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Abstract. We design a fully polynomial time approximation scheme (FPTAS) for counting the
number of matchings (packings) in arbitrary 3-uniform hypergraphs of maximum degree three,
referred to as (3, 3)-hypergraphs. It is the first polynomial time approximation scheme for that
problem, which includes also, as a special case, the 3D Matching counting problem for 3-partite
(3, 3)-hypergraphs. The proof technique of this paper uses the general correlation decay tech-
nique and a new combinatorial analysis of the underlying structures of the intersection graphs.
The proof method could be also of independent interest.

1 Introduction

The computational status of approximate counting of matchings in hypergraphs
has been open for some time now, contrary to the existence of polynomial time
approximation schemes for graphs. The matching (packing) counting problems in
hypergraphs occur naturally in the higher dimensional free energy problems, like
in the monomer-trimer systems discussed, e.g, by Heilmann [8]. The correspond-
ing optimization versions of hypergraph matching problem relate also to various
allocations problems.

This paper aims at shedding some light on the approximation complexity of
that problem in 3-uniform hypergraphs of maximum vertex degree three (called
(3, 3)-hypergraphs or (3, 3)-graphs for short). This class of hypergraphs includes
also so-called 3D hypergraphs, that is, (3,3)-graphs that are 3-partite.

The status of an approximate counting of matchings in arbitrary (3, 3)-graphs
was left wide open among with other general problems for 3-, 4- and 5-uniform
hypergraphs in [10]. The recent results of [10] were based on the generalization
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of the canonical path method of Jerrum and Sinclair [9] applied to the classes of
k-hypergraphs without the structures called 3-combs.

In this paper we design the first fully polynomial time approximation scheme
(FPTAS) for arbitrary (3, 3)-graphs. The method of solution depends on the general
correlation decay technique and some new structural analysis of underlying inter-
sections graphs based on an extension of the classical claw-freeness notion. The
proof method used in the analysis of our algorithm could be also of independent
interest.

The paper is organized as follows. Section 2 contains some basic notions and
preparatory discussions. In Section 3 we formulate our main results and provide
the proofs. Finally, Section 4 is devoted to the summary and an outlook for the
future research. The Appendix contains a Mathematica expression used to obtain
a crucial estimate in Section 3.2.

2 Preliminaries

A hypergraph H = (V,E) is a finite set of vertices V together with a family E
of distinct, nonempty subsets of vertices called edges. In this paper we consider
k-uniform hypergraphs (called further k-graphs) in which, for a fixed k ≥ 2, each
edge is of size k. A matching in a hypergraph is a set (possibly empty) of disjoint
edges.

Counting matchings is a #P-complete problem already for graphs (k = 2) as
proved by Valiant [15]. In view of this hardness barrier, researchers turned to ap-
proximate counting, which initially has been accomplished via probabilistic tech-
niques.

Given a function C and a random variable Y (defined on some probability
space), and given two real numbers ε, δ > 0, we say that Y is an (ε, δ)-approximation
of C if P (|Y (x)− C(x)| ≥ εC(x)) ≤ δ. A fully polynomial randomized approxima-
tion scheme (FPRAS) for a function f on {0, 1}∗ is a randomized algorithm which,
for every triple (ε, δ, x), with ε > 0, δ > 0, and x ∈ {0, 1}∗, returns an (ε, δ)-
approximation Y of f(x) and runs in time polynomial in 1/ε, log(1/δ), and |x|.

In this paper we continue the previous investigations of the problem of count-
ing the number of matchings in hypergraphs and try to determine the status of this
problem for k-graphs with bounded degrees.

Let degH(v) be the degree of vertex v in a hypergraph H, that is, the number of
edges of H containing v. We denote by ∆(H) the maximum of degH(v) over all v
in H. We call a k-graph H a (k, r)-graph if ∆(H) ≤ r. Let #M(k, r) be the problem
of counting the number of matchings in (k, r)-graphs.

Our inspiration comes from new results (both positive and negative) that emerged
for approximate counting of the number of independent sets in graphs with bounded
degree and shed some light on the problem #M(k, r).

Let #IS(d) [#IS(≤ d)] be the problem of counting the number of all inde-
pendent sets in d-regular graphs [graphs of maximum degree bounded by d, that
is, (2, d)-graphs]. First, Luby and Vigoda [12] in 1997 established an FPRAS for
#IS(≤ 4). This was complemented later by the approximation hardness results
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for the higher degree instances by Dyer, Frieze and Jerrum [5]. The subsequent
progress has coincided with the revival of a deterministic technique – the spatial
correlation decay method – originated in the papers of Dobrushin [4] and Kelly
[11]. It resulted in constructing deterministic approximation schemes for counting
independent sets in several classes of graphs with degree and other restrictions, as
well as for counting matchings in graphs of bounded degree.

Definition 1. A fully polynomial time approximation scheme (FPTAS) for a function
f on {0, 1}∗ is a deterministic algorithm which for every pair (ε, x) with ε > 0, and
x ∈ {0, 1}∗, returns a number y(x) such that

|y(x)− f(x)| ≤ εf(x),

and runs in time polynomial in 1/ε, and |x|.

In 2007 Weitz [16] found an FPTAS for #IS(≤ 5), while, more recently, Sly
[13] and Sly and Sun [14] complemented Weitz’s result by proving the approxi-
mation hardness for #IS(6), that is, proving that unless NP=RP, there exists no
FPRAS (and thus, no FPTAS) for #IS(6). By applying two reductions: from #IS(6)
to #M(6, 2) (taking the dual hypergraph of a 6-regular graph), and from #M(k, 2)
to #IS(k) (taking the intersection graph of a (k, 2)-graph) for k = 3, 4, 5, we con-
clude that

(i) (unless NP=RP) there exists no FPRAS for #M(6, 2);
(ii) there is an FPTAS for #M(k, 2) with k ∈ {3, 4, 5}.

Note that the first reduction results, in fact, in a linear (6, 2)-graph, so the class
of hypergraphs in question is even narrower. (A hypergraph is called linear when
no two edges share more than one vertex.) On the other hand, by the same kind of
reduction it follows from a result of Greenhill [7] that exact counting of matchings
is #P-complete already in the class of linear (3, 2)-graphs.

Facts (i) and (ii) above imply that the only interesting cases for the positive
results are those for (k, d)-graphs with k = 3, 4, 5 and d ≥ 3, and thus, the smallest
one among them is that of (3, 3)-graphs. Our main result establishes an FPTAS for
counting the number of matchings in this class of hypergraphs.

3 Main Result and the Proof

The following theorem is the main result of this paper.

Theorem 2. There exists an algorithm called CountMatchings given in Sec. 3.2
which provides an FPTAS for #M(3, 3) and runs in time O

(
n2(n/ε)log50/49 144

)
.

Remark 3. In fact, many other contributors to the field considered the weighted
case (with fugacity λ), that is they considered the partition function ZM(H, λ) =∑

M λ|M |,where the sum runs over all matchings inH. In this paper we concentrate
on the unweighted case (λ = 1) in which the above polynomial reduces to a single
value, the number of all matchings in H. However, with basically the same proof
we could have constructed an FPTAS for calculating ZM(H,λ) for any constant
λ > 0 (and any (3, 3)-graph H).
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The intersection graph of a hypergraph H is the graph G = L(H) with vertex
set V (G) = E(H) and edge set E(G) consisting of all intersecting pairs of edges of
H. When H is a graph, the intersection graph L(H) is called the line graph of H.
Graphs which are line graphs of some graphs are characterized by 9 forbidden
induced subgraphs, one of which is the claw, an induced copy of K1,3. There is
no similar characterization for intersection graphs of k-graphs. Still, it is easy to
observe that for any k-graph H, its intersection graph L(H) does not contain an
induced copy of K1,k+1. We shall call such graphs (k + 1)-claw-free.

Our proof of Theorem 2 begins with an obvious observation that counting the
number of matchings in a hypergraph H is equivalent to counting the number of
independent sets in the intersection graph G = L(H). More precisely, let ZM(H) =
ZM(H, 1) be the number of matchings in a hypergraph H and, for a graph G, let
ZI(G) be the number of independent sets in G. (Note that both quantities count
the empty set in.) Then ZM(H) = ZI(L(H)).

To approximately count the number of independent sets in a graph G = L(H)
for a (3, 3)-graph H, we apply some of the ideas from [2] (the preliminary ver-
sion of this paper appeared in [1]) and [6]. In [2] two new instances of FPTAS
were constructed, both based on the spatial correlation decay method. First, for
#M(2, d) with any given d. Then, still in [2], the authors refined their approach
to yield an FPTAS for counting independent sets in claw-free graphs of bounded
clique number which contain so called simplicial cliques. The last restriction has
been removed by an ingenious trick in [6].

Papers [2, 6] inspired us to seek also for adequate methods for (3, 3)-graphs.
Indeed, for every (3, 3)-graph H its intersection graph G = L(H) is 4-claw-free
and has ∆(G) ≤ 6. This turned out to be the right approach, as we deduced our
Theorem 2 from a technical lemma (Lemma 4 below) which constructs an FPTAS
for the number of independent sets in K1,4-free graphs G with ∆(G) ≤ 6 and an
additional property stemming from their being intersection graphs of (3, 3)-graphs.

3.1 Proof of Theorem 2 – Sketch and Preliminaries

We deduce Theorem 2 from a technical lemma. The assumptions of that lemma
reflect some properties of the intersection graphs of (3, 3)-graphs.

Lemma 4. There exists an FPTAS for the problem of counting independent sets in
every 4-claw-free graph with maximum degree at most 6 and such that the neighbor-
hood of every vertex of degree d ≥ 5 induces a subgraph with at most 6 − d isolated
vertices.

Proof (of Theorem 2). Given a (3, 3)-graph H, consider its intersection graph G.
Then G is 4-claw-free, has maximum degree at most 6 and every vertex neigh-
borhood of size d ≥ 5 must span in G a matching of size bd/2c. This means that
Lemma 4 applies to G and there is an FPTAS for counting independent sets of G
which is the same as counting matchings in H. ut

It remains to prove Lemma 4. We begin with underlining some properties of 4-
claw-free graphs which are relevant for our method. First, we introduce the notion
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of a simplicial 2-clique which is a generalization of a simplicial clique introduced in
[3] and utilized in [2]. Throughout we assume notation A \ B for set differences
and, for A ⊂ V (G), we write G−A for the graph operation of deleting from G all
vertices belonging to A. In other words, G− A = G[V (G) \ A].

Definition 5. A set K ⊆ V (G) is a 2-clique if α(G[K]) ≤ 2. A 2-clique is simplicial
if for every v ∈ K, NG(v) \K is a 2-clique in G−K.

For us a crucial property of simplicial 2-cliques is that if G is a connected graph
containing a simplicial 2-clique K then it is easy to find another simplicial 2-clique
in the induced subgraph G−K, and consequently, the whole vertex set of G can be
partitioned into blocks which are simplicial 2-cliques in suitable nested sequence
of induced subgraphs of G (see Claim 9).

However, in the proof of Lemma 4 we shall use a special class of 2-cliques.

Definition 6. A 2-clique K in a graph G is called a block if |K| ≤ 4 and δ(G[K]) ≥ 1
whenever |K| = 4. A block K is simplicial if for every v ∈ K the set NG(v) \K is a
block in G−K.

Next, we state a trivial but useful observation which follows straight from the
above definition. (We consider the empty set as a block too.)

Fact 7. If K is a (simplicial) block in G then for every V ′ ⊆ V (G) the set K ∩ V ′ is
a (simplicial) block in the induced subgraph G[V ′] of G.

Let a graph G satisfy the assumptions of Lemma 4. The next claim provides a
vital, “self-reproducing” property of blocks.

Claim 8. If K is a simplicial block in G, then for every v ∈ K the set NG(v) \K is a
simplicial block in G−K.

Proof. Set Kv := NG(v) \ K for convenience. By definition of K, Kv is a block. It
remains to show thatKv is simplicial. Let u ∈ Kv and letKu = NG(u)\(K∪NG(v)).
Suppose there is an independent set I in G[Ku] of size |I| = 3. Then u, v and the
vertices of I would form an induced K1,4 in G with u in the center. As this is a
contradiction, we conclude that Ku is a 2-clique.

To show that Ku is indeed a block, note first that, by the assumptions that
∆(G) ≤ 6, we have |Ku| ≤ 5. However, if |Ku| = 5 then v would be an isolated
vertex in G[NG(u)] – a contradiction with the assumption on the structure of the
neighborhoods in G. For the same reason, if |Ku| = 4 then regardless of the degree
of u in G (which might be 5 or 6) there can be no isolated vertex in G[Ku]. ut

Our next claim asserts that once there is a block in G, one can find a suit-
able partition of V (G) into sets which are blocks in a nested sequence of induced
subgraphs of G defined by deleting these sets one after another.

Claim 9. Let K be a simplicial block in G. If, in addition, G is connected then there
exists a partition V (G) = K1 ∪ · · ·Km such that K1 = K and for every i = 2, . . . ,m,
Ki is a nonempty, simplicial block in Gi := G−

⋃i−1
j=1Kj.
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Proof. Suppose we have already constructed disjoint sets K1 ∪ · · · ∪Ks, for some
s ≥ 1, such that K1 = K, for every i = 2, . . . , s, Ki is a nonempty, simplicial block
in Gi := G −

⋃i−1
j=1Kj, and that Rs := V (G) \

⋃s
i=1Ks 6= ∅. Since G is connected,

there is an edge between a vertex in Rs and a vertex v ∈ Ki for some 1 ≤ i ≤ s.
Since Ki is a simplicial block in Gi, by Fact 7, it is also simplicial in its subgraph
Gi[V

′], where V ′ = Ki ∪ Rs, that is the subgraph of Gi obtained by deleting all
vertices of Ki+1 ∪ · · · ∪Ks−1. Now apply Claim 8 to Gi[V

′], Ki, and v, to conclude
that NG(v) ∩Rs is a simplicial block in Gs+1 := G−

⋃s
i=1Ki. ut

Let K1, K2, . . . , Km be as in Claim 9. Then,

ZI(G) =
ZI(G1)

ZI(G2)
· ZI(G2)

ZI(G3)
· . . . · ZI(Gi)

ZI(Gi+1)
· . . . · ZI(Gm)

ZI(Gm+1)
, (1)

where Gm+1 = ∅ and ZI(Gm+1) = 1. Observe that for each i, Gi+1 = Gi −Ki and
the reciprocal of each quotient in (1) is precisely the probability

PGi(Ki ∩ I = ∅) = ZI(Gi −Ki)

ZI(Gi)
, (2)

where I is an independent set of Gi chosen uniformly at random. In view of this,
the main step in building an FPTAS for ZI(G) will be to approximate the probability
PG(Ki ∩ I = ∅) within 1± ε

n
(see Section 3.2 and Algorithm 2 therein).

But what if G is disconnected or does not contain a simplicial block to start
with? First, if G =

⋃c
i=1Gi consists of c connected components G1, . . . , Gc, then,

clearly

ZI(G) =
c∏
i=1

ZI(Gi) (3)

and the problem reduces to that for connected graphs.
As for the second obstacle, Fadnavis [6] proposed a very clever trick to cope

with it. Let G be a connected graph satisfying the assumptions of Lemma 4 and let
v ∈ V (G) be such that G− v is connected. By considering the fate of vertex v, we
obtain a recurrence

ZI(G) = ZI(G− v) + ZI(G
v), (4)

where Gv = G − NG[v] and NG[v] = NG(v) ∪ {v}. Let Gv =
⋃c
i=1G

v
i be the parti-

tion of Gv into its connected components. For each i let ui ∈ NG(v) be such that
NG(ui) ∩ V (Gv

i ) 6= ∅. Owing to the connectedness of G− v, a vertex ui must exist.
Set Ki = NG(ui) ∩ V (Gv

i ).

Claim 10. The set Ki is a simplicial block in Gv
i .

Proof. The proof is quite similar to that of Claim 8. We first prove that Ki is a
block. Suppose there is an independent set I in G[Ki] of size |I| = 3. Then ui, v
and the vertices of I would form an induced K1,4 in G with ui in the center. As
this is a contradiction, we conclude that Ki is a 2-clique. To prove that Ki is, in
fact, a block, notice that there is no edge between v and Ki. Thus, we cannot have
|Ki| = 5 because then v would be an isolated vertex in G[N(ui)] – a contradiction
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with the assumption on G. If, however, |Ki| = 5 then v is the (only) isolated vertex
in G[N(ui)] and, consequently, δ(G[Ki]) ≥ 1.

It remains to show that the block Ki is simplicial, that is, for every w ∈ Ki,
the set NGvi

(w) \ Ki is a block in Gv
i − Ki. This, however, can be proved mutatis

mutandis as in the proof of Claim 8 ut

In view of Claim 10, to the second term of recurrence (4) one can apply formula
(3) and then each term ZI(G

v
i ) can be approximated based on (1) and (2).

3.2 The Remainder of the Proof of Lemma 4

Hence, it remains to approximate PG(K ∩ I = ∅) = ZI(G−K)
Z(G)

within 1 ± ε
n
, where

K is a simplicial block in G. We set Nv := NG(v) and formulate the following
recurrence relation by considering how an independent set may intersect K:

ZI(G) = ZI(G−K) +
∑
v∈K

ZI(G− (Nv ∪K)) +
1

2

∑
uv/∈G[K]

ZI(G− (Nu ∪Nv ∪K))

or equivalently, after dividing sidewise by ZI(G−K),

ZI(G)

ZI(G−K)
= 1 +

∑
v∈K

ZI(G− (Nv ∪K))

ZI(G−K)
+

1

2

∑
uv/∈G[K]

ZI(G− (Nu ∪Nv ∪K))

ZI(G−K)
.

Here and throughout the inner summation ranges over all ordered pairs of dis-
tinct vertices of K such that {u, v} /∈ G[K]. At this point, in view of symmetry, it
seems redundant to consider ordered pairs (and consequently have the factor of 1

2

in front of the sum), but we break the symmetry right now as we further observe
that

ZI(G− (Nu ∪Nv ∪K))

ZI(G−K)
=
ZI(G− (Nu ∪Nv ∪K))

ZI(G− (Nv ∪K))
· ZI(G− (Nv ∪K))

ZI(G−K)
.

By Claim 8, Nv \ K is a simplicial block in G − K. We need to show that,
similarly, Nu \ (Nv ∪K) is a simplicial block in G− (Nv ∪K).

Claim 11. Let K be a simplicial block in G and let u, v ∈ K be such that u 6= v and
uv /∈ G[K]. Further, let H := G − (NG(v) ∪K). Then NH(u) is a simplicial block in
H.

Proof. By Claim 8, the set NG(u) \K is a simplicial block in G −K. Apply Fact 7
to NG(u) \K and G−K with V ′ = V (H). ut

Let

ΠG(K) := P(K ∩ I = ∅) = ZI(G−K)

ZI(G)
,
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where I is a random independent set of G. Finally, setting Kv := Nv \ K and
Kuv := Nu \ (Nv ∪ K), and rewriting G − (Nv ∪ K) = G − K − Kv, we get a
recurrence for the probabilities:

Π−1G (K) = 1 +
∑
v∈K

ΠG−K(Kv)

1 +
1

2

∑
uv/∈G[K]

ΠG−K−Kv(Kuv)

 .

This recurrence, in principle, allows one to compute ΠG(K) exactly, but only
in an exponential number of steps. Instead, we will approximate it by a function
ΦG(K, t), also defined recursively, which “mimics” ΠG(K) but has a built-in time
counter t.

Definition 12. For every graph G, every simplicial block K in G and an integer t ∈
Z+, the function ΦG(K, t) is defined recursively as follows: ΦG(K, 0) = ΦG(K, 1) = 1
as well as ΦG(∅, t) = 1, while for t ≥ 2 and K 6= ∅

Φ−1G (K, t) = 1 +
∑
v∈K

ΦG−K(Kv, t− 1)

1 +
1

2

∑
uv/∈G[K]

ΦG−K−Kv(Kuv, t− 2)

 .

Now we are ready to state the algorithm CountMatchings for computing ZM(H)
for any connected (3, 3)-graph H and its subroutine CountIS for computing ZI(G)
in a subgraph of G = L(H) containing a simplicial block K.

Algorithm 1 CountMatchings(H, t)
1: G := L(H).
2: ZM := 1, F := G.
3: while F 6= ∅ do
4: Pick v ∈ V (F ) s.t. F − v is connected.
5: F v := F −NF [v]
6: If F v = ∅ then ZM = ZM + 1 and go to Line 3.
7: F v =

⋃c
i=1 F

v
i , where F vi are connected components of F v.

8: for i := 1 to c do
9: Find Ki as in Claim 10

10: end for
11: ZM := ZM +

∏c
i=1CountIS(F vi ,Ki, t)

12: F := F − v
13: end while
14: Return ZM

We will show that already for t = Θ(log n), when Φ can be easily computed in
polynomial time, the two functions become close to each other.

Note that both quantities, ΠG(K) and ΦG(K, t), fall into the interval [1
9
, 1]. The

lower bound is due to the fact that a block has at most 4 vertices and each of them
has degree at most 2 in Gc, so that the total number of terms in the denominator
is at most nine, five of them do not exceed 1, while eight of them do not exceed
1
2
. Our goal is to approximate ΠG(K) by ΦG(K, t), for a suitably chosen t, within
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Algorithm 2 CountIS(G,K, t)
1: Let V (G) =

⋃m
i=1 Ki be a partition of V (G) as in Claim 9 with K1 = K.

2: ZI := 1, F := G
3: for i = 1 to m do
4: ZI :=

ZI
ΦF (Ki,t)

5: F := F −Ki

6: end for
7: Return ZI

the multiplicative factor of 1± ε/n. In view of the above lower bound, it suffices to
show that |ΠG(K)− ΦG(K, t)| ≤ ε

9n
.

To achieve this goal, we will use the correlation decay technique which boils
down to establishing a recursive bound on the above difference (cf. [2]). The
success of this method depends on the right choice of a pair of functions g and h,
with g : [0, 1] → <, such that they are inverses of each other, that is, g ◦ h ≡ 1.
Then we define a function fK of |K|+2e(Gc[K]) variables, one for each vertex and
each (ordered) non-edge of G[K], as follows. Let z = (z1, . . . , z|K|, zuv : uv /∈ G[K])
be a vector of variables of that function. For ease of notation, we denote the set of
all indices of the coordinates of function fK by J , that is, we set J := K ∪ {(u, v) :
{u, v} ∈ G[K]}. Then

fK(z) := f(z) = g

1 +
∑
v∈K

h(zv)

1 +
1

2

∑
uv/∈G[K]

h(zuv)


−1 .

To understand the reason for this set-up, put

x := g(ΠG(K)) xv := g(ΠG−K(Kv)) xuv := g(ΠG−K−Kv(Kuv)),

and, correspondingly,

y := g(ΦG(K, t)) yv := g(ΦG−K(Kv, t− 1)) yuv := g(ΦG−K−Kv(Kuv, t− 2)).

Then, f(x) = x and f(y) = y, and so the difference we are after can be expressed
as |x−y| = |f(x)−f(y)|. Thus, we are in position to apply the Mean Value Theorem
to f and conclude that there exists α ∈ [0, 1] such that, setting zα = αx+ (1−α)y,

|f(x)− f(y)| = |∇f(zα)(x− y)| ≤ |∇f(zα)| ×max
κ∈J
|xκ − yκ|.

It remains to bound maxz |∇f(z)| from above, uniformly by a constant γ < 1.
Then, after iterating at most t but at least t/2 times, we will arrive at a triple
(G′, K ′, t′), where G′ is an induced subgraph of G, K ′ is a block in G′, and t′ ∈
{0, 1}. At this point, setting µg := |g(1)|+ |maxs g(s))|, we will obtain the ultimate
bound

|x− y| ≤ γt/2 × |g(ΠG′(K
′))− g(1)| ≤ γt/2 × µg ≤

ε

9n
,

for
t ≥ 2 log((9µgn)/ε)/ log(1/γ). (5)
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In [2], to estimate |∇f(z)| for a similar function f , the authors chose g(s) =
log s and h(s) = es. This choice, however, does not work for us. Instead, we set
g(s) = s1/4 and h(s) = s4. Then, µg = 2 and

|∇f(z)| ≤
∑
κ∈J

∣∣∣∣∣∂f(z)∂zκ

∣∣∣∣∣ =
∑
v∈K

{
z3v +

1
2

∑
uv/∈G[K]

(z3vz
4
uv + z4vz

3
uv)

}
{
1 +

∑
v∈K

z4v

(
1 + 1

2

∑
uv/∈G[K]

z4uv

)}5/4
.

Observe that fK depends only on the isomorphism type of G[K], a graph on
up to 4 vertices, with no independent set of size 3, and with no isolated vertex
when |K| = 4. Let us call all these graphs block graphs. One block graph is given
in Figure 1 below.

z24

z1

z4

z2

z3

z14 z23

z13

Fig. 1. The essential block graph.

In a sense we just need to consider this one block graph. Indeed, the comple-
ment of every block graph is contained in the complement of the block graph in
Figure 1. Hence, it suffices to maximize |∇f(z)| just for this graph. Our computa-
tional task is, therefore, to bound from above

F (z) = ‖∇(z)‖1 =

1

4

(
1 + z41 + z42 + z43 + z44+

1

2

(
z414
(
z41 + z44

)
+ z413

(
z41 + z43

)
+ z423

(
z42 + z43

)
+ z424

(
z42 + z44

)))−5/4

×(
2z31
(
2 + z414 + z413

)
+ 2z32

(
2 + z423 + z424

)
+ 2z33

(
2 + z413 + z423

)
+ 2z34

(
2 + z414 + z424

)
+

2z314
(
z41 + z44

)
+ 2z313

(
z41 + z43

)
+ 2z323

(
z42 + z43

)
+ 2z324

(
z42 + z44

))
.

One can show (using, e.g., Mathematica) that F (z) < 0.971 for 0 ≤ zi ≤ 1 and
0 ≤ zij ≤ 1. Thus, we have (5) with µg = 2 and, say, γ = 0.98 = 49

50
. Summariz-

ing, the running time of computing ΦG(K, t) in Step 4 of Algorithm 2 is 12t since
there at most 12 expressions to compute in each step of the recurrence relation
(see Def. 12). Also, CountIS takes at most |V (F v

i )|12t steps and hence, Line 11 of
CountMatchings takes n12t steps and is invoked at most n times. Consequently,
with t = 2dlog((18n)/ε)/ log(50/49)e we get the running time of our algorithm of
order O

(
n2(n/ε)log50/49 144

)
.
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4 Summary, Discussion, and Further Research

The main result of this paper (Thm. 2) establishes an FPTAS for the problem
#M(3, 3) of counting the number of matchings in a (3, 3)-graph. A reformulation
of Theorem 2 in terms of graphs yields an FPTAS for the problem of counting in-
dependent sets in every graph which is the intersection graph of a (3, 3)-graph. As
mentioned earlier, every intersection graph of a (3, 3)-graph is 4-claw-free. More-
over, its maximum degree is at most six. We wonder if there exists an FPTAS for the
problem of counting independent sets in every 4-claw-free graph with maximum
degree at most 6. Lemma 4 falls short of proving that. The missing part is due to
our inability to repeat the above estimates for 2-cliques of size five.

In an earlier paper [10] three of the authors have found an FPRAS for the
number of matchings in k-graphs without 3-combs. As their intersection graphs
are claw-free, it follows from the above mentioned result on independent sets in
[2, 6] that there is also an FPTAS for the number of matchings in (k, d)-graphs
without 3-combs, for any fixed d. In view of this conclusion and Theorem 2, we
raise the question if for all k and d there is an FPTAS (or at least FPRAS) for the
problem #M(k, d). The first open instance is that of (3, 4)-graphs. For k ≥ 4, to
avoid recurrences of depth k − 1 ≥ 3, as an intermediate step, one could first
consider the restriction of the class of (k, d)-graphs to those without a 4-comb,
that is, to those whose intersection graphs are 4-claw-free. Here, the first open
instance is that of (4, 3)-graphs without 4-combs. In general, it would be also very
interesting to elucidate the status of the problem for arbitrary k-graphs for k = 3, 4
and 5, or for some generic subclasses of them.
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Appendix: Mathematica expressions

First we define F (z) function:

F[z1_, z2_, z3_, z4_, z14_, z13_, z23_, z24_]:=\

1/4(1+z1^4+z2^4+z3^4+z4^4+\

1/2(z14^4(z1^4+z4^4)+z13^4(z1^4+z3^4)+\

z23^4(z2^4+z3^4)+z24^4(z2^4+z4^4)))^(-5/4)\

(2z1^3(2+z14^4+z13^4)+2z2^3(2+z23^4+z24^4)+\

2z3^3(2+z13^4+z23^4)+2z4^3(2+z14^4+z24^4)+\

2z14^3(z1^4+z4^4)+2z13^3(z1^4+z3^4)+\

2z23^3(z2^4+z3^4)+2z24^3(z2^4+z4^4))

Next we find the absolute maximum:

NMaximize[{F[z1, z2, z3, z4, z14, z13, z23, z24],\

0<=z1<=1 && 0<=z2<=1 && 0<=z3<=1 && 0<=z4<=1 &&

0<=z14<=1 && 0<=z13<=1 && 0<=z23<=1 && 0<=z24<=1},\

{z1, z2, z3, z4, z14, z13, z23, z24}]

obtaining that
F (z) ≤ F (ζ, ζ, ζ, ζ, 1, 1, 1, 1) ∼ 0.970247,

where ζ ∼ 0.695347.


