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Abstract: In this survey paper we will present a number of core algorithmic questions 

concerning several transitive reduction problems on network that have applications in 

network synthesis and analysis involving cellular processes. Our starting point will be the 

so-called minimum equivalent digraph problem, a classic computational problem in 

combinatorial algorithms. We will subsequently consider a few non-trivial extensions or 

generalizations of this problem motivated by applications in systems biology. We will then 

discuss the applications of these algorithmic methodologies in the context of three major 

biological research questions: synthesizing and simplifying signal transduction networks, 

analyzing disease networks, and measuring redundancy of biological networks. 
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1. Introduction 

Minimum equivalent digraph is a classical computational problem (cf. [1]) with several recent 

extensions motivated by applications in social sciences and systems biology. A formal definition of the 

basic equivalent digraph problem is as follows.   

 Problem name: Minimum equivalent digraph (MIN-ED) 

 Input: a directed graph (digraph) G=(V,E). 

Definition: for a digraph (V,E) the transitive closure of E is the relation 
E

  on V V defined as 

  contains a path from  to 
E

i j i ju u E u u   

Valid solution: A  E such that 
E

 is equal to 
A

. 
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Objective: minimize |A|. 

A complimentary problem is the Max-Ed problem whose objective is to maximize | E \ A |. Even 

though the complexity of finding an exact solution is the same for both MIN-ED and MAX-ED, the same 

may not necessarily be true for their approximate solutions (in the same manner as for node cover and 

independent set problems for general graphs [2]). Skipping the condition A  E in the definition of 

MIN-ED (or MAX-ED) yields the so-called transitive reduction (TR) problem which was solved in 

polynomial-time by Aho, Garey and Ullman [3]. See Figure 1 for an illustration of valid solutions of 

MIN-ED. 

Figure 1. Illustrations of two valid solutions of MIN-ED on an input graph: (a) The original 

graph G=(V,E), (b) and (c) Two valid solutions (V,A1) and (V,A2) of MIN-ED for G. The 

solution in (c) is optimal since it has fewer edges.  

      

1.1. Three Extensions Of The Basic Version  

In this subsection, we discuss three non-trivial extensions of the basic problem that have been 

formulated based on their applications. We will review in more details the applications of the basic 

version as well as the other extensions separately in Section 4. 

1.1.1. MIN-ED And MAX-ED With Critical Edges 

This extension is the same as MIN-ED or MAX-ED except that a given subset D of edges must be 

present in any valid solution. Formally, we are given D  E as part of input and the condition “A  E” 

is changed to D  A  E. Let us denote this version as critical-MIN-ED and critical-MAX-ED, as 

appropriate. As we will see subsequently, this extension is quite non-trivial if one desires a good 

approximate solution. 

1.1.2. Weighted Version Of MIN-ED Or MAX-ED 

In this version, each edge has a weight (positive real number) and an optimal valid solution must have 

the minimum possible value of total edge weights. Formally, we have a weight function w : E 
+
 

and the goal is either to minimize eA w(e) or to maximize eE w(e)  eA w(e). Let us denote this 

version as weighted-MIN-ED or weighted-MAX-ED, as appropriate. Obviously, the basic version is a 

special case of this weighted version when every edge weight is 1. 

1.1.3. Binary Transitive Reduction (BTR) 
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This extension is a generalization of the basic version with critical edges and is described as follows 

[4-7]. We have an edge-labeling function ℓ : E → {1,1}. The label or parity of a path P = (u0,u1,,uk) 

is derived from the labels of its edges and given by ℓ(P) = i ℓ(ui-1,ui). The transitive closure relation is 

now generalized as 
( )


E

= { (ui,uj,q) :  path P using edges in E from ui to uj and ℓ(P) = q }. Then, A is 

a binary transitive reduction of E with a required subset D if D  A  E and 
( )


A

= 
( )


E

. Obviously, the 

basic version with critical edges is a special case of BTR when every edge label is 1. There are two 

(maximization and minimization) objective functions corresponding to the two generalizations of the 

basic version MIN-ED and MAX-ED; they will be denoted by MIN-BTR and MAX-BTR, respectively. We 

will use the notation ui 

,


p E

uj to indicate a path from node ui to node uj of parity p{1,1}. 

The relationships between various versions of the basic equivalent digraph problem are as follows:  

MIN-ED ˂ Weighted-MIN-ED 

MAX-ED ˂ Weighted-MAX-ED 

MIN-ED ˂ critical-MIN-ED ˂ MIN-BTR 

MAX-ED ˂ critical-MAX-ED ˂ MAX-BTR 

where A ˂ B means problem A is a special case of problem B. The relationships between the problem 

Weighted-MIN-ED and the problems Min-Ed, critical-Min-Ed and Min-Btr (and, similarly between the 

problem Weighted-MAX-ED and the problems Max-Ed, critical-Max-Ed and Max-Btr) are not 

completely known, though it is possible to design approximation algorithms for critical-MIN-ED and 

MIN-BTR based on approximation algorithms for Min-Ed and Weighted-Min-Ed. 

We review the following standard definitions in approximation algorithms theory. A -approximate 

solution (or simply a -approximation) of a minimization (respectively, maximization) problem is a 

polynomial-time solution with an objective value no smaller than (respectively, no larger than)  times 

the value of the optimum; an algorithm of performance or approximation ratio  produces an -

approximate solution. A problem is APX-hard if there exists a  > 1 such that no polynomial-time 

algorithm has an approximation ratio of  unless P=NP. The notation OPT(G) (or simply OPT when G 

is clear from the context) will always denote the objective value of an optimal solution for the problem 

under consideration. We assume that the reader is familiar with the basic concepts of design and 

analysis of algorithms found in graduate level algorithms textbooks such as [2,8], and basic concepts 

of computational biology found in standard textbooks such as [9,10]. 

2. Summary Of Known Algorithmic and Inapproximability Results 

In this section, we briefly review known algorithmic and inapproximability results for the various 

equivalent digraph and transitive reduction problems defined in the previous section, leaving a more 

detailed description of algorithmic techniques used to obtain these results in the next section. 



 

 

4 

The algorithmic research work on MIN-ED was initiated by Moyles and Thomson [1] who described 

an efficient polynomial-time reduction of this problem for an arbitrary graph to that for a strongly 

connected graph, followed by an exact but exponential time algorithm for strongly connected graphs. 

Subsequently, an approximation algorithm for MIN-ED was detailed by Khuller, Raghavachari and 

Young [11] with an approximation ratio of 
2 1

6 36




 
  

 
  1.617+  (for any constant  > 0), which 

was improved to an approximation algorithm with an approximation ratio of 3
2  independently by 

Vetta [12] and by Berman, DasGupta and Karpinski [13]. Except [13], none of these approximation 

algorithms will generalize directly to critical-MIN-ED with the same approximation ratio. The only 

non-trivial approximation algorithm known for either MAX-ED or critical-MAX-ED is a 2-

approximation algorithm described in [13]. 

For weighted-MIN-ED, Frederickson and JàJà [14] designed a 2-approximation algorithm using an 

algorithm for minimum cost rooted arborescence due to Edmonds [15] and Karp [16].  Basically, it 

suffices to find a minimum cost in- arborescence and out-arborescence in respect to an arbitrary root 

node v  V and take the union of all the edges in these two arborescences as the approximate solution. 

Albert et al. [4] showed how to convert any algorithm for MIN-ED with an approximation ratio  to an 

algorithm for critical-MIN-ED with an approximation ratio of 23


 .  They also provided a 2-

approximation for MIN-BTR, but in fact minor modification of their method and analysis as outlined in 

[18] yields a 5
3 -approximation. Other heuristics for these problems were investigated in [5,6] but none 

of these heuristics guarantees a better approximation ratio. 

On the inapproximability side, Papadimitriou [17] left it as an exercise to show that MIN-ED is NP-

hard. Subsequently, Khuller, Raghavachari and Young [11] provided a formal proof of both NP-

hardness and APX-hardness of MIN-ED for arbitrary graphs. Motivated by their cycle contraction 

method in [11], they were interested in the complexity of the problem when there is an upper bound  

on the length of any cycle in the input graph. In [18] the authors showed that MIN-ED can be solved in 

polynomial time if =3, MIN-ED is NP-hard if =5, and MIN-ED is APX-hard if   17. [13] improved 

the APX-hardness result to show that both MIN-ED and MAX-ED are APX-hard even when   5. The 

exact complexity of both MIN-ED and MAX-ED when =4 is still unresolved. 

3. Review Of A Few Algorithmic Techniques Used For Transitive Reduction Problems  

In this section, we review a few key algorithmic techniques that have been used in the literature to 

investigate algorithmic complexities of various versions of the transitive reduction problem. Our goal 

is not provide every technical detail involving these methods, but rather to bring our salient features of 

these techniques in a way that may be understood by the practitioners as well. 

3.1. From General Graphs To Strongly Connected Graphs 

Recall that a digraph (V,E) is strongly connected if and only if, for every pair of nodes ui and uj, both 

the paths 
E

i ju u and 
E

j iu u exist. A reduction that was originally suggested in [1] and have been 

implicit in all subsequent works is the assumption that an -approximation algorithm for critical-MIN-



 

 

5 

ED and critical-MAX-ED when the given graph is strongly connected also implies an -approximation 

algorithm for the same problem on arbitrary digraphs. To understand why this is true, we first note 

that all these four problems can be solved easily in polynomial time using the following greedy 

approach if the input graph G=(V,E) is a directed acyclic graph (DAG) with D  E as the set of 

required edges: 

Compute a topological ordering u1,u2,  ,un of the nodes of G   (* thus, if (ui,uj)E then i < j *) 

E’ = E ; A =   

for i = n, n-1, n-2,  , 1 do  

for j = n, n-1, n-2,  , i +1 do 

 if  (ui,uj)  E then  

  if (ui,uj)  D then add the edge (ui,uj) to A 

      else if the path 
 \ { , }E u ui j

i ju u does not exist then add the edge (ui,uj) to A 

 Return (V,A) as the solution 

It is easy to implement the above algorithm to run in O(|V|+|E|) time. Now, suppose that the input 

graph G is not a DAG and consider the strong component graph G’=(V’,E’) of G:  

   V’ = { C | C is a strongly connected component of G } 

   E’ = { (C,C’) | C.C’ V’ and (ui,uj)  E for some ui  C and uj  C’ } 

It is easy to see that G’ is a DAG and can be found in O(|V|+|E|) time [8]. Let A’ be the solution of our 

problem on G’. Suppose that we have -approximation algorithm for critical-MIN-ED or critical-MAX-

ED on each strongly connected component of G. Then, the union of the edges in this -approximation 

for every strongly connected component of G together with the edges in A’ provide an -

approximation for the entire graph G. 

For MIN-BTR or MAX-BTR Albert et al. [4] provides a more complex reduction to show that an -

approximation algorithm for strongly connected graphs also implies an -approximation algorithm for 

arbitrary digraphs. To achieve this, each strongly connected component is replaced a graph with 

constantly many edges and nodes (called “gadget” in [4]) and then these graphs are connected 

appropriately such that the resulting graph is a DAG and an -approximation for the entire graph can be 

recovered using an exact optimal solution of the DAG and -approximations of the strongly connected 

components. 

Thus, for the remainder of this section, we assume without loss of generality that the input graph G is 

strongly connected. 

3.2. The Cycle Contraction Method [11] 
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Consider an input graph G=(V,E) for the MIN-ED problem and suppose that G has a directed 

Hamiltonian cycle, i.e., a (directed) cycle that contains every node exactly once. Then clearly the edges 

in this cycle constitute an optimal solution of |V| edges. This intuition suggests a general strategy of 

repeatedly finding a longest cycle in the given graph, selecting the edges in this cycle and modifying 

the graph to reflect the selection of edges until we reach a valid solution. 

Figure 2. Illustration of a cycle contraction: (a) shows the original graph and (b) shows the 

graph after the cycle u1,u2,u3,u4,u5,u6,u1 has been contracted. 

           

However, finding a directed Hamiltonian cycle or the longest cycle is in general NP-hard [2]. To 

circumvent the NP-hardness issue, Khuller, Raghavachari and Young in [11] designed the following 

“cycle contraction” approach. Contraction of an edge (vi,vj) is nothing but the act of merging the two 

nodes vi and vj into a new single node vij and deleting any resulting self-loops or multi-edges. Similarly, 

contraction of a cycle is defined as the contraction of every edge of the cycle; see Figure 2 for an 

illustration. Note that if c is a constant then one can easily check in polynomial time if a graph has a 

cycle of at least c edges. The algorithm, parameterized by a constant c > 3 to be chosen by the user, 

now proceeds as follows: 

for i = c, c1,  ,4 do 

while (the graph contains a cycle of at least i edges) do 

Find a cycle C of at least i edges  

Select the edges in C and contract C 

  endwhile 

 endfor 

(* now the graph contains no cycle of more than 3 edges *) 

Solve MIN-ED on the reduced graph exactly using the algorithm in [18] and select the edges in 

this exact solution 
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It was shown in [11] that the above algorithm for MIN-ED returns a valid solution containing y edges 

where 
2 1 1 1

 OPT(G)  1.617  OPT(G)
6 36 ( 1) ( 1)

y
c c c c

   
       

   
 edges.  

The above approach can also be applied to critical-MIN-ED by simply adding all the edges from the 

required set of edges D to the solution. The number of edges z in the resulting solution of critical-MIN-

ED satisfies 
2 1 1 1

1  OPT(G)  2.617  OPT(G)
6 36 ( 1) ( 1)

z
c c c c

   
        

   
. Another possibility 

outlined in [4] is to replace every required edge (ui,uj)D by introducing a new node uij and adding 

two new edges (ui,uij) and (uij,uj), running the approximation algorithm for MIN-ED on this new graph, 

and then replacing the edges (ui,uij) and (uij,uj) in the solution by the original edge (ui,uj). If an optimal 

solution of  critical-MIN-ED on G uses  edges from E \ D then this approach returns a solution (V,A) 

with  
2 1 1

| A| 1  2|D| |D|  2.236|D|+1.618
6 36 ( 1)c c


 

 
       

 
. 

3.3. The Arborescence Approach [14] 

A (rooted) spanning out-arborescence of a directed edge-weighted graph G=(V,E) is a directed acyclic 

spanning sub-graph (V,A) of G such that every node except one node (the root) has exactly one 

incoming edge and the weight of such an in-arborescence is the sum of the weight of its edges. A 

spanning in-arborescence is defined analogously except that every node except the root has exactly 

one outgoing edge. An exact polynomial-time solution for computing a spanning in-arborescence or 

spanning out-arborescence of minimum weight were provided by the authors in [15,16,19]. An 

overview of this algorithm for computing a minimum weight out-arborescence (as formulated in [16]) 

is as follows. We first remove all incoming edges to the root v. Then we proceed as follows. First, we 

select for each node, except the root v, an incoming edge of minimum weight. If these edges do not 

give a spanning arborescence, then there must be a (directed) cycle C formed by a subset of these 

edges. Let w(C) = min { w(e) | eC }. We contract the cycle C to a “mega”-node, and decrease the 

weight of every edge (u,v) from a node uC to a node vC by w(C), where  is the weight of the 

unique edge in C that is incoming to v. The process is then repeated on the reduced graph, and 

continued until we have a spanning arborescence on the remaining graph. The mega-nodes are then 

expanded in the reverse order. Each time a mega-node is expanded, exactly one of its edges that would 

produce two incoming edges to a node is discarded. A minimum weight in-arborescence can be 

computed by the same algorithm if we reverse the direction of all the edges of the input graph. See 

Figure 3 for an illustration. 

Figure 3. An illustration of the algorithm to compute a minimum weight spanning out-

arborescence. The thick black edges at the final fourth step are the edges in the solution. 
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For weighted-MIN-ED, Frederickson and JàJà [14] proposed the following simple algorithm that gives 

a 2-approximation for an input graph G=(V,E): 

 Select an arbitrary node v of G 

 Find a minimum weight spanning in-arborescence (V,A1) of G rooted at v 

 Find a minimum weight spanning out-arborescence (V,A2) of G rooted at v 

 Return (V, A1A2)   as the solution 

The above solution is a valid solution since we can reach any node vj starting from any node vi by 

taking a path from vi to the root v followed by a path from v to the node vj. The solution is a 2-

approximation since OPT(G)  max { |A1|, |A2| }. A simple example of an input graph was also 

provided in [14] for which the above algorithm provides a solution to total weight 2OPT(G). 

For critical-MIN-ED, a very similar approach as described below can be used to again provide a 2-

approximation for an input graph G=(V,E): 

Define the weight w(e) of an edge eE as 
0, if e D   

( )
1, otherwise

w e


 


 

Select an arbitrary node vr of G 

Find a minimum weight spanning in-arborescence T=(V,A1) of G rooted at node vr 

Redefine the weight w(e) of an edge eE as 
10, if e D  A    

( )
1, otherwise          

w e
 

 


 

Find a minimum weight spanning out-arborescence T = (V,A2) of G rooted at node vr 
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Return (V, A1A2D) as the solution 

Albert et al. [4] showed how to modify the above algorithm and combine it with any -approximation 

algorithm for MIN-ED to obtain an improved algorithm for critical-MIN-ED with an approximation ratio 

of 23


 . Currently, the best possible value of  is 1.5 which leads to a 5
3 -approximation for critical-

MIN-ED using this approach. 

3.4. From Critical-MIN-ED And Critical-MAX-ED To MIN-ED And MAX-ED [4,13] 

The results in [4,13] show how to transform a solution to critical-MIN-ED (respectively, critical-MAX-

ED) to a solution to MIN-ED (respectively, MAX-ED) by adding a single edge
1
 that can be found in 

polynomial time. The idea behind this as follows. We can distinguish our input (and strongly 

connected) graph G based on whether G=(V,E) has a cycle of parity 1 (double parity graph) or not 

(single parity graph). Whether G is a single or double parity graph can be easily checked in O(|V|
3
) 

time by using a simple modification of the well-known Floyd-Warshall transitive closure algorithm [8] 

as outlined in [4]. Now we can observe the following: 

 If G is a single parity graph then for every pair of nodes ui,ujV, exactly one of the two the 

paths ui 
1,


E

uj and ui 
1,


E

uj exists. Then, we can simply ignore the edge labels and compute a 

solution (V,A) of critical-MIN-ED (respectively, critical-MAX-ED) on G. It can be seen that 

(V,A) also provides a valid solution for MIN-ED (respectively, MAX-ED). 

 Otherwise, G is a double parity graph. We again first ignore the edge labels and compute a 

solution (V,A) of critical-MIN-ED (respectively, critical-MAX-ED) on G. Note that (V,A) 

contains a rooted arborescence, say (V,A1) with A1  A, rooted at some node ur. We label each 

node uiV with ℓ(ui) = ℓ(Pi) where Pi is the unique path in (V,A1) from ur to ui. Since G is a 

double parity graph, there must exist an edge (ui,uj) E such that ℓ(ui) ℓ(uj)  ℓ(ui,uj), and 

adding this edge (if not already present) to A produces a valid solution of critical-MIN-ED or 

critical-MAX-ED for G. 

3.5. Linear Programming Based Approach [13] 

We refer the reader to a standard graduate level textbook such as [20] for basic concepts and 

definitions related to linear programming and its applications to designing approximation algorithms. 

An exponential-size linear programming (LP) formulation for the minimum weight rooted (at node ur) 

out-arborescence problem for an edge-weighted input graph G=(V,E) was provided by Edmonds [15] 

in the following manner. We use a binary indicator variable
,

i je u ux x for every edge e = (ui,uj)E 

which describes whether we select e (xe=1) or do not select e (xe=0) in our solution. For U  V, define 

(U) = { (ui,uj)E : uiU and ujU }. Then, the LP formulation is: 

                                                 
1
 We remind the reader that we assume that the input graph is strongly connected. 
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E

( )

minimize ( )

subject to 

          1 for all U such that U V and U              (1)

           0 for all E







    

 





e

e

e r

e U

e

w e x

x u

x e

 

Edmonds [15] showed that the above LP always has an integral optimal solution (i.e., an optimal 

solution with xe{0,1} for all eE) which provides an optimal solution for our minimum weight 

rooted out-arborescence problem. Note that the above LP has O(2
|V|

) constraints in the worst case. 

We can modify the above LP formulation to a primal LP formulation P1 for MIN-ED provided we set 

w(e)=1 for all eE and we remove “and ur  U” from the condition in constraint (1). The dual 

program D1 of this LP can be constructed by having a variable yU for every   U  V. Both the 

primal and the dual LP are written down below for clarity. 

        (primal LP P1)                                                             (dual LP D1) 

        

E

( )

minimize 

subject to 

          1 for all U such that U V        

           0 for all E

e

e

e

e U

e

x

x

x e







   

 




      

U

U V

U
U V
(U)

U

maximize 

subject to 

          1 for every edge E        

           0 for all U V

e

y

y e

y



 

 


 

   




 

We can change P1 into a LP formulation for MAX-ED if we replace the objective “minimize eE xe” 

by “maximize |E|eE xe”, and change the dual D1 accordingly to reflect this change. We can further 

change this formulation for MIN-ED and MAX-ED to critical-MIN-ED and critical-MAX-ED, 

respectively, by adding a constraint xe  1 for every edge eD. 

Note that P1 does not provide a valid solution of the MIN-ED problem unless the constraint xe  0 for 

every edge eE is replaced by the constraint xe{0,1}, resulting in an integer linear program (ILP) 

whose exact solution is in general NP-hard to compute. We will denote this ILP corresponding to P1 by 

IP1.  

3.5.1. Applying LP-based Approach to critical-MIN-ED 

We provide a high-level overview of the primal-dual approach used in [13] for critical-MIN-ED on an 

input graph G=(V,E). 

1. We start with an initial assignment of values to variables in IP1 in the following manner. We 

keep only a subset of constraints of  IP1 such that the resulting ILP can be solved exactly in 

polynomial time, giving an optimal solution A1E. Then, it follows that OPT(G)  |A1|. 
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2. However, (V,A1)  may not be a valid solution for critical-MIN-ED on G (i.e., IP1). Then, we 

try to make A1 a valid solution by adding and/or removing edges so that we use a total of at 

most 3
2

1   edges where OPT(G)    |A1|, giving a 3
2 -approximation for critical-MIN-ED. 

The edge alteration procedure was carried out in [13] using the DFS (depth-first-search) 

algorithm as originally outlined in a seminal paper by Tarjan (e.g., see the textbook [21]).  

The initial solution A1 referred to above in Step 1 is obtained in the following manner. For U  V, 

define (U) = { (ui,uj)E : uiU and ujU }. Call a constraint of  type e(U) xe  1in IP1 “tractable” 

if for some node ui either (U)  ({u}) or (U)  o({u}). It was shown in [13] that the set of tractable 

constraints of IP1 can be found easily and the resulting ILP can be solved exactly using any algorithm 

that finds a maximum matching in a bipartite graph. Figure 4 shows an example of the initial solution 

A1 found by this approach. 

The DFS-based edge addition/removal method referred to in Step 2 is highly technical with elaborate 

case analysis and is beyond the scope of this review paper. In a nutshell, difficulties may arise because 

in some cases the algorithm may be forced to use more than 3
12

|A | 1 edges. Then, we look at the “non-

tractable” constraints of the primal P1 or dual D1 to get an improved lower-bound  for OPT(G) (i.e., 

OPT(G)    A1) to ensure that we use at most 3
2

1  edges. In the proof we need to crucially use the 

weak-duality theorem of linear programming which states that if OPT(P1) and OPT(D1) are the 

objective values of an optimal solution of P1 and  D1, respectively, then OPT(P1)    OPT(D1). 

Figure 4. An illustration of the initial solution A1 discussed in the algorithm that applies a 

LP-based approach to critical-MIN-ED in Section 1.4.1: (a) The input graph G. (b) The 

edges in the initial solution A1. 

                                                         

3.5.2. Applying LP-based Approach to critical-MAX-ED 
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We provide an overview of the 2-approximation algorithm for critical-MAX-ED on an input graph 

G=(V,E) using a LP-based approach as described in [13]. Call an edge eE a necessary edge if either 

eD or ι(U) = {e} for some U  V and let F be the set of necessary edges. If the edges in F provide a 

valid solution of critical-MAX-ED on G then (V,F) provide us with an optimal solution, thus assume 

that this is not the case below. In this case, e(U)=0 for some UV, so there must be a node ur 

such that no edges in F enter ur. As a pre-processing step, we repeatedly contract a cycle of necessary 

edges until no such cycles remain. Let OPTin-arb(G) be the total weight of a minimum-weight in-

arborescence of G rooted at ur. Consider the LP formulation for the minimum weight rooted out-

arborescence problem as defined before: 

                               

E

( )

minimize ( )

subject to 

          1 for all U such that U V and U

           0 for all E

e

e

e r

e U

e

w e x

x u

x e







    

 




 

and let 0, if F     
( )

1, otherwise 
ew e 

 . Now, suppose that we set 1
2

1, if F  
, otherwisee

ex  . This assignment of 

variables is a valid solution of the above LP. 

Now, compute a minimum weight out-arborescence Tout = (V,Aout) rooted at ur. If there are z+1 edges 

in E that are not in Aout, then OPT(G)  z. Suppose now that we change w(e) for evert eAout to zero 

and keep the other weights unchanged. Our previous fractional solution, namely 1
2

1, if F  
, otherwisee

ex  , is 

still a valid solution of the LP, and thus the total value of the objective function of this fractional 

solution is at most 1
2

z , which together with the result of Edmonds [15] that showed that “the LP 

always has an integral optimal solution” implies that OPTin-arb(G)  1
2

z , which implies that we delete 

at least z+1 1
2

z = 1
2

z edges from the in-arborescence and take the remaining edges of the in-

arborescence together with all the edges in Aout to get a valid solution of critical-MAX-ED on G. The 

total number of edges we have deleted in at least OPT(G) 11
2 2

z   . A slight modification in the argument 

shows that in fact we can delete at least OPT(G)

2
edges. 

3.5.3. Limitations Of LP-based Approaches 

A standard way of understanding the limitations of any LP-based approach for designing 

approximation algorithms is to measure the integrality gap, i.e., the ratio of the objective value of an 

optimal integral solution to that of an optimal fractional solution for a minimization problem and the 

ratio of the objective value of an optimal fractional solution to that of an optimal integral solution for a 

minimization problem [20].  In [13] it was shown that the integrality gap for P1 was at least 4
3 by 

giving an explicit construction of an input graph for which this ratio is achieved. The same input graph 

also shows that the integrality gap for the modification of P1 corresponding to MAX-ED is at least 3
2 . 

4. Biological Applications 
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In this section we discuss three applications of transitive reduction problems in computational 

biology and bioinformatics. For other non-biology applications of transitive reduction problems, such 

as in visualization of Enron email networks or in connectivity issues of computer networks, the reader 

may consult appropriate references such as [11,22]. 

We briefly review the standard regulatory network model that was mentioned in Section 1.1.3 in 

connection with the MIN-BTR and MAX-BTR problems. A regulatory network is described by an edge-

labelled directed graph G=(V,E) in which nodes represent individual components of the biological 

system and (directed) edges of the form (ui,uj) indicates that node ui has an influence on node uj. The 

edge labelling function ℓ : E → {1,1} indicates the nature of the causal relationship,  with ℓ(u,uj) = 1 

and ℓ(ui,uj)   1 indicating that ui has an excitatory (positive)  and inhibitory (negative) influence on 

uj, respectively; pictorially, it is quite common to denote an excitory and an inhibitory edge by  and 

, respectively. This representation applies to both gene regulatory networks (describing the 

regulation of gene transcription and related processes) and signal transduction networks (describing the 

information flow from external signals to within-cell components).  

4.1. Network Construction And Simplification From Direct And Double-Causal Data 

Signal transduction and gene regulatory networks are crucial to the maintenance of cellular 

homeostasis and for cell behavior such as growth, survival, apoptosis, and movement. Deregulation of 

these networks is a key contributor to many disease processes such as developmental disorders, 

diabetes, vascular diseases, and cancer. In a signal transduction network (pathway), there is typically 

an input, perceived by a receptor, followed by a series of elements through which the signal percolates 

to the output node, which represents the final outcome of the signal transduction process. For a cellular 

signal transduction pathway not involving alterations in gene expression, elements often consist of 

proteinaceous receptors, intermediary signaling proteins and metabolites, effector proteins, and a final 

output which represents the ultimate combined effect of the effector proteins. If the signal transduction 

process includes regulation of the transcript level of a particular gene, the intermediate signaling 

elements will also include the gene itself and the transcription factors that regulate it, as well any small 

RNAs that regulate the transcript’s abundance, with the final output being presence or absence of 

transcripts. Genome-wide experimental methods now identify interactions among thousands of 

proteins [23-26]. However, the state of the art understanding of many signaling processes is often 

limited to the knowledge of key mediators and of their positive or negative effects on the whole 

process. The experimental evidence about the involvement of specific components in a given signal 

transduction network frequently belongs to one of these two categories:  

(i) “Direct” interactions corresponding to biochemical evidences that provide information on 

enzymatic activity or protein-protein interactions and represent direct physical interactions. An 

interaction of this type is of the form “A promotes B” or “A inhibits B”, and is represented in 

the usual manner by a directed edge AB and AB, respectively. Edges corresponding to 

known (documented) direct interactions are marked as “critical” and belong to the set D of 

required edges. 
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(ii) “Putative” interaction patterns that arise, for example, during differential responses to a 

stimulus which in a wild-type organism versus a mutant organism implicates the product of the 

mutated gene in the signal transduction process. This type of interaction pattern is not a direct 

interaction but rather corresponds to an indirect (double-causal) relationship most likely 

resulting from a chain of direct interactions and reactions, and is a 3-component inference 

represented by a small-size sub-graph among three or four nodes. 

As noted above, inference of type (ii) may not give direct interactions but indirect causal relationships 

that correspond to reachability relationships in the unknown interaction network for which the MIN-

BTR and MAX-BTR problems become directly applicable. More precisely, inferences of type (ii) 

typically lead to double-causal inferences of the type “C promotes the process through which A 

promotes B”, and may correspond to an intersection of two paths (one path from A to B and another 

path from C to B) in the interaction network (i.e., C is assumed to activate an unknown intermediary 

node of the A to B path).  

The research works in [5-7] led to the development of an efficient and accurate method incorporating 

all relevant biological knowledge for synthesizing path-level information into a consistent network by 

constructing a minimal graph that maintains all reachability relationships without requiring expression 

information (unlike, say, many reverse-engineering approaches). Methods prior to [5-7] for 

synthesizing signal transduction networks, such as [27], only included direct biochemical interactions 

and were therefore restricted by the incompleteness of the experimental knowledge on pairwise 

interactions. Key steps in the network synthesis method developed in [5-7] are schematically shown in 

Figure 5. The first step is a distillation of experimental conclusions into qualitative regulatory relations 

between cellular components
2

. Direct biochemical and pharmacological evidences, such as “A 

promotes B” are incorporated as a directed edge (A,B). Other kind of double-causal evidences (such as 

genetic evidences of differential responses to a stimulus) are handled in the third step in the schematic 

diagram. For the sake of concreteness, assume that such a double-causal interaction is of the form “C 

promotes the process through which A promotes B”. The only way such a double-causal interaction 

may correspond to a direct interaction is if C is an enzyme catalyzing a reaction in which A is 

transformed into B, and for this case the interaction can be represented as both A (the substrate) and C 

(the enzyme) activating B (the product), i.e., by two edges AB and CB. If the interaction between 

A and B is direct and C is not a catalyst of the interaction between A and B, we can assume that C 

activates A. In all other cases this type of interaction corresponds to an intersection of two paths (A to 

B and C to B) in the interaction network by introducing new nodes (called “pseudo-nodes” in [5] and 

elsewhere since they are added only to satisfy the pathway properties). One important algorithmic idea 

in this network synthesis method is that of finding a minimal
3
 network, in terms of number of non-

critical edges (i.e., edges not in D), that is consistent with all (directed) reachability relationships 

between nodes, and is captured by the MIN-BTR and MAX-BTR problem discussed earlier. For further 

                                                 
2
 This is a complex process by itself. It is important to note that human intervention will inevitably be an important 

component of the literature curation process even though automated text search engines such as GENIES [28] become more 

and more popular. 
3
 Intuitively, by computing a minimal graph we want to be as close as possible to a “tree-like topology” while supporting 

all experimental observations. Implicit assumption of chain-like or tree-like topologies permeate the traditional molecular 

biology literature, e.g., signal transduction and metabolic pathways are assumed to be close to linear chains and genes are 

assumed to be regulated by one or two transcription factors [29]. 
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details, see [5-7]. A software named NET-SYNTHESIS incorporating the method shown in Figure 5 

using some of the algorithmic ideas described for MIN-BTR and MAX-BTR in Section 3 was first 

reported in [5,6] and is freely available for download from the website 

http://www.cs.uic.edu/~dasgupta/network-synthesis/. The input to NET-SYNTHESIS is a list of 

relationships among biological components (direct and double causal), and its output is a network 

diagram and a text file with the edges of the signal transduction network.  

4.1.1. Applications In Agronomic Research 

Guard cells are central components in control of plant water status [30] and better understanding of 

their regulation is imperative for the goal of engineering of crops with improved drought tolerance. 

Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is 

regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA) 

inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. ABA 

signal transduction in guard cells is one of the best characterized signaling systems in plants with many 

signal transduction proteins, secondary metabolites and ion channels having been identified to 

participate in the process [31-33].  

Figure 5. A schematic diagram of the network synthesis method in [5-7]. Human 

interaction is necessary since some choices may have to be made in distilling the 

component relationships, e.g., when there are conflicting reports in the literature. 

                              

The research works in [5,6] used the NET-SYNTHESIS software to generate a network for ABA-

induced closure from is a list of about 140 interactions and causal inferences for ABA-induced closure 

published in Table S1 and Text S1 in [34]. A detailed comparison of this computer generated network 

with a manually curated network for ABA-induced closure published in [34] validated the accuracy of 

the algorithms for MIN-BTR used in the software. 

4.2. Analyzing Disease Networks (Biomedical Application) 

Large Granular Lymphocytes (LGL) are medium to large size cells with eccentric nuclei and abundant 

cytoplasm. In normal adults, LGL comprise 10% ~ 15% of the total peripheral blood mononuclear 

cells. The disease LGL leukemia is a disordered clonal expansion of LGL and their invasions in the 
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marrow, spleen and liver. Ras is a small GTPase which is essential for controlling multiple essential 

signaling pathways, and its deregulation is frequently seen in human cancers. Activation of H-Ras 

required its farnesylation, which can be blocked by farnesyltransferase inhibitiors (FTIs). This 

envisions FTIs as future drug target for anti-cancer therapies. One of these FTI is tipifarnib which 

shows apoptosis induction effect to leukemic LGL in vitro. This observation, together with the finding 

that Ras is constitutively activated in leukemic LGL cells, leads to the hypothesis that Ras plays an 

important role in LGL leukemia, and may function through influencing Fas/FasL pathway. 

Kachalo et al. in [6]
 
used the NET-SYNTHESIS software together with its specific transitive reduction 

algorithms to synthesize a cell-survival/cell-death regulation related signalling network from the 

Transpath 6.0 database (http://www.gene-regulation.com/pub/databases.html#transpath) with 

additional information manually curated from literature search, having 359 nodes representing 

proteins/protein families and mRNAs participating in pro-survival and Fas-induced apoptosis 

pathways and 1295 edges representing regulatory relationships between nodes, including protein 

interactions, catalytic reactions, transcriptional regulation and known double-causal regulations. Using 

MIN-BTR and other algorithms, they were able to reduce the size of the original network to 267 nodes 

and 751 edges to focus special interest on the effect of Ras on apoptosis response through Fas/FasL 

pathway that involve the 33 known T-LGL deregulated proteins. Further work in this direction was 

done by Zhang et al. in [35] in building and analyzing a network model of signalling components of 

survival of cytoxic T lymphocytes in LGL-leukemia using the NET-SYNTHESIS software. 

For further applications of transitive reduction problems to drug target identification, see [36]. 

4.3. Measuring Topological Redundancy of Biological Networks 

The concept of redundancy is well known in information theory. Informally, redundancy refers to 

identical elements performing the same function
4
. In computer networks and electronic systems, such 

measures are useful in analyzing properties such as fault-tolerance. It is an accepted fact that biological 

networks do not necessarily have the lowest possible degeneracy or redundancy. For example, the 

connectivity of neurons in brains suggest a high degree of degeneracy [38]. As Tononi, Sporns and 

Edelman observed in [39], a specific and useful notion of redundancy has yet to be firmly incorporated 

into biological thinking, often because of the lack of a suitable formal theoretical framework. A further 

reason for the lack of incorporation of these notions in biological thinking is the lack of 

computationally efficient procedures for computing these measures for large-scale networks even 

when formal definitions are available. Therefore, such studies are often done in a somewhat ad-hoc 

fashion, such as in [40]. There are notions of redundancy available in the field of analysis of undirected 

graphs based on clustering coefficients [41] or betweenness centrality measures [42]. However, such 

notions are not appropriate for the analysis of biological networks where we must distinguish positive 

from negative regulatory interactions or where we wish to study possible relationships of the dynamics 

of the network with its redundancy. 

                                                 
4
 There are also other definitions of the redundancy concept in the context of other biological applications that is 

completely different from ours. For example, in some context redundancy refers to paralogous genes that provide 

functional backup for one another [37]. 
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Based on the MIN-BTR and MAX-BTR problems, Albert et al. in [43] proposed a new combinatorial 

measure of redundancy that is amenable to efficient algorithmic analysis. Note that binary transitive 

reduction of a graph (V,E) does not change pathway level information of the network and removes an 

edge from one node ui  uj or ui  uj only when a similar alternate pathway, namely ui 

i j1, \{u ,u }E

 uj or 

ui 

i j1, \{u ,u }E

  uj respectively, exists, thus truly removing redundant connections. Thus, if (V,E1) is an 

optimal solution of MIN-BTR and MAX-BTR on the input graph G=(V,E) then 1| E |

| E | provides a measure of 

global compressibility of the network.  Based on this intuition, Albert et al. in [43] proposed a new 

redundancy measure 1| E |

| E |
R=1 , where the |E| term in the denominator is simply a “min-max 

normalization” of the measure to ensure that 0 < R < 1. Note that the higher the value of R is, the more 

redundant the network is. Since MIN-BTR or MAX-BTR can be computed efficiently, Albert et al. were 

able to evaluate R on a variety of large biological and directed social networks to derive interesting 

conclusions such as transcriptional networks are less redundant than signaling networks, directed 

social networks are more redundant than biological networks, the topological redundancy of the C. 

elegans metabolic network is largely due to its inclusion of currency metabolites and the redundancy 

of signaling networks is highly (negatively) correlated with the monotonicity of their dynamics. 

4. Conclusions  

In this review paper, we have elaborated on a few graph-theoretic problems that involve finding an 

“equivalent” sparser graph, explain several key mathematical and algorithmic tools that may be used to 

design efficient computational methods to solve these problems and then provided details of three 

biological applications of these problems. The idea of transitive reductions, in a more simplistic setting 

or in a different form, has also been used to identify structure of gene regulatory networks [44,45]. We 

hope that our review will lead to further interests in transitive reduction type problems and will 

promote further collaboration between the computational biology and the graph algorithms 

community. 
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