For convenience, we define a martingale by Y0 = EE(H(k,W ))
and Yt = E[E(H(k,W ))|(US)S∈s([t],r)] for 1 ≤ t ≤ k. The difference |Yi − Yi+1| ≤ 2r

k
||W ||∞

is bounded from above for any i, thus by the inequality of Azuma and Hoeffding it follows
that

P(E(H(k,W )) < E(W )− 2r2

k1/4
||W ||∞)
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≤ P(E(H(k,W )) < EE(H(k,W ))− r2

k1/4
||W ||∞)

= P(Yk < Y0 −
r2

k1/4
||W ||∞) ≤ exp(−r

2
√
k

8
). (4.8)

So the lower bound on E(H(k,W )) is established for some c > 0 with k(ε) ≥ cε−4.
Now we turn to prove that E(H(k,W ), J) < E(W,J) + ε holds also with high probability

for k ≥ cε−4 log(ε−1)) for some c large enough. Our two main tools will be a variant the Cut
Decomposition Lemma from [2] (closely related to the Weak Regularity Lemma by Frieze
and Kannan [17]), Lemma 4.7, and linear programming duality, in the form of Lemma 4.10.
Recall the definition of the cut norm, for W : [0, 1]r → R it is

||W ||� = max
S1,...,Sr⊂[0,1]

∣∣∣∣∣∣
∫

S1×···×Sr

W (x)dx

∣∣∣∣∣∣ ,
and for an r-array G it is

||G||� = max
S1,...,Sr⊂V (G)

∣∣G(S1, . . . , Sr)
∣∣ .

Before starting the second part of the technical proof, we present an informal outline. Our
task is to certify that there is no evaluation of the variables on the sampled energy problem,
which produces an overly large value relative to the ground state energy of the continuous
problem. For this reason we build a cover of subsets over the set of fractional partitions of
the variables of the finite problem, also build a cover of subsets over the fractional partitions
of the original continuous energy problem, and establish an association between the elements
of the two in such a way, that with high probability we can definitely say that the optimum
on one particular set of the cover of the sampled energy problem does not exceed the optimal
value of the original problem on the associated set of the other cover. To be able to do this,
first we have to define these two covers, this is done with the aid of the cut decomposition,
see Lemma 4.7. We will replace the original continuous problem by an auxiliary one, where
the number of variables will be bounded uniformly in terms of our desired error ε. Lemma
4.8 makes it possible for us to replace the sampled energy problem by an auxiliary problem
of the same number of variables as for the continuous problem. This latter will have a
straightforward relationship to the former approximation of the original problem. We will
produce the cover sets of the two problems by localizing the auxiliary problems, association
happens through the aforementioned straightforward connection. Finally, we will linearize
the local problems, and use the linear programming duality principle from Lemma 4.10 to
verify that the local optimal value on the sample does not exceed the local optimal value on
the original problem by an infeasible amount, with high probability.

Recall that for a φ = (φ1, . . . , φq) a q-fractional partition of [0, 1]

Eφ(W ) =
∑
z∈[q]r

∫
[0,1]r

∏
j∈[r]

φzj(tj)W
z(t)dt, (4.9)
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and for an x = (x1,1, x1,2, . . . , x1,q, x2,1, . . . , xk,q) a q-fractional partition of [k]

Ex(H(k,W )) =
∑
z∈[q]r

1

kr

∑
1≤t1,...,tr≤k

∏
j∈[r]

xtj ,zjW
z(Ut1 , . . . , Utr). (4.10)

We are going to establish a term-wise connection with respect to the parameter z in the
previous formulas. Therefore we fix z for now and consider the function

Ezφ(W z) =

∫
[0,1]r

∏
j∈[r]

φzj(tj)W
z(t)dt. (4.11)

Lemma 4.7 delivers for any W z an integer s = s(z) ≤ 4
ε2

, measurable sets Sji ⊂ [0, 1] with
i = 1, . . . , s, j = 1, . . . , r, and real numbers d1, . . . , ds such that the conditions of the lemma
are satisfied, namely ||W z −

∑s
i=1 diIS1

i×···×Sri ||� ≤ ε||W z||2 and
∑

i |di| ≤
1
ε
||W z||2. We also

have that this cut function allows a sufficiently good approximation for Eφ(W z), for any φ.
Let Dz =

∑sz
i=1 diIS1

i×···×Sri .

|Ezφ(W z)− Ezφ(Dz)| =

∣∣∣∣∣∣∣
∫

[0,1]r

∏
j∈[r]

φzj(tj) [W z(t)−Dz(t)] dt

∣∣∣∣∣∣∣
≤ ||W z −Dz||� ≤ ε||W z||2.

We apply the cut approximation to W z for every z ∈ [q]r obtaining a uniquely z-colored
graphon D = (Dz)z∈[q]r . We define the ”push-forward” of this approximation for the sample

H(k,W z). To do this we only need to define the subsets [k] ⊃ Ŝji = {m : Um ∈ Sji }. Let
D′z =

∑sz
i=1 diIŜ1

i×···×Ŝri
. First we condition on the event from Lemma 4.8, call this event E1,

that is E1 =
⋂
z

{∣∣ 1
kr
||H(k,W z)−D′z||� − ||W z −Dz||�

∣∣ < ε||W z||∞
}

.On E1 it follows that

for any x ∈ [0, 1]k

|Ezx(H(k,W z))− Ezx(D′z)| ≤ 1

kr
||H(k,W z)−D′z||�

≤ ||W z −D′z||� + ε||W z||∞.

This implies

|Eφ(W )− Eφ(D)| ≤ εqr||W ||∞ and |Ex(H(k,W ))− Ex(H(k,D))| ≤ ε2qr||W ||∞.

In what follows we refer to typical set that is involved in the definition of D as Sji , where
we will not always stress to which particular Dz a it belongs to, let S = {Sz,i,j : z ∈ [q]r, 1 ≤
i ≤ s(z), 1 ≤ j ≤ r} denote their set, S ′ the corresponding set on the sample. Note that
s′ := |S| ≤ rqr 1

ε2
.Let η > 0.
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I(b, η) = {φ : ∀z ∈ [q]r, 1 ≤ i ≤ s(z), 1 ≤ j ≤ r : |
∫

Sz,i,j

φzj(t)dt− bz,i,j| ≤ 2η},

I ′(b, η) = {x : ∀z ∈ [q]r, 1 ≤ i ≤ s(z), 1 ≤ j ≤ r : |1
k

∑
Un∈Sz,i,j

xn,zj − bz,i,j| ≤ η}.

We will use the grid points A = {(bz,i,j)z,i,j : ∀z, i, j : bz,i,j ∈ [0, 1] ∩ ηZ}.
On every set I(b, η) we can produce a linear approximation of Eφ(D) (linear in the func-

tions φm) which carries through to a linear approximation of Ex(H(k,D)) via sampling. The
precise description of this is given in the next lemma.

Lemma 4.11 (Local linearization). Let ε, η > 0 be arbitrary. Then for every b ∈ A there
exist l0 ∈ R and a functions l1, l2, . . . , lq : [0, 1] → R such that for every φ ∈ I(b, η) it holds

that |Eφ(D) − l0 −
∫ 1

0

∑q
m=1 lm(t)φm(t)dt| < η2

ε
||W ||∞, and for every y ∈ I ′(b, η) we have

|Ey(H(k,D)) − l0 −
∑k

n=1

∑q
m=1

1
k
yn,mlm(Ui)| < η2

ε
||W ||∞. Additionally in the case when

η = νε for some fixed real ν > 0|, we have that l1, l2, . . . , lq are bounded from above by
O(1

ε
)||W ||∞.

Proof. First we decompose the energies as sums over z ∈ [q]r. Recall that

Ezφ(Dz) =

s(z)∑
i=1

di

∫
[0,1]r

r∏
j=1

φzj(xj)ISz,i,1×···×Sz,i,r(x)dx

=

s(z)∑
i=1

di

∫
[0,1]r

q∏
m=1

r∏
j=1
zj=m

φm(xj)ISz,i,1×···×Sz,i,r(x)dx,

and

Ezy (D′z) =

s(z)∑
i=1

di
1

kr

q∏
m=1

r∏
j=1
zj=m

∑
n:Un∈Sz,i,j

yn,m.

In the previous formula we denoted the r-tuples of sets involved in the generation of Dz

as the first s(z) of the whole list of size s = s′

r
. Of course this will be a different set of

r-tuples for different z’s, but it will always be clear what is meant. We will linearize and
compare the functions Ezφ(Dz) and Ezx(D′z) termwise. In the end we will sum up the errors
and deviations occurred at each term. Let us fix φ ∈ I(η, b). We are going to produce a
linear approximation to each term of the expression Ezφ(Dz).

q∏
m=1

r∏
j=1
zj=m

 1∫
0

φm(xj)ISz,i,j(xj)dxj − bz,i,j + bz,i,j


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=
r∏
j=1

bz,i,j +

q∑
m=1

r∑
j=1,zj=m

 1∫
0

φm(xj)ISz,i,j(xj)dxj − bz,i,j

 B(z)

bz,i,j
+ ∆

= (1− r)B(z) +

q∑
m=1

1∫
0

φm(t)

 r∑
j=1,zj=m

ISz,i,j(t)
B(z)

bz,i,j

 dt+ ∆,

where B(z) stands for
∏r

j=1 bz,i,j, and |∆| ≤ η2qr. Analogously for a fixed element y ∈ I ′(b, η)
and a term of Ezy (D′) we have

q∏
m=1

r∏
j=1
zj=m

1

k

∑
n:Un∈Sz,i,j

yn,m − bz,i,j + bz,i,j


= (1− r)B(z) +

q∑
m=1

k∑
n=1

1

k
yn,m

 r∑
j=1,zj=m

ISz,i,j(Un)
B(z)

bz,i,j

+ ∆′,

where again |∆′| ≤ η2qr. We multiply these former expressions by the respective coeffi-
cient di and sum up over i, then we still have in both cases a linear approximation. As overall
error we get in both cases at most

∑s
i=1 |di|η2qr ≤ ||W ||∞2r 1

ε
η2qr ≤ 2r = O(η2 1

ε
)||W ||∞.

Now we turn to prove the upper bounds on |l(t)|. Assume that ||W ||∞ = 1. Looking at the
former formulas we could write out l(t) explicitly, for the upper bound it is enough to note

that
[∑r

j=1,zj=m
ISz,i,j(t)

B(z)
bz,i,j

]
is at most r. So it follows that for any t ∈ [0, 1] it holds that

|l(t)| ≤
s∑
i=1

|di|r ≤ O

(
1

ε

)
.

For each b ∈ A we apply Lemma 4.11, so that we have for any φ ∈ I(b, η) and x ∈ I ′(b, η)
that ∣∣∣∣∣∣Eφ(W )− l0 −

q∑
m=1

1∫
0

φm(t)lm(t)dt

∣∣∣∣∣∣ = O(
η2

ε
)||W ||∞,∣∣∣∣∣Ex(H(k,W ))− l0 −

k∑
n=1

1

k
xn,mlm(Un)

∣∣∣∣∣ = O(
η2

ε
)||W ||∞.

Note that of course l0, l1, . . . , lq depend on b. We introduce the event E2(b), which stands
for the occurrence of the following implication:

If the linear program

maximize l0 +
k∑

n=1

q∑
m=1

1

k
xn,mlm(Un)
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subject to x ∈ I ′(b, η)

0 ≤ xn,m ≤ 1 for m = 1, . . . , k and m = 1, . . . , q
q∑

m=1

xn,m = 1 for m = 1, . . . , q

has optimal value α, then the continuous linear program

maximize l0 +

1∫
0

q∑
m=1

lm(t)φm(t)dt

subject to φ ∈ I(b, η)

0 ≤ φm(t) ≤ 1 for t ∈ [0, 1] and m = 1, . . . , q
q∑

m=1

φm(t) = 1 for t ∈ [0, 1]

has optimal value at least α− η.

Let us set η = νε. It follows from Lemma 4.10 that P (E2(b)) ≥ 1 − exp(−kO(ε)2

2
).

Denote E2 the event that for each b ∈ A the event E2(b) occurs. Then P (E2) ≥ 1 −
(O(1

ε
))

2qr

ε2 exp(−kO(ε)2

2
). Therefore if k ≥ c 1

ε4
log 1

ε
with c > 0 large enough we have that

P (E1∩E2) ≥ 1− ε. We only need to check that conditioned on E1 and E2 our requirements
are fulfilled. For this consider an arbitrary x = (x1,1, x1,2, . . . , x1,q, x2,1, . . . , xk,q) a q-fractional
partition of [k]. For some b ∈ A we have that x ∈ I ′(b, η). By the argument we presented
earlier it follows that there exists a φ ∈ I(b, η) such that on E1 ∩ E2

Eφ(W ) ≥ Ex(H(k,W ))−O(ε)||W ||∞.

This is what we wanted to show.

Remark 4.12. A simple investigation of the proof also exposes the role of q and r in the
size of the required sample: there exists a c′′ > 0 not dependent on q, r and ε, so that for
k ≥ c′′ log(qr/ε) q

4r

ε4
so that the statement of the theorem is valid.

5 Applications of the ground state energy

We derive further testability results using the techniques employed in the proofs of the
previous section, and apply Theorem 4.4 to quadratic programming problems.

5.1 Microcanonical version

Next we will state the microcanonical version of Theorem 4.4, that is the continuous general-
ization of the main result of [15]. To be able to do this, we require the microcanonical analog
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of Lemma 4.6, that will be a generalization of Theorem 5.5 from [9] for arbitrary r-graphs
(except for the fact that we are not dealing with node weights), and its proof will also follow
the lines of the aforementioned theorem. Before stating the lemma, we recall some notation
and state yet another auxiliary lemma.

Definition 5.1. Let for a = (a1, . . . , aq) ∈ Pdq (that is, ai ≥ 0 for each i ∈ [q] and
∑

i ai = 1)
denote

Ωa =

φ fractional partition of [0, 1] :

1∫
0

φi(t)dt = ai for i ∈ [q]

 ,

ωa =

x frac. partition of V (G) :
1

|V (G)|
∑

u∈V (G)

xu,i = ai for i ∈ [q]

 ,

and

ω̂a =

{
x int. partition of V (G) :

∣∣∣∣∣
∑

u∈V (G) xu,i

|V (G)|
− ai

∣∣∣∣∣ ≤ 1

|V (G)|
for i ∈ [q]

}
.

We will call the following expressions microcanonical ground state energies with respect to
a for (K, r)-graphs and graphons and C(K)-valued r-arrays J , in the finite case we add the
term fractional and integer respectively to the name. Denote

Ea(W,J) = max
φ∈Ωa

Eφ(W,J), Ea(G, J) = max
x∈ωa

Ex(G, J), Êa(G, J) = max
x∈ω̂a

Ex(G, J).

The layered versions for a finite layer set E are defined analogously.

The requirements for an x to be discrete a-fractional partition are rather strict and we are
not able to guarantee with high probability that if we sample from an a-fractional partition
of [0, 1], that we will receive an a-fractional partition on the sample, in fact this will not
happen with probability 1. To tackle this problem we need to establish an upper bound on
the difference of two microcanonical ground state energies with the same parameters. This
was done in the two dimensional case in [9], we generalize that approach.

Lemma 5.2. Let E be a finite layer set, K a compact color set, q ≥ 1, and r-arrays
J = (Je)e∈E with Je ∈ C(K)q×···×q. Then for any E-layered (K, r)-graphon W = (W e)e∈E,
and probability distributions a,b ∈ Pdq we have

|Ea(W,J)− Eb(W,J)| ≤ r|E|‖J‖∞‖W‖∞‖a− b‖1.

The analogous statement is true for an arbitrary E-layered K-valued r-graph G,

|Ea(G, J)− Eb(G, J)| ≤ r|E|‖J‖∞‖G‖∞‖a− b‖1.
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Proof. We can restrict our attention to the canonical form of the problem with W being a
real-valued averaged naive graphon tuple, and ‖W‖∞ = 1. We will find for each a-fractional
partition φ a b-fractional partition φ′ and vice versa, so that the corresponding energies
are as close to each other as in the statement. So let φ = (φ1, . . . , φq) be an arbitrary a-
fractional partition, we define φ′i so that the following holds: if ai ≥ bi then φ′i(t) ≤ φi(t)
for every t ∈ [0, 1], otherwise φ′i(t) ≥ φi(t) for every t ∈ [0, 1]. It is easy to see that such a
φ′ = (φ′1, . . . , φ

′
q) exists. Next we estimate the energy deviation.

|Eφ(W )− Eφ′(W )| ≤
∑
z∈[q]r

∣∣∣∣∣∣∣
∫

[0,1]r

φz1(x1) . . . φzr(xr)− φ′z1(x1) . . . φ′zr(xr)dx

∣∣∣∣∣∣∣
≤
∑
z∈[q]r

r∑
m=1

∣∣∣∣∣∣∣
∫

[0,1]r

(φzm(xm)− φ′zm(xm))
∏
j<m

φzj(xj)
∏
j>m

φ′zj(xj)dx

∣∣∣∣∣∣∣
=
∑
z∈[q]r

r∑
m=1

∫
[0,1]

∣∣φzm(xm)− φ′zm(xm)
∣∣ dxm ∏

j<m

azj
∏
j>m

bzj

=
r∑

m=1

q∑
j=1

∫
[0,1]

∣∣φj(t)− φ′j(t)∣∣ dt( q∑
j=1

aj)
m−1(

q∑
j=1

bj)
r−m−1

= r||a− b||1.

The same way we can find for any b-fractional partition φ an a-fractional partition φ′ so
that their respective energies differ at most by r||a − b||1. This implies the first statement
of the lemma. The finite case is proven in a completely analogous fashion.

We are ready to show that the difference of the fractional and the integer ground state
energies is o(|V (G)|) whenever all parameters are fixed.

Lemma 5.3. Let q, r ≥ 1 and let G be a [q]r-layered real-valued r-graph on [k]. Let also be
J ∈ Rq×···×q and a ∈ Pdq. Then

|Ea(G, J)− Êa(G, J)| ≤ 1

k
qr‖J‖∞‖G‖∞5rqr+1.

Proof. We may assume that J is the canonical interaction r-array. The inequality Ea(G, J) ≤
Êa(G, J) + 1

k
‖J‖∞‖G‖∞5rqr+1 follows from Lemma 5.3. Indeed, in this direction one has a

somewhat stronger bound,

Êa(G, J) ≤ max
b:|bi−ai|≤1/k

Eb(G, J) ≤ Ea(G, J) + r
qr+1

k
‖J‖∞‖G‖∞.

Now we will show that Êa(G, J) ≥ Ea(G, J) − 1
k
||G||∞5rqr+1. We consider an arbitrary a-

fractional partition x. A node i from [n] is called bad in a fractional partition x, if the at
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least two elements of {xi,1, . . . , xi,q} are positive. We will reduce the number of fractional
entries of the bad nodes of x step by step until we have at most q of them, and keep track of
the cost of each conversion, at the end we round the corresponding fractional entries of the
remaining bad nodes some certain way.

We will describe a step of the reduction of fractional entries. For now assume that we
have at least q+1 bad nodes and select somehow a set S of cardinality q+1. To each element
of S corresponds a q-tuple of entries and each of these q-tuples has at least two non-{0, 1}
elements.

We will now reduce the number of fractional entries corresponding to S while not dis-
rupting any entries outside of S. To do this we fix for each i ∈ [q] the sums

∑
v∈S xv,i and for

each v ∈ S the sums
∑q

i=1 xv,i (these are naturally fixed), in total 2q+1 linear equalities. We
have at least 2q+2 fractional entries corresponding to S, therefore there exists a subspace of
solutions of dimension at least 1 for the 2q+ 1 linear equalities. That is, there is a family of
fractional partitions parametrized by −t1 ≤ t ≤ t2 for some t1, t2 > 0:xti,j = xi,j + tβi,j, where
βi,j = 0 if i /∈ S or xi,j ∈ {0, 1}, and βi,j 6= 0 else, that obey our 2q + 1 fixed equalities. The
boundaries −t1 and t2 are present, because eventually an entry corresponding to S would
exceed 1 or would be less than 0 with t going to plus, respectively minus infinity. Therefore
at these boundary points we still have an a-fractional partition that satisfies our selected
equalities, but the number of fractional entries decreases by at least one. We will formalize
how the energy behaves when applying this procedure.

Ext(G, J) = Ex(G, J) + c1t+ · · ·+ crt
r,

where for l ∈ [r]

cl =
1

kr

∑
z∈[q]r

∑
u1,...,ul∈S

ul+1,...,ur∈V \S
π

βu1,zπ(1) . . . βul,zπ(l)xul+1,zπ(l+1)
. . . xur,zπ(r)G

z(uπ(1), . . . , uπ(r)),

where the second sum runs over permutations π of [k] that preserves the ordering of the
elements of {1, . . . , l} and {l + 1, . . . , r} respectively. We deform the entries corresponding
to S through t in the direction so that c1t ≥ 0 until we have eliminated at least one fractional
entry. Note, that as xt is a fractional partition, therefore 0 ≤ xi,j + tβi,j ≤ 1, which implies
that for tβi,j ≤ 0 we have |tβi,j| ≤ xi,j. On the other hand,

∑
j tβi,j = 0 for any t and i.

Therefore
∑

j |tβi,j| = 2
∑

j |tβi,j|I{tβi,j≤0} ≤ 2
∑

j xi,j = 2 for any i ∈ [k]. This simple fact

enables us to upper bound the absolute value of the terms clt
l.

|cltl| ≤
(k − q − 1)r−l

kr
‖G‖∞

∑
z∈[q]r

∑
u1,...,ul∈S

π

|tβu1,zπ(1)| . . . |tβul,zπ(l)|

=
(k − q − 1)r−l

kr
‖G‖∞

(
r

l

)
qr−l

∑
z∈[q]l

∑
u1,...,ul∈S

|tβu1,z1| . . . |tβul,zl |

≤ 1

kl
‖G‖∞

(
r

l

)
qr−l

 ∑
u∈S,j∈[q]

|tβu,j|

l

≤ 1

kl
‖G‖∞

(
r

l

)
qr−l(2q + 2)l.
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It follows that in each step of elimination of a fractional entry of x we have to pay a price of
at most

r∑
l=2

|cltl| ≤
1

k2
‖G‖∞(3q + 2)r.

There are in total kq entries in x, as in each step the number of fractional entries is reduced
by at least 1, we can upper bound the number of required steps by k(q − 1), and conclude
that we to pay at most a price of 1

k
‖G‖∞(q − 1)(3q + 2)r to construct from x a fractional

partition x′ with at most q fractional entries In the second stage we proceed as follows. Let
B = {u1, . . . , ur} be the set of the remaining bad nodes of x′, with r ≤ q. For ui ∈ B we set
x′′ui,j = I{i=j}, for the rest of the nodes we set x′′ = x′, obtaining an integer a-partition of [k].
Finally, we estimate the cost of this operation.

Ex′′(G, J) ≥ Ex′(G, J)− 1

kr
‖G‖∞|B|kr−1qr.

The original a-fractional partition was arbitrary, therefore it follows that

Ea(G, J)− Êa(G, J) ≤ 1

k
‖G‖∞5rqr+1.

We are ready state the generalization of Theorem 4.4 adapted to the microcanonical
setting.

Corollary 5.4. Let E be a finite layer set, K a compact color set, q ≥ 1, a ∈ Pdq r-
arrays J = (Je)e∈E with Je ∈ C(K)q×···×q, and ε > 0. Then we have that for any E-layered
(K, r)-graphon W = (W e)e∈E and for k ∈ O(ε−4 log(ε−1)) that

P
(
|Ea(W,J)− Êa(G(k,W ), J)| > ε|E|‖J‖∞‖W‖∞

)
< ε.

Proof. We start with pointing out that we are allowed to replace the quantity Êa(G(k,W ), J)
by Ea(G(k,W ), J) in the statement of the corollary by Lemma 5.3 and only introduce an
initial error at most 1

k
qr‖J‖∞‖G‖∞5rqr+1. We can also require W = (W z)z to be [q]r

layered and real-valued with ‖W‖∞ ≤ 1, furthermore J to have canonical form (see the
proof of Theorem 4.4 for details).

The lower bound on Ea(G(k,W ), J) is the result of standard sampling argument combined
with Lemma 5.2. Let us consider a fixed a-partition φ of [0, 1], and define the random
fractional partition of [k] as yn,m = φm(Un) for every n ∈ [k] and m ∈ [q]. Now y is not
necessarily an a-fractional partition, but it cannot be very far from being one. For m ∈ [q]
it holds that

P

(∣∣∣∣∣
∑k

n=1 yn,m
k

− am

∣∣∣∣∣ ≥ ε

)
≤ 2 exp(−ε2k/2),
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therefore for k ∈ O(ε−4 log(ε−1)) the sizes of the partition classes obey | 1
k

∑k
n=1 yn,m−am| < ε

for every m ∈ [q] with probability at least 1− ε.
We apply Lemma 5.2 to arrive at

EE(G(k,W )) ≥ EEy(G(k,W ))− (q + 1)ε

= E
1

kr

∑
z∈[q]r

k∑
n1,...,nr=1

W (Un1 , . . . , Unr)
r∏
j=1

ynj ,zj − (q + 1)ε

≥ k!

kr(k − r)!
∑
z∈[q]r

∫
[0,1]r

W (t1, . . . , tr)
r∏
j=1

φzj(tj)dt−
r2

k
− (q + 1)ε

≥ Eφ(W )− r2

k
− (q + 1)ε.

The concentration of the random variable E(G(k,W )) can be obtained through martingale
arguments identical to the technique used in the proof of the lower bound in Theorem 4.4.

For the upper bound on Ea(G(k,W )) we are going to use the cut decomposition and local
linearization, the approach to approximate the energy of Eφ(W ) and Ex(G(k,W )) for certain
partitions φ, respectively x is completely identical to the proof of Theorem 4.4, therefore we
borrow all the notation from there, and we do not refer to again in what follows.

Now we consider a b ∈ A and define the event E3(b) that is occurrence the following
implication.

If the linear program

maximize l0 +
k∑

n=1

q∑
m=1

1

k
xn,mlm(Un)

subject to x ∈ I ′(b, η) ∩ ωa

0 ≤ xn,m ≤ 1 for n = 1, . . . , k and m = 1, . . . , q
q∑

m=1

xn,m = 1 for n = 1, . . . , k

has optimal value α, then the continuous linear program

maximize l0 +

1∫
0

q∑
m=1

lm(t)φm(t)dt

subject to φ ∈ I(b, η)
⋂ ⋃

c:|ai−ci|≤η

ωc


0 ≤ φm(t) ≤ 1 for t ∈ [0, 1] and m = 1, . . . , q
q∑

m=1

φm(t) = 1 for t ∈ [0, 1]
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has optimal value at least α− η.
It follows by applying Lemma 4.10 with setting η = νε that E3(b) has probability at least

1− exp(− ε2k
2

). When conditioning on E2 and E3 = ∩b∈AE3(b) we conclude that

Ea(G(k,W )) ≤ max
c:|ai−ci|≤νε

Ec(W ) +O(ε) ≤ Ea(W ) +O(ε).

Also, like in Theorem 4.4, the probability of the required events to happen simultaneously
is at least 1−O(ε) for k ≥ c′ε−4 log(ε−1) for a c′ > 0 large enough.

Remark 5.5. The proof of Corollary 5.4 also reveals that there exists a positive constant
c′′ not depending neither on ε, q nor r, so that the statement of Corollary 5.4 remains valid
for every sample size k ≥ c′′ log(qr/ε)q4rε−4.

5.2 Quadratic assignment and maximum acyclic subgraph prob-
lem

The two optimization problems that are the subject of this subsection, the quadratic as-
signment problem (QAP) and maximum acyclic subgraph problem (AC), are known to be
NP-hard, similarly to MAX-rCSP that was investigated above. The first polynomial time
approximation schemes were designed for the QAP by Arora, Frieze and Kaplan [3]. Dealing
with the QAP means informally that one aims to minimize the transportation cost of his
enterprise that has n production locations and n types of production facilities. This is to
be achieved by an optimal assignment of the facilities to the locations with respect to the
distances (dependent on the location) and traffic (dependent on the type of the production).
In formal, terms this means that we are given two real quadratic matrices of the same size,
G and J ∈ Rn×n, and the objective is to calculate

Q(G, J) =
1

n2
max
ρ

n∑
i,j=1

Ji,jGρ(i),ρ(j),

where ρ runs over all permutations of [n]. We speak of metric QAP, if the entries of J obey
the triangle inequality, and d-dimensional geometric QAP if the rows and columns of J can
be embedded in a d-dimensional Lp metric space so that distances of the images are equal
to the entries of J .

The continuous analog of the problem is the following: given the measurable functions
W,J : [0, 1]2 → R, we are interested in obtaining

Q̂ρ(W,J) =

∫
[0,1]2

J(x, y)W (ρ(x), ρ(y))dxdy, Q̂(W,J) = max
ρ

Q̂ρ(W,J),

where ρ in the previous formula runs over all measure preserving permutations of [0, 1]. In
even greater generality we introduce the QAP with respect to fractional permutations of
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[0, 1]. A fractional permutation µ is a probability kernel, that is µ : [0, 1]× L([0, 1])→ [0, 1]
so that (i) for any A ∈ L([0, 1]) the function µ(., A) is measurable, (ii) for any x ∈ [0, 1]
the function µ(x, .) is a probability measure on L([0, 1]), and (iii) for any A ∈ L([0, 1])∫ 1

0
dµ(x,A) = λ(A). Then

Qµ(W,J) =

∫
[0,1]2

∫
[0,1]2

J(i, j)W (x, y)dµ(i, x)dµ(j, y)didj,

and
Q(W,J) = max

µ
Qµ(W,J),

where the maximum runs over all fractional permutations. For each measure preserving
permutation ρ one can consider the fractional permutation µ with the probability measure
µ(i, .) is defined as the atomic measure δρ(i), for this choice of µ we have Qρ(W,J) = Qµ(W,J).

The r-dimensional generalization of the problem for J and W : [0, 1]r → R is

Q(W,J) = max
µ

∫
[0,1]r

∫
[0,1]r

J(j1, . . . , jr)W (x1, . . . , xr)dµ(j1, x1) . . . dµ(jr, xr)dj1 . . . djr,

where the maximum runs over all fractional permutations µ of [0, 1]. The definition of the
finitary case in r dimensions is analogous.

A similar problem to QAP is the maximum acyclic subgraph problem. Here we are given
a weighted directed graph G with vertex set of cardinality n, and our aim is to determine
the maximum of the total value of edge weights of a subgraph of G that contains no directed
cycle. We can formalize this as follows. Let G ∈ Rn×n be the input data, then the maximum
acyclic subgraph density is

AC(G) =
1

n2
max
ρ

n∑
i,j=1

Gi,jI{ρ(j)≥ρ(i)},

where ρ runs over all permutations of [n].
This is a special case of the QAP when J is the upper triangular n× n matrix with 0’s

on the diagonal and all nonzero entries being equal to 1. However in general AC cannot be
reformulated as metric QAP. The continuous version of the problem ÂC(W ) for a function
W : [0, 1]2 → R is defined analogous to the QAP, as well as the relaxation AC(W ), where
the maximum runs over probability kernels.

Both QAP and AC problems resemble the ground state energy problems that were in-
vestigated in previous parts of this paper. In fact, if the number of clusters of the distance
matrix J in the QAP would be upper bounded independent of n, QAP would exactly turn
into ground state energy with the number of states q equal to the number of clusters. By
number of clusters we mean here the smallest number m such that there exists an m ×m
matrix J ′ so that J is dm

n
e-fold equitable blow-up of J ′. To establish an approximation to

the solution of the QAP we will only need this condition approximately, and this will be
shown in what follows.
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Definition 5.6. We call a measurable function J : [0, 1]r → R ν-clustered for a non-increasing
function ν : R+ → R+, if for any ε > 0 there exists another measurable function J ′ : [0, 1]r →
R that is a step function with ν(ε) steps and ||J − J ′||1 < ε||J ||∞.

Note, that by the Weak Regularity Lemma ([17]) any J can be well approximated by a

step function with ν(ε) = 2
1
ε2 steps in the cut norm. To see why it is likely that this cut norm

approximation will not be sufficient for our purposes, consider a J : [0, 1]r → R. Suppose
that we have an approximation in the cut norm of J in hand, namely J ′, and define the kernel
µ0(i, .) = δi and the r-graphon W0 = J−J ′. In this case |Qµ0(W,J)−Qµ0(W,J

′)| = ||J−J ′||22.
This 2-norm is not granted to be small in ε by any means.

In some special cases, for example if J is a d-dimensional metric or the array corresponding
to the AC, we are able to require a smaller upper bounds on the number of steps required
for the 1-norm approximation of J , than exponential in 1

ε
. By the aid of this fact we can

achieve good approximation of the optimal value of the QAP via sampling. Next we state
an application of Theorem 4.4 to the clustered QAP.

Lemma 5.7. Let J : [0, 1]r → R be a ν-clustered measurable function. Then there exists an

absolute constant c > 0 so that for every ε > 0, every r-array W , and k ≥ c log(ν(ε)ε)(ν(ε)r

ε
)4

so that
P (|Q(W,J)−Q(G(k,W ),G′(k, J))| ≥ ε||W ||∞||J ||∞) ≤ ε,

where G(k,W ) and G′(k, J) are generated by independent sampling.

Proof. Without loss of generality we may assume that ||J ||∞ ≤ 1. First we show that under
the cluster condition we can introduce a microcanonical ground state energy problem whose
optimum is close to Q(W,J), and the same holds for the sampled problem. Let ε > 0 be
arbitrary and J ′ be an approximating step function with q = ν(ε) steps. We may assume
that ||J ′||∞ ≤ 1 We set a = (a1, . . . , aq) to be the vector of the sizes of the steps of J ′, and
turn J ′ into a real r-array on [q] the natural way by associating to each class of the partition
of [0, 1] of J ′ a vertex of the vertex set [q] (indexes should be chosen with regard to a), and
set the entries of the r-array corresponding to the value of the respective step of J ′. We will
call the resulting r-array J ′′. From the definitions it follows that

Q(W,J ′) = Ea(W,J ′′)

for every r-graphon W . On the other hand we have that

|Q(W,J)−Q(W,J ′)| ≤ max
µ
|Qµ(W,J)−Qµ(W,J ′)|

= max
µ
|
∫

[0,1]r

(J − J ′)(j)
∫

[0,1]r

W (x)dµ(j1, x1) . . . dµ(jr, xr)dj1 . . . djr|

≤ max
µ

∫
[0,1]r

|(J − J ′)(j)|||W ||∞dj1 . . . djr

= ||J − J ′||1||W ||∞ ≤ ε||W ||∞.
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Now we turn to the sampled version of the optimization problem. First we gain control
over the difference of the QAPs, when we replace J by J ′. G(k,W ) is induced by the sample
U1, . . . , Uk, G′(k, J) by the independent Y1, . . . , Yk.

|Q(G(k,W ),G(k, J))−Q(G(k,W ),G(k, J ′))|
≤ max

ρ
|Qρ(G(k,W ),G(k, J))−Qρ(G(k,W ),G(k, J ′))|

= max
ρ

1

kr
|

k∑
i1,...,ir=1

(J − J ′)(Yi1 , . . . , Yir)|||W ||∞. (5.1)

We analyze the random sum on the right hand side of (5.1) by first upper bounding its
expectation.

1

kr
EY

∣∣∣∣∣
k∑

i1,...,ir=1

(J − J ′)(Yi1 , . . . , Yir)

∣∣∣∣∣
≤ r2

k
||J ||∞ + ||J ′||∞ + EY |(J − J ′)(Y1, . . . , Yr)| =

r2

k
+ ε ≤ 2ε

By the Azuma Hoeffding inequality the sum is also sufficiently small in probability.

P

(
1

kr

∣∣∣∣∣
k∑

i1,...,ir=1

(J − J ′)(Yi1 , . . . , Yir)

∣∣∣∣∣ ≥ 4ε

)
≤ exp(−ε2k/2) ≤ ε.

We obtain that

|Q(G(k,W ),G′(k, J))−Q(G(k,W ),G′(k, J ′))| ≤ 4ε||W ||∞

with probability at least 1 − ε, if k is such as in the statement of the lemma. Set b =
(b1, . . . , bq) to the probability distribution for that bi = 1

k

∑k
j=1 I{Yj∈Si}, where Si is the i’th

step of J ′ with λ(Si) = ai. Then we have that

Q(G(k,W ),G(k, J)) = Êb(G(k,W ), J ′′).

It follows from the Azuma-Hoeffding inequality that for each i ∈ [q] P (|ai − bi| > ε) ≤
2 exp(−2ε2k) so we have that |a− b|1 < ε with probability at least 1− ε. We can conclude
that with probability at least 1− 2ε

|Q(W,J)−Q(G(k,W ),G(k, J))| ≤ |Q(W,J)−Q(W,J ′)|
+ |Ea(W,J ′′)− Êb(G(k,W ), J ′′)|+ |Q(G(k,W ),G(k, J))−Q(G(k,W ),G(k, J ′))|
≤ 6ε||W ||∞ + |Ea(W,J ′′)− Êa(G(k,W ), J ′′)|.

By application of Corollary 5.4 the claim of the lemma is verified.
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Next we present the application of Lemma 5.7 to two special cases of QAP.

Corollary 5.8. The d-dimensional geometric QAP and the maximum acyclic subgraph prob-
lem are efficiently testable.

Proof. We start with the continuous version of the d-dimensional geometric QAP given by
the measurable function J : [0, 1]2 → R+. Note, that d refers to the dimension corresponding
to the embedding of the indices of J into an Lp a metric space, not the actual dimension of
J . We are free to assume that 0 ≤ J ≤ 1 simply by rescaling. There exists an embedding
ρ : [0, 1] → [0, 1]d, so that J(i, j) = ||ρ(i), ρ(j)||p for every (i, j) ∈ [0, 1]2. Fix ε > 0 and
consider the partition P ′ = (T1, . . . , Tβ) = ([0, 1

β
), [ 1

β
, 2
β
), . . . , [β−1

β
, 1]) of the unit interval into

β = d2
p√
d

ε
e classes. Define the partition P = (P1, . . . , Pq) of [0, 1] consisting of the classes

ρ−1(Ti1 × · · · × Tid) for each (i1, . . . , id) ∈ [β]r, where |P| = q = βd = 2ddd/p

εd
. We construct

the approximating step function J ′ by averaging J on the steps determined by the partition
classes of P . It remains to show that this indeed is a sufficient approximation in the L1-norm.

||J − J ′||1 =

∫
[0,1]2

|J(x)− J ′(x)|dx =

q∑
i,j=1

∫
Pi×Pj

|J(x)− J ′(x)|dx ≤
q∑
i,j

1

q2
ε = ε.

By Lemma 5.7 and Corollary 5.4 it follows that the continuous d-dimensional metric QAP
is O(log(1

ε
) 1
εrd+4 )-testable, and so is the discrete version of it.

Next we show that the AC is also efficiently testable given by the upper triangular
matrix J whose entries above the diagonal are 1. Fix ε > 0 and consider the partition
P = (P1, . . . , Pq) with q = 2

ε
, and set J ′ to 0 on every step Pi × Pj whenever i ≥ j, and to 1

otherwise. This function is indeed approximating J in the L1-norm.

||J − J ′||1 =

∫
[0,1]2

|J(x)− J ′(x)|dx =

q∑
i=1

∫
Pi×Pi

|J(x)− J ′(x)|dx ≤
q∑
i=1

1

2q2
= ε.

Again, by Lemma 5.7 and Corollary 5.4 it follows that the AC is O(log(1
ε
) 1
ε6

)-testable.

6 Further Research

Our framework based on exchangeability principles allows us to extend the notion of a limit
to the case of unbounded hypergraphs and efficient testability of ground state energies in
this setting. The notion of exchangeability is crucial here. The notion of efficient testability
in an unbounded case could be of independent interest, perhaps the results on ground state
energy carry through for the setting when the r-graphons (induced by r-graphs) are in an
Lp space for some p ≥ 1.

Another problem is to characterize more precisely the class of problems which are effi-
ciently parameter testable as opposed to the hard ones. Improving the bounds in 1

ε
for the

efficiently testable problems is a another important problem.
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