
Approximation Schemes for
the Betweenness Problem in Tournaments

and Related Ranking Problems
(Revised Version)

Marek Karpinski∗ Warren Schudy†

Abstract

We settle the approximability of the Minimum Betweenness problem in tournaments
by designing a polynomial time approximation scheme (PTAS). No constant factor ap-
proximation was previously known. We also introduce a more general class of so-called
fragile ranking problems and construct PTASs for them. The results depend on a
new technique of dealing with fragile ranking constraints and could be of independent
interest.

∗Dept. of Computer Science, University of Bonn. Parts of this work done while visiting Microsoft Research.

Email: marek@cs.uni-bonn.de

†IBM T. J. Watson Research Center. Parts of this work done while a student at Brown University and while

visiting University of Bonn. Email: ws@cs.brown.edu

1 Introduction

We study the approximability of the Minimum Betweenness problem in tournaments (see [2])
that resisted so far efforts of designing polynomial time approximation algorithms with a constant
approximation ratio. For the status of the general Betweenness problem, see e.g. [17, 9, 2, 8].

In this paper we design the first polynomial time approximation scheme (PTAS) for that prob-
lem, and generalize it to much more general class of ranking CSP problems, called here fragile
problems. To our knowledge it is the first nontrivial approximation algorithm for the Betweenness
problem in tournaments.

In the Betweenness problem we are given a ground set of vertices and a set of betweenness
constraints involving 3 vertices and a designated vertex among them. The cost of a ranking of
the elements is the number of betweenness constraints with the designated vertex not between the
other two vertices. The goal is to find a ranking minimizing this cost. We refer to the Betweenness
problem in tournaments, that is in instances with a constraint for every triple of vertices, as the
BetweennessTour or fully dense Betweenness problem (see [2]). We consider also the k-ary
extension k-FAST of the Feedback Arc Set in tournaments (FAST) problem (see [15, 1, 3]).

We extend the above problems by introducing a more general class of fragile ranking k-CSP
problems inspired by the fragile (non-ranking) CSPs in [13]. A constraint S of a ranking k-CSP
problem is called fragile if no two rankings of the vertices S that both satisfy the constraint differ
by the position of a single vertex. A ranking k-CSP problem is called fragile if all its constraints
are fragile.

We now formulate our main results.

Theorem 1. There exists a PTAS for the BetweennessTour problem.

The above answers an open problem of [2] on the approximation status of the Betweenness
problem in tournaments.

We now formulate our first generalization.

Theorem 2. There exist PTASs for all fragile ranking k-CSP problems in tournaments.

Theorem 2 entails, among other things, existence of a PTAS for the k-ary extension of FAST.
A PTAS for 2-FAST was given in [15].

Corollary. There exists a PTAS for the k-FAST problem.

We generalize BetweennessTour to arities k ≥ 4 by specifying for each constraint S a pair
of vertices in S that must be placed at the ends of the ranking induced by the vertices in S. Such
constraints do not satisfy our definition of fragile, but do satisfy a weaker notion that we call weak
fragility. The definition of weakly fragile is identical to the definition for fragile except that only four
particular single vertex moves are considered, namely swapping the first two vertices, swapping the
last two, and moving the first or last vertex to the other end. We now formulate our most general
theorem.

Theorem 3. There exist PTASs for all weak-fragile ranking k-CSP problems in tournaments.

Corollary. There exists a PTAS for the k-BetweennessTour problem.

Additionally our algorithms are guaranteed not only to find a low-cost ranking but also a
ranking that is close to an optimal ranking in the sense of Kendall-Tau distance. Karpinski and
Schudy [14] recently utilized this extra feature to find an improved parameterized algorithm for

BetweennessTour with runtime 2O(
√

OPT/n) + nO(1).

1

Theorem 4. The PTASs of Theorem 3 additionally return a set of 2Õ(1/ǫ) rankings, one of which
is guaranteed to be both cheap (cost at most (1 + O(ǫ))OPT) and close to an optimal ranking

(Kendall-Tau distance O

(

poly(1
ǫ)OPT

nk−2

)

).

All our PTASs are randomized but one can easily derandomize them by exhaustively considering
every possible random choice.

Section 2 introduces notations and the problems we study. Section 3 introduces our algorithm
and an intuitive sense of why it works. Section A analyzes the runtime. The remaining sections
analyze the cost of the output of our algorithms.

2 Notation

First we state some core notation. Throughout this paper let V refer to the set of n objects
(vertices) being ranked and ǫ > 0 the desired approximation parameter. Our O(·) hides the arity k
but not ǫ or n. Our Õ(·) additionally hides (log(1/ǫ))O(1). A ranking is a bijective mapping from
a ground set S ⊆ V to {1, 2, 3, . . . , |S|}. An ordering is an injection from S into R. Clearly every
ranking is also an ordering. We use π and σ (plus superscripts) to denote rankings and orderings
respectively. Let π∗ denote an optimal ordering and OPT its cost. We let

(

n
k

)

(for example) denote

the standard binomial coefficient and
(V

k

)

denote the set of subsets of set V of size k.
For any ordering σ let Ranking(σ) denote the ranking naturally associated with σ. To help

prevent ties we relabel the vertices so that V = {1, 2, 3, . . . , |V |}. We will often choose to place
u in one of O(1/ǫ) positions P(u) = {jǫn + u/(n + 1), 0 ≤ j ≤ 1/ǫ} (the u/(n + 1) term breaks
ties). We say that an ordering is a bucketed ordering if σ(u) ∈ P(u) for all u. Let Round(π) denote
the bucketed ordering corresponding to π (rounding down), i.e. Round(π)(u) equals π(u) rounded
down to the nearest multiple of ǫn, plus u/(n + 1).

Let v 7→p denote the ordering over {v} which maps vertex v to position p ∈ R. For set Q of
vertices and ordering σ with domain including Q let σQ denote the ordering over Q which maps
u ∈ Q to σ(u), i.e. the restriction of σ to Q. For orderings σ1 and σ2 with disjoint domains let
σ1 σ2 denote the natural combined ordering over Domain(σ1)∪Domain(σ2). For example of our
notations, σQ v7→p denotes the ordering over Q ∪ {v} that maps v to p and u ∈ Q to σ(u).

A ranking k-CSP consists of a ground set V of vertices, an arity k ≥ 2, and a constraint system
c. Informally a constraint system c gives a 0/1 value (satisfied or not) for every ranking of every
set S ⊆ V of |S| = k vertices. Formally a constraint system c is a function which maps rankings of
vertices S ⊆ V with |S| = k to {0, 1}. For example if k = 2 and V = {u1, u2, u3} a constraint system
c consists of the six values c(u1 7→1 u2 7→2), c(u1 7→2 u2 7→1), c(u1 7→1 u3 7→2), c(u1 7→2 u3 7→1),
c(u2 7→1 u3 7→2), and c(u2 7→2 u3 7→1). A weighted ranking CSP has a weighted constraint system
which maps rankings of vertices S ⊆ V , |S| = k to non-negative reals R

+. (To simplify terminology
we present our results for unweighted CSPs only. We define weighted CSPs only because our
algorithm uses one.) We refer to a set of vertices S ⊆ V , |S| = k in the context of constraint
system c as a constraint. We say constraint S is satisfied in ordering σ of S if c(Ranking(σ)) = 0.
For brevity we henceforth abuse notation and omit the “Ranking” and write simply c(σ). The
objective of a ranking CSP is to find an ordering σ (w.l.o.g. a ranking) minimizing the number of
unsatisfied constraints, which we denote by Cc(σ) =

∑

S∈(Domain(σ)
k) c(σS).

We will frequently leave the CSP in question implicit in our notations, for exampling saying
that a constraint S is satisfied without specifying the constraint system. In such cases the CSP

2

should be clear from context. We use k, c and V to denote the arity, constraint system and ground
set of the CSP that we are trying to optimize. We also use the shorthand C(σ) = Cc(σ).

Definition 1. A constraint S of constraint system c is fragile if no two orderings that satisfy it
differ by the position of a single vertex. In other words constraint S is fragile if c(πS) + c(π′

S) ≥ 1
for all rankings π and π′ over S that differ by a single vertex move, i.e. π′ = Ranking(v7→p πS\{v})
for some v ∈ S and half-integer p ∈ {1/2, 3/2, 5/2, . . . , k + 1/2}.

An alternate definition is that a satisfied fragile constraint becomes unsatisfied whenever a
single vertex is moved, which is why it is called “fragile.” Fragility is illustrated in Figure 1 (near
Appendix A).

Definition 2. A constraint S of constraint system c is weakly fragile if c(πS) + c(π′
S) ≥ 1 for all

rankings π and π′ that differ by a swap of the first two vertices, a swap of the last two, or a cyclic
shift of a single vertex. In other words π′ = Ranking(v7→p πS\{v}) for some v ∈ S and p ∈ R with

(π(v), p) ∈ {(1, 2 + 1
2), (1, k + 1

2), (k, k − 3
2), (k, 1

2)}.
Observe that weak fragility is equivalent to ordinary fragility for k ≤ 3. Weak fragility is

illustrated in Figure 2 (near Appendix A).
Our techniques handle ranking CSPs that are fully dense with weakly fragile constraints, i.e.

every set S of k vertices corresponds to a weakly fragile constraint. Fully dense instances are also
known as tournaments (by analogy with feedback arc set and tournament graphs).

Let bc(σ, v, p) denote the cost of the constraints in constraint system c involving vertex v in
ordering σDomain(σ)\{v} v7→p formed by moving v to position p in ordering σ. Formally bc(σ, v, p) =
∑

Q:··· c(σQ v 7→p), where the sum is over sets Q ⊆ Domain(σ) \ {v} of size k − 1. Note that this
definition is valid regardless of whether or not v is in Domain(σ). The only requirement is that
the range of σ excluding σ(v) must not contain p. This ensures that the argument to c(·) is an
ordering (injective). Analogously with the objective function C the superscript constraint system
c in bc defaults to the problem c that we are trying to solve when omitted.

We call a weighted ranking CSP instance with arity 2 a feedback arc set (FAS) instance. A FAS
instance with vertex set V and constraint system w is equivalent to a weighted directed graph with
arc weights wuv = w(u 7→2 v 7→1) for u, v ∈ V . The objective function Cw(σ) defined previously
works out to finding an ordering of the vertices V minimizing the weight of the backwards arcs

Cw(σ) =
∑

u,v:σ(u)>σ(v) wuv. Similarly bw(σ, v, p) =
∑

u 6=v

{

wuv if σ(u) > p
wvu if σ(u) < p

. If a FAS instance

with constraint system w satisfies α ≤ wuv + wvu ≤ β for all u, v and some α, β > 0 we call it a
(weighted) feedback arc set tournament (FAST) instance. We generalize to k-FAST as follows: a
k-FAST constraint S is satisfied by one particular ranking of the vertices S and no others. Clearly
k-FAST constraints are fragile.

We generalize BetweennessTour to k ≥ 4 as follows. Each constraint S designates two
vertices {u, v}, which must be the first and last positions, i.e. if π is the ranking of the vertices in
S then c(π) = 11 ({π(u), π(v)} 6= {1, k}). It is easy to see that BetweennessTour constraints are
weakly fragile.

We use the following two results from the literature.

Theorem 5 ([15]). Let w be a FAS instance satisfying α ≤ wuv + wvu ≤ β for α, β > 0 and
β/α = O(1). There is a PTAS for the problem of finding a ranking π minimizing Cw(π) with

runtime nO(1)2Õ(1/ǫ6).

Theorem 6 (e.g. [6, 16]). For any k-ary MIN-CSP and δ > 0 there is an algorithm that produces
a solution with cost at most δnk more than optimal. Its runtime is nO(1)2O(1/δ2).

3

Theorem 6 entails the following corollary.

Corollary 7. For any δ > 0 and constraint system c there is an algorithm AddApprox for the
problem of finding a ranking π with C(π) ≤ C(π∗) + δnk, where π∗ is an optimal ranking. Its

runtime is nO(1)2Õ(1/δ2).

3 Intuition and algorithm

We are in need for some new techniques different in nature from the techniques used for weighted
FAST [15].

Our first idea is somehow analogous to the approximation of a differentiable function by a
tangent line. Given a ranking π and any ranking CSP, the change in cost from switching to a
similar ranking π′ can be well approximated by the change in cost of a particular weighted feedback
arc set problem (see proof of Lemma 23). Furthermore if the ranking CSP is fragile and fully dense
the corresponding feedback arc set instance is a (weighted) tournament (Lemma 17). So if we
somehow had access to a ranking similar to the optimum ranking π∗ we could create this FAST
instance and run the existing PTAS for weighted FAST [15] to get a good ranking.

We do not have access to π∗ but we use techniques inspired by [13] to get close. We pick a
random sample of vertices and guess their location in the optimal ranking to within (an additive)
ǫn. We then create an ordering σ1 greedily from the random sample. We show that this ordering
is close to π∗, in that |π∗(v) − σ1(v)| = O(ǫn) for all but O(ǫn) of the vertices (Lemma 12).

We then do a second greedy step (relative to σ1), creating σ2. We then identify a set U of
unambiguous vertices (defined in Algorithm 1) for which we know |π∗(v)−σ2(v)| = O(ǫn) (Lemma
16). We temporarily set aside the O(OPT/(ǫnk−1)) (Lemma 15) remaining vertices. These two
greedy steps are similar in spirit to previous work on ordinary (non-ranking) everywhere-dense
fragile CSPs [13] but substantially more involved.

We then use σ2 to create a (weighted) FAST instance w that locally represents the CSP. It would
not be so difficult to show that w is a close enough representation for an additive approximation,
but we want a multiplicative 1 + ǫ approximation. Showing this requires overcoming two obstacles
that are our main technical contribution.

Firstly the error in σ2 causes the weights of w to have significant error (Lemma 19) even in the
extreme case of OPT = 0. At first glance even an exact solution to this FAST problem would seem
insufficient, for how can solving a problem similar to the desired one lead to a precisely correct
solution? Fortunately FAST is somewhat special. It is easy to see that a zero-cost instance of
FAST cannot be modified to change its optimal ranking without modifying an arc weight by at
least 1/2. We extend this idea to cases where OPT is small but non-zero (Lemma 23).

The second obstacle is that the incorrect weights in FAST instance w may increase the optimum
cost of w far above OPT , leaving the PTAS for FAST free to return a poor ranking. To remedy this
we create a new FAST instance w̄ by canceling weight on opposing arcs, i.e. reducing wuv and wvu

by the same amount. The resulting simplified instance w̄ clearly has the same optimum ranking
as w but a smaller optimum value. The PTAS for FAST requires that the ratio of the maximum
and the minimum of wuv + wvu must be bounded above by a constant so we limit the amount of
cancellation to ensure this (Lemma 17). It turns out that this cancellation trick is sufficient to
ensure that the PTAS for FAST does not introduce too much error (Lemma 20).

Finally we greedily insert the relatively few ambiguous vertices into the ranking output by the
PTAS for FAST [15] (Appendix C).

For any ordering σ with domain U we will shortly define a weighted feedback arc set instance wσ

4

which approximates the overall problem c in the neighborhood of ordering σ. In particular changes
in the objective C = Cc are approximately equal to changes in Cwσ

. Before giving the definition
of wσ we describe how it was chosen. For simplicity of illustration let us suppose that |V | = k
and hence we have only one constraint; the general case will follow by making wσ

uv a sum over
contributions by the various constraints S ⊇ {u, v}. We are looking for good approximations for
the costs of nearby ordering, so let us consider the nearest possible ordering: let σ′ be idential to σ
except that two adjacent vertices, call them u and v, are swapped: σ(u) < σ(v) and σ′(u) > σ′(v).
Clearly Cwσ

(σ′) − Cwσ
(σ) = wσ

uv − wσ
vu. It is therefore natural to set wσ

vu = c(σ) and wσ
uv = c(σ′),

hence C(σ′) − C(σ) = Cwσ
(σ) − Cwσ

(σ) as desired.
So what about wσ

uv for u and v that are not adjacent in σ? It turns out that we can pick
practically anything for the other wσ

uv as long as we keep Cwσ
(σ) small and wσ

uv + wσ
vu relatively

uniform. We extend the above definition to non-adjacent u, v with σ(u) < σ(v) as follows: set
wσ

vu = c(σ) and wσ
uv = c(σ′), where σ′ is identical to σ except that v is placed immediately before

u. (Another natural option would be to set wvu = 0 and wuv = 1 for non-adjacent u, v with
σ(u) < σ(v).)

With this motivation in hand we now give the formal definition of wσ. For any ordering σ
with domain U let wσ

uv equal the number of the constraints {u, v} ⊆ S ⊆ U with c(σ′) = 1 where
(1) σ′ = (σS\{v} v 7→p), (2) p = σ(u) − δ if σ(v) > σ(u) and p = σ(v) otherwise, and (3) δ > 0
is sufficiently small to put p adjacent to σ(u). In other words if v is after u in σ it is placed

immediately before u in σ′. Observe that 0 ≤ wσ
uv ≤

(|U |−2
k−2

)

.
The following Lemma follows easily from the definitions.

Lemma 8. For any ordering σ we have (1) Cwσ
(σ) =

(k
2

)

C(σ) and (2) bwσ
(σ, v, σ(v)) = (k − 1) ·

b(σ, v, σ(v)) for all v.

Proof. Observe that all wσ
uv that contribute to Cwσ

(σ) or bwσ
(σ, v, σ(v)) satisfy σ(u) > σ(v) and

hence the σ′ in the definition of wσ
uv is equal to σ. It follows that each wσ

uv that contributes
to Cwσ

(σ) or bwσ
(σ, v, σ(v)) is equal to the number of constraints containing u and v that are

unsatisfied in σ. The
(k
2

)

and k− 1 factors appear because each constraint S contributes to wσ
uv for

a variety of u, v ∈ S.

The weighted feedback arc set instance wσ is insufficient for our purposes because its objective
value can be large even when the optimal cost of c is small. To remedy this we cancel the weight on
opposing arcs (within limits), yielding another weighted feedback arc set instance w̄σ . In particular

for any ordering σ we define w̄σ
uv = wσ

uv −min(1
10·3k−1

(|U |−2
k−2

)

, wσ
uv, w

σ
vu), where U is the domain of σ.

Observe that Cwσ
(π′) − Cw̄σ

(π′) is a non-negative constant independent of ranking π′. Therefore
the feedback arc set problems induced by wσ and w̄σ have the same optimal rankings but an
approximation factor of (1 + ǫ) is a stronger guarantee for w̄σ than for wσ .

For any orderings σ and σ′ with domain U , we say that {u, v} ⊆ U is a σ/σ′-inversion if
σ(u)−σ(v) and σ′(u)−σ′(v) have different signs. Let d(σ, σ′) denote the number of σ/σ′-inversions
(a.k.a. Kendall Tau distance). We say that v does a left to right (σ, p, σ′, p′)-crossing if σ(v) < p and
σ′(v) > p′. We say that v does a right to left (σ, p/σ′, p′)-crossing if σ(v) > p and σ′(v) < p′. We
say that v does a (σ, p, σ′, p′)-crossing if v does a crossing of either sort. We say that u σ/σ′-crosses
p ∈ R if it does a (σ, p, σ′, p)-crossing.

With these notations in hand we present our Algorithm 1 for approximating a weak fragile rank
k-CSP. The non-deterministic “guess (by exhaustive sampling)” on line 2 of our algorithm should
be implemented in the traditional manner: place the remainder of the algorithm in a loop over
possible orderings of the sample, with the overall return value equal to the best of the π4 rankings

5

Algorithm 1 A (1 + O(ǫ))-approximation for weak fragile rank k-CSPs in tournaments.

Input: Vertex set V , |V | = n, arity k, system c of fully dense arity k constraints, and approximation
parameter ǫ > 0.

1: Run AddApprox(ǫ5nk) and return the result if its cost is at least ǫ4nk

2: Pick sets T1, . . . , Tt uniformly at random with replacement from
(V
k−1

)

, where t = 14 ln(40/ǫ)

(k
2)ǫ

.

Guess (by exhaustion) bucketed ordering σ0, which is the restriction of Round(π∗) to the
sampled vertices

⋃

i Ti, where π∗ is an optimal ranking.
3: Compute bucketed ordering σ1 greedily with respect to the random samples and σ0, i.e.:

σ1(u) = argminp∈P(u) b̂(u, p) where b̂(u, p) =
(n

k−1)
t

∑

i:u 6∈Ti
c(σ0

Ti v7→p).

4: For each vertex v: If b(σ1, v, p) ≤ 13k43k−1ǫ
(n−1
k−1

)

for some p ∈ P(v) then call v unambiguous

and set σ2(v) to the corresponding p (pick any if multiple p satisfy). Let U denote the set of
unambiguous vertices, which is the domain of bucketed ordering σ2.

5: Compute feedback arc set instance w̄σ2
over unambiguous vertices U (see text). Solve it using

the FAST PTAS [15]. Do single vertex moves until local optimality (with respect to the FAST

objective function), yielding ranking π3 of U .

6: Create ordering σ4 over V defined by σ4(u) =

{

π3(u) if u ∈ U
argminp=v/(n+1)+j,0≤j≤n b(π3, u, p) otherwise

.

In other words insert each vertex v ∈ V \ U into π3(v) greedily.
7: Return π4 = Ranking(σ4).

found. Our algorithm can be derandomized by choosing T1, . . . , Tt non-deterministically rather
than randomly; see the runtime analysis in Appendix A for details.

If OPT ≥ ǫ4nk then the first line of the algorithm is sufficient for a PTAS so for the remainder
of the analysis we assume that OPT ≤ ǫ4nk. For most of the analysis we actually need something
weaker, namely that OPT is at most some sufficiently small constant times ǫ2nk. We only need
the full OPT ≤ ǫ4nk in one place in Appendix C.

4 Analysis of σ
1

Let σ� = Round(π∗). Call vertex v costly if b(σ�, v, σ�(v)) ≥ 2
(

k
2

)

ǫ
(

n−1
k−1

)

and non-costly otherwise.

Lemma 9. The number of costly vertices is at most k·OPT

ǫ(k
2)(

n−1
k−1)

.

Lemma 9 is proven in Appendix B. The outline of the proof is kC(π∗) =
∑

v b(π∗, v, π∗(v)) ≈
∑

v b(σ�, v, σ�(v)) ≥ (number costly)2
(k
2

)

ǫ
(n−1
k−1

)

.

Lemma 10. Let σ be an ordering of V , |V | = n, v ∈ V be a vertex and p, p′ ∈ R. Let B be the set

of vertices (excluding v) between p and p′ in σ. Then b(σ, v, p) + b(σ, v, p′) ≥ |B|
(n−1)3k−1

(n−1
k−1

)

.

Proof. By definition

b(σ, v, p) + b(σ, v, p′) =
∑

Q:···

[

c(σQ v7→p) + c(σQ v7→p′)
]

(1)

where the sum is over sets Q ⊆ U \ {v} of k − 1 vertices.
We consider the illustrative special case of betweenness tournament (or more generally fragile

problems with arity k = 3) here and defer the general case to Appendix B. Betweenness constraints

6

have a special property: the quantity in brackets in (1) is at least 1 for every Q that has at least
one vertex between p and p′ in π. There are at least |B|(n − 2)/2 such sets, which can easily be

lower-bounded by the desired |B|
(n−1)33−1

(

n−1
3−1

)

.

For vertex v we say that a position p ∈ P(v) is v-out of place if there are at least 6
(k
2

)

3k−1ǫn
vertices between p and σ�(v) in σ�. We say vertex v is out of place if σ1(v) is v-out of place.

Lemma 11. The number of non-costly out of place vertices is at most ǫn/2 with probability at least
9/10.

The proof is in Appendix B. It uses Lemma 10 and the definitions of out-of-place and costly to
show that b(σ�, v, σ�(v)) is much smaller than b(σ�, v, p) for any v-out of place p, and then Chernoff
and union bounds to show that b̂(v, p) is sufficiently concentrated about its mean b(σ�, v, p) so that
the minimum b̂(v, p) must occur for a p that is not v-out of place.

Lemma 12. With probability at least 9/10 the following are simultaneously true:

1. The number of out of place vertices is at most ǫn.

2. The number of vertices v with |σ1(v) − σ�(v)| > 3k23k−1ǫn is at most ǫn

3. d(σ1, σ�) ≤ 6k23k−1ǫn2

Proof. By Lemma 9 and the fact OPT ≤ ǫ4nk we have at most k·OPT

(k
2)ǫ(

n−1
k−1)

≤ ǫn/2 costly vertices for

n sufficiently large. Therefore Lemma 11 implies the first part of the Lemma. We finish the proof
by showing that whenever the first part holds the second and third parts hold as well.

Observe that there are exactly ǫn vertices in σ� between any two consecutive positions in P(v).
It follows that any vertex with |σ1(v) − σ�(v)| > 3k23k−1ǫn ≥ (6

(k
2

)

3k−1 + 1)ǫn must necessarily
be v-out of place, completing the proof of the second part of the Lemma.

For the final part observe that if u and v are a σ1/σ�-inversion and not among the ǫn out
of place vertices then, by definition of out-of-place, there can be at most 2 · 6

(

k
2

)

3k−1ǫn vertices

between σ�(v) and σ�(u) in σ�. For each u there are therefore only 24
(k
2

)

3k−1ǫn possibilities for

v. Therefore d(σ1, σ�) ≤ ǫn2 + 24
(

k
2

)

3k−1ǫn · n/2 ≤ 6ǫk23k−1n2.

The remainder of our analysis assumes that the event of Lemma 12 holds without stating so
explicitly.

5 Analysis of σ
2

The following key Lemma shows the sensitivity of b(σ, v, p) to its first and third arguments. It is
proven in Appendix B.

Lemma 13. For any constraint system c with arity k ≥ 2, orderings σ and σ′ over vertex set
T ⊆ V , vertex v ∈ V and p, p′ ∈ R we have

1. |bc(σ, v, p) − bc(σ′, v, p′)| ≤
(

n − 2

k − 2

)

(number of crossings) +

(

n − 3

k − 3

)

d(σ, σ′)

2. |bc(σ, v, p) − bc(σ′, v, p′)| ≤
(

n − 2

k − 2

)

(

|net f low| + k
√

d(σ, σ′)
)

where
(

n−3
k−3

)

= 0 if k = 2, (net f low) is |{ v ∈ T : σ′(v) > p′ }| − |{ v ∈ T : σ(v) > p }|, and
(number of crossings) is the number of v ∈ T that do a (σ, p, σ′, p′)-crossing.

7

Observe that the quantity net f low in Lemma 13 is zero whenever p = p′ and σ and σ′ are both
rankings. Therefore we have the following useful corollary.

Corollary 14. Let π and π′ be rankings over vertex set U and w a FAST instance over U . Then
|bw(π, v, p) − bw(π′, v, p)| ≤ 2(maxr,s wrs)

√

d(π, π′) for all v and p ∈ R \ Z.

We let U denote the set of unambiguous vertices as defined in Algorithm 1.

Lemma 15. We have |V \ U | ≤ k·OPT

ǫ(k
2)(

n−1
k−1)

= O(n
ǫ · OPT

nk).

Proof. Observe that the number of vertices that σ�/σ1-cross a particular p is at most 2 ·6k23k−1ǫn
by Lemma 12 (first part). Therefore we apply Lemmas 12 and 13, yielding

|b(σ�, v, p) − b(σ1, v, p)| ≤
(

n − 2

k − 2

)

12k23k−1ǫn +

(

n − 3

k − 3

)

6k23k−1ǫn2 ≤ 12ǫk43k−1

(

n − 1

k − 1

)

(2)

for all v and p.
Fix a non-costly v. By definition of costly b(σ�, v, σ�(v)) ≤ 2

(k
2

)

ǫ
(n−1
k−1

)

≤ k43k−1ǫ
(n−1
k−1

)

, hence

b(σ1, v, σ�(v)) ≤ 13k43k−1ǫ
(

n−1
k−1

)

, so v ∈ U .
Finally recall Lemma 9.

We define π⊛ to be the ranking induced by the restriction of π∗ to U , i.e. π⊛ = Ranking(π∗
U).

Lemma 16. All vertices in the unambiguous set U satisfy |σ2(v) − π⊛(v)| = O(ǫn).

Proof. The triangle inequality |σ2(v) − π⊛| ≤ |σ2(v) − π∗(v)| + |π∗(v) − π⊛| allows us to instead
bound the two terms |σ2(v)−π∗(v)| and |π∗(v)−π⊛| separately by O(ǫn). We bound |σ2(v)−π∗(v)|
first.

Since π∗ is a ranking the number of vertices |B| between π∗(v) and σ2(v) in π∗ is at least
|π∗(v) − σ2(v)| − 1. Therefore we have

|π∗(v) − σ2(v)| − 1

(n − 1)3k−1

(

n − 1

k − 1

)

≤ b(π∗, v, σ2(v)) + b(π∗, v, π∗(v)) (Lemma 10)

≤ 2b(π∗, v, σ2(v)) (Optimality of π∗). (3)

We next apply the first part of Lemma 13 to π∗ and σ�, bounding the number of crossings and
d(π∗, σ�) using the definition σ� = Round(π∗), yielding

b(π∗, v, σ2(v)) ≤ b(σ�, v, σ2(v)) + O(ǫnk−1). (4)

Next recalling (2) from the proof of Lemma 15 we have

b(σ�, v, σ2(v)) ≤ b(σ1, v, σ2(v)) + O(ǫnk−1). (5)

Combining (3), (4) and (5) we conclude that |π∗(v) − σ2(v)| = O(ǫn).
Now we prove |π∗(v)− π⊛| = O(ǫn). Lemma 15, the definition of π⊛, and the assumption that

OPT ≤ ǫ4nk imply that |π⊛(v) − π∗(v)| ≤ k·OPT
ǫ(k

2)(
n−1
k−1)

= O(ǫn).

8

6 Analysis of π
3

Note that all orderings and costs in this section are over the set of unambiguous vertices U as
defined in Algorithm 1, not V . We note that Lemma 15 and the assumption that OPT ≤ ǫ4nk is
small imply that |U | = n − O(ǫ3n).

Lemma 17. 1
3k−1 (1− 2/10)

(|U |−2
k−2

)

≤ w̄σ2

uv + w̄σ2

vu ≤ 2
(|U |−2

k−2

)

, i.e. w̄σ2
is a weighted FAST instance.

The proof, which uses weak fragility, is in Appendix B.

Lemma 18. Assume ranking π and ordering σ satisfy |π(u) − σ(u)| = O(ǫn) for all u. For any
u, v, let Nuv denote the number of S ⊃ {u, v} such that not all pairs {s, t} 6= {u, v} are in the same
order in σ and π. We have Nuv = O(ǫnk−2).

Proof. Such a pair {s, t} must satisfy |π(s) − π(t)| = 2 · O(ǫn), but few constraints contain such a
pair.

Lemma 19. The following inequalities hold:

1. wσ2

uv ≤ wπ⊛

uv + O(ǫnk−2)

2. w̄σ2

uv ≤ (1 + O(ǫ))wπ⊛

uv

Proof. The only constraints S ⊃ {u, v} that contribute differently to the left- and right-hand sides
of the first part are those containing a {s, t} 6= {u, v} that are a σ2/π⊛-inversion. By Lemmas 16
and 18 we can bound the number of such constraints by O(ǫnk), completing the proof of the first
part.

If wπ⊛

uv ≥ 1
2·3k−1

(|U |−2
k−2

)

the second part follows from the first part and the trivial fact w̄ ≤ w. Oth-

erwise by the first part we have wσ2

uv < 0.6 1
3k−1

(|U |−2
k−2

)

. Therefore by Lemma 17 wσ2

vu > 0.2 1
3k−1

(|U |−2
k−2

)

hence w̄σ2

uv = wσ2

uv − min(0.1 1
3k−1

(|U |−2
k−2

)

, wσ2

uv) = min(wσ2

uv − 0.1 1
3k−1

(|U |−2
k−2

)

, 0) ≤ min(wπ⊛

uv , 0) ≤ wπ⊛

uv

using the first part of the Lemma in the penultimate inequality.

Lemma 20.

1. Cw̄σ2

(π⊛) ≤ (1 + O(ǫ))
(

k
2

)

C(π⊛)

2. Cw̄σ2

(π3) ≤ (1 + O(ǫ))
(

k
2

)

C(π⊛)

3. Cw̄σ2

(π3) − Cw̄σ2

(π⊛) = O(ǫC(π⊛))

Proof. From the second part of Lemma 19 and Lemma 8 we conclude that

Cw̄σ2

(π⊛) ≤ (1 + O(ǫ))Cwπ⊛

(π⊛) = (1 + O(ǫ))

(

k

2

)

C(π⊛).

proving the first part of this Lemma.
The PTAS for FAST (Theorem 5) guarantees

Cw̄σ2

(π3) ≤ (1 + O(ǫ))Cw̄σ2

(π⊛), (6)

which combined with the first part of this Lemma yields the second part.
Finally the first part of Lemma 19 followed by the first part of this Lemma imply

Cw̄σ2

(π3) − Cw̄σ2

(π⊛) ≤ O(ǫ)Cwσ2

(π⊛) ≤ O(ǫC(π⊛)),

completing the proof of the third part of this Lemma.

9

Lemma 21. d(π3, π⊛) = O(C(π⊛)/nk−2)

Proof. By Lemma 20 we have Cw̄σ2

(π⊛) + Cw̄σ2

(π3) = O(C(π⊛)). For any u, v ∈ U that are a

π⊛/π3 inversion u, v contribute w̄σ2

uv + w̄σ2

vu to Cw̄σ2

(π⊛)+Cw̄σ2

(π3). By Lemma 17 this is Ω(nk−2),
proving that the number of π⊛/π3 inversions d(π3, π⊛) is O(C(π⊛)/nk−2) as desired.

Lemma 22. We have |π3(v) − π⊛(v)| = O(ǫn) for all v ∈ U .

Proof. Fix v ∈ U . In this proof we write w (resp. w̄) as a short-hand for wσ2
(resp. w̄σ2

). Observe
that there are at least (|π3(v)−π⊛(v)|−1) vertices between π3(v) and π⊛(v)+1/2 in π3. Any such
vertex u must contribute wuv to one of bw̄(π3, v, π⊛(v) + 1/2) and bw̄(π3, v, π3(v)) and contribute
wvu to the other. By Lemma 17 and local optimality of π3 we have

(|π3(v) − π⊛(v)| − 1)
(1 − 2/10)

3k−1

(|U | − 2

k − 2

)

≤ bw̄(π3, v, π⊛(v) + 1/2) + bw̄(π3, v, π3(v))

≤ 2bw̄(π3, v, π⊛(v) + 1/2).

Now apply Corollary 14

bw̄(π3, v, π⊛(v) + 1/2) ≤ bw̄(π⊛, v, π⊛(v)) + 2
√

d(π⊛, π3)2

(|U | − 2

k − 2

)

and then recall
√

d(π⊛, π3) = O(ǫn) by Lemma 21 and the assumption that OPT = O(ǫ2nk).
Next

bw̄(π⊛, v, π⊛(v)) ≤ (1 + O(ǫ))bwπ⊛

(π⊛, v, π⊛(v)) (Second part of Lemma 19)

= (1 + O(ǫ))b(π⊛, v, π⊛(v)) (Lemma 8) (7)

Finally

b(π⊛, v, π⊛(v)) ≤ b(σ1, v, σ2(v)) + O(nk−2(ǫn +
√

ǫ2n2)) (Lemmas 13, 12 and 16)

= O(ǫnk−1) (v ∈ U).

which completes the proof of the Lemma.

Lemma 23. C(π3) ≤ (1 + O(ǫ))C(π⊛).

Proof. First we claim that

|(C(π3) − C(π⊛)) − (Cwσ2

(π3) − Cwσ2

(π⊛))| ≤ E1, (8)

where E1 is the number of constraints that contain one pair of vertices u, v in different order in π3

and π⊛ and another pair {s, t} 6= {u, v} with relative order in π3, π⊛ and σ2 not all equal. Indeed
constraints ordered identically in π3 and π⊛ contribute zero to both sides of (8), regardless of σ2.
Consider some constraint S containing a π3/π⊛-inversion {u, v} ⊂ S. If the restrictions of the three
orderings to S are identical except possibly for swapping u, v then S contributes equally to both
sides of (8), proving the claim.

To bound E1 observe that the number of inversions u, v is d(π3, π⊛) ≡ D. For any u, v Lemmas
22, 16 and 18 allow us to show at most O(ǫnk−2) constraints containing {u, v} contribute to E1, so
E1 = O(Dǫnk−2) = O(ǫC(π⊛)) (Lemma 21).

Finally bound Cwσ2

(π3)−Cwσ2

(π⊛) = Cw̄σ2

(π3)−Cw̄σ2

(π⊛) ≤ O(ǫC(π⊛)), where the equality
follows from the definition of w and the inequality is the third part of Lemma 20.

Extending Lemma 23 to a bound on the cost of π4 is relatively straightforward. We do so and
prove our theorems in Appendix C.

10

Acknowledgements

We would like to thank Venkat Guruswami, Claire Mathieu, Prasad Raghavendra and Alex Samorod-
nitsky for interesting remarks and discussions.

References

[1] N. Ailon. Aggregation of Partial Rankings, p-ratings and top-m Lists. In 18th SODA, pages
415–424, 2007.

[2] N. Ailon and N. Alon. Hardness of Fully Dense Problems. Inf. Comput., 205:1117–1129, 2007.

[3] N. Ailon, M. Charikar, and A. Newman. Aggregating Inconsistent Information: Ranking and
Clustering. J. ACM, 55, 2008.

[4] N. Alon, W. Fernandez de la Vega, R. Kannan, and M. Karpinski. Random Sampling and
Approximation of MAX-CSP Problems. In 34th ACM STOC, pages 232–239, 2002. Journal
version in J. Comput. System Sciences 67 (2003), pp. 212-243.

[5] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In 36th ICALP, pages 49–58, 2009.

[6] S. Arora, D. Karger, and M. Karpinski. Polynomial Time Approximation Schemes for Dense
Instances of NP-Hard Problems. In 27th ACM STOC, pages 284–293, 1995. Journal version
in J. Comput. System Sciences 58 (1999), pp. 193-210.

[7] C. Bazgan, W. Fernandez de la Vega, and M. Karpinski. Polynomial Time Approximation
Schemes for Dense Instances of the Minimum Constraint Satisfaction Problem. Random Struc-
tures and Algorithms, 23:73–91, 2003.

[8] M. Charikar, V. Guruswami, and R. Manokaran. Every Permutation CSP of Arity 3 is Ap-
proximation Restitant. In 24th IEEE CCC, 2009.

[9] B. Chor and M. Sudan. A Geometric Approach to Betweenness. SIAM J. Discrete Math.,
11:511–523, 1998.

[10] W. Fernandez de la Vega, R. Kannan, and M. Karpinski. Approximation of Global MAX–CSP
Problems. Technical Report TR06-124, Electronic Colloquim on Computation Complexity,
2006.

[11] A. Frieze and R. Kannan. Quick Approximation to Matrices and Applications. Combinatorica,
19:175–220, 1999.

[12] G. Gutin, E. J. Kim, M. Mnich, and A. Yeo. Ordinal embedding relaxations parameterized
above tight lower bound. CoRR/arXiv, abs/0907.5427, 2009.

[13] M. Karpinski and W. Schudy. Linear Time Approximation Schemes for the Gale-Berlekamp
Game and Related Minimization Problems. In 41st ACM STOC, pages 313–322, 2009.

[14] M. Karpinski and W. Schudy. Faster Algorithms for Feedback Arc Set Tournament, Kemeny
Rank Aggregation and Betweenness Tournament. In Proc. 21st ISAAC, pages 3–14, 2010.

[15] C. Mathieu and W. Schudy. How to Rank with Few Errors. In 39th ACM STOC, pages 95–103,
2007. In Submission http://www.cs.brown.edu/∼ws/papers/fast journal.pdf, 2009.

11

[16] C. Mathieu and W. Schudy. Yet Another Algorithm for Dense Max Cut: Go Greedy. In Proc.
19th ACM-SIAM SODA, pages 176–182, 2008.

[17] J. Opatrny. Total Ordering Problem. SIAM J. Comput., 8:111–114, 1979.

[18] M. Rudelson and R. Vershynin. Sampling from Large Matrices: An Approach through Geo-
metric Functional Analysis. J. ACM, 54:21, 2007.

Appendix

A Runtime analysis

By Theorem 7 the additive approximation step takes time nO(1)2Õ(1/ǫ10). There are at most
(1/ǫ)t·(k−1) = 2Õ(1/ǫ) bucketed orderings σ0 to try. The PTAS for FAST takes time nO(1)2Õ(1/ǫ6)

by Theorem 5. The overall runtime is

nO(1)2Õ(1/ǫ10) + 2Õ(1/ǫ) ·
(

nO(1) + nO(1)2Õ(1/ǫ6)
)

= nO(1)2Õ(1/ǫ10).

Derandomization increases the runtime of the two algorithms that we use as subroutines to
npoly(1/ǫ). There are at most nt·(k−1) = nÕ(1/ǫ) possible sets T1, . . . Tt that the derandomized
algorithm must consider. Therefore the overall runtime is

(npoly(1/ǫ) + npoly(1/ǫ) · 2Õ(1/ǫ) · npoly(1/ǫ) = npoly(1/ǫ).

B Proofs

. . .
All k·(k+1) pairs

A B C D

Figure 1: An illustration of fragility. For a constraint to be fragile all the illustrated single vertex
moves must make any satisfied constraint unsatisfied.

Proof of Lemma 9. Fix costly vertex v. Consider picking a constraint containing v but no π∗/σ�-
inversions one vertex at a time (starting with v). Each vertex does a π∗/σ�-inversion with at
most ǫn − 1 other vertices, so there are at least n − iǫn possible choices for the vertex chosen
after 1 ≤ i ≤ k − 1 vertices are already chosen. The total number of such constraints is therefore
(n− ǫn)(n− 2ǫn) · · · (n− (k − 1)ǫn)/(k − 1)! ≥

(

n−1
k−1

)

(1− ǫ
(

k
2

)

). It follows that the total number of

constraints containing v and at least one π∗/σ�-inversion is at most ǫ
(

k
2

)(

n−1
k−1

)

.

12

. . .A B CC D

Figure 2: An illustration of weak fragility. For a constraint to be weak fragile all the illustrated
single vertex moves must make any satisfied constraint unsatisfied.

Therefore for any costly v we have

2

(

k

2

)

ǫ

(

n − 1

k − 1

)

≤ b(σ�, v, σ�(v)) ≤ b(π∗, v, π∗(v)) + ǫ

(

k

2

)

·
(

n − 1

k − 1

)

.

Rearranging we get

b(π∗, v, π∗(v)) ≥ 2

(

k

2

)

ǫ

(

n − 1

k − 1

)

− ǫ

(

k

2

)

·
(

n − 1

k − 1

)

= ǫ

(

k

2

)

·
(

n − 1

k − 1

)

.

Finally observe that kC(π∗) =
∑

v b(π∗, v, π∗(v)) ≥ (number costly)ǫ
(

k
2

)(

n−1
k−1

)

, completing the
proof.

Proof of Lemma 10 in the general weak fragile case. Observe that the quantity in brackets in (1)
is at least 1 for every Q that either has all k − 1 vertices between p and p′ in σ2 or has one vertex
between them and the remaining k − 2 either all before or all after. To lower-bound the number of
such Q we consider two cases.

If |B| ≥ |V |/3 then the number of such Q is at least
(|B|
k−1

)

= |B|
k−1

(|B|−1
k−2

)

≥ |B|
2·(k−1)3k−2

(

n−2
k−2

)

for

sufficiently large n.
If |B| < |V |/3 then either at least |V |/3 vertices are before or at least |V |/3 vertices are after

hence the number of such Q is at least |B|
(|V |/3

k−2

)

≥ |B|
2·3k−2

(

n−2
k−2

)

≥ |B|
(k−1)·3k−1

(

n−2
k−2

)

for sufficiently

large n.

Proof of Lemma 11. Focus on some v ∈ V and p ∈ P(v). From the definition of out-of-place and
Lemma 10 we have

b(σ�, v, σ�) + b(σ�, v, p) ≥ 6
(k
2

)

3k−1ǫn

(n − 1)3k−1

(

n − 1

k − 1

)

≥ 6ǫ

(

k

2

)(

n − 1

k − 1

)

for any v-out of place p. Next recall that for non-costly v we have

b(σ�, v, σ�(v)) < 2

(

k

2

)

ǫ

(

n − 1

k − 1

)

(9)

hence

b(σ�, v, p) > 4

(

k

2

)

ǫ

(

n − 1

k − 1

)

(10)

for any v-out of place p.

13

Recall that

b̂(v, p) =

(

n
k−1

)

t

∑

i:v 6∈Ti

c(σ0
Ti v7→p)

for any p. Each term of the sum is a 0/1 random variable with mean µ(p) = 1

(n
k−1)

∑

Q∈(V
k−1):v 6∈Q c(σ�

Q v7→

p) = 1

(n
k−1)

b(σ�, v, p). Therefore E
[

b̂(v, p)
]

= b(σ�, v, p). We can bound µ(σ�(v)) ≤ 2
(k
2

)

ǫ
(n−1
k−1

)

/
(n
k−1

)

≡
M using (9). For any v-out of place p we can bound µ(p) ≥ 2M by (10).

We can bound the probability that sum in b̂(v, σ�(v)) is at least (1 + 1/3)Mt using a Chernoff
bound as

exp(−(1/3)2Mt/3) ≤ exp

(

−1

9
· 1
(n
k−1

) · 2
(

k

2

)

ǫ

(

n − 1

k − 1

)

· 14 ln(40/ǫ)
(k
2

)

ǫ
· 1

3

)

≤ ǫ/40

for sufficiently large n. Similarly for any v-out of place p we can bound the probability that
b̂(v, p) is at most (1 − 1/3)Mt by exp(−(1/3)2Mt/2) ≤ (ǫ/40)3. Therefore by union bound the
probability of some v-out of place p having b̂(v, p) too small is at most ǫ2/403 ≤ ǫ/40. Clearly
4(1 − 1/3) ≥ 2(1 + 1/3) so each vertex v is out of place with probability at least ǫ/20. A Markov
bound completes the proof.

Proof of Lemma 13. Fix σ, σ′, T , v, p and p′. Let L (resp. R) denote the vertices in T that do
left to right (resp. right to left) (σ, p, σ′, p′)-crossings. It is easy to see that a constraint {v} ∪ Q,

Q ∈
(T\{v}

k−1

)

contributes identically to b(σ, v, p) and b(σ′, v, p′) unless it is one of the following two
types:

1. Q and (L ∪ R) have non-empty intersection (or)

2. Q contains a σ/σ′-inversion {s, t}.

The first part of the Lemma follows easily.
We prove the second part as a consequence of the first part. Observe that |L| = |R|+(net f low).

Assume w.l.o.g. that (net f low) ≥ 0. Observe that every pair v ∈ L and w ∈ R are a σ/σ′-inversion,
hence d(σ, σ′) ≥ |L| · |R| = (|R| + (net f low))|R| ≥ |R|2. We conclude that

(number of crossings) = |L| + |R| = 2|R| + (net f low) ≤ 2
√

d(σ, σ′) + (net f low). (11)

We now bound the second term of the first part of the Lemma:

(

n − 3

k − 3

)

d(σ, σ′) =

(

n − 2

k − 2

)

√

d(σ, σ′) · k − 2

n − 2
·
√

d(σ, σ′)

≤
(

n − 2

k − 2

)

√

d(σ, σ′) · (k − 2)

√

n(n − 1)/2

n − 2
≤ (k − 2)

(

n − 2

k − 2

)

√

d(σ, σ′) (12)

for sufficiently large n.
The second part of the Lemma follows from substituting (11) and (12) into the first part of the

Lemma.

Proof of Lemma 17. We prove the more interesting lower-bound and leave the straightforward proof
of the upper bound to the reader. Fix u, v ∈ U . We consider two cases.

14

If there are at least |U |/3 vertices between u and v in σ2 then we note that by weak fragility
every constraint S ⊇ {u, v} with all vertices in S between u and v in σ2 contributes at least 1 to

wuv + wvu. Therefore wuv + wvu ≥
(|U |/3

k−2

)

≥ 1
2·3k−2

(n−2
k−2

)

for sufficiently large n and small ǫ.

If there are at most |U |/3 vertices between u and v in σ2 then consider constraints with all their
vertices either all before or all after u and v. We note that by weak fragility each such constraint
S ⊇ {u, v} contributes at least 1 to wuv + wvu. There are clearly either at least |U |/3 vertices

before u and v or at least |U |/3 vertices after, hence at least
(|U |/3

k−2

)

≥ 1
2·3k−2

(n−2
k−2

)

constraints for
sufficiently large n and small ǫ.

We conclude that wuv +wvu ≥ 1
2·3k−2

(n−2
k−2

)

≥ 1
3k−1

(n−2
k−2

)

. The Lemma follows from the definition
of w̄.

C Analysis of π
4

In this section we prove Theorem 3 and 4:

C(π4) ≤ (1 + O(ǫ))OPT (13)

and

d(π4, π∗) = O

(

OPT

poly(ǫ)nk−2

)

. (14)

If OPT > ǫ4nk then, as discussed in Section 3, Equation (13) follows from the algorithm and
the additive error guarantee. Equation (14) is vacuous in this case. It remains to show (13) and
(14) in the case that that Sections 4-6 dealt with: OPT ≤ ǫ4nk.

First we prove (13). We consider three contributions to these costs separately: constraints with
0, 1, or 2+ vertices in V \ U .

The contribution of constraints with 0 vertices in V \U to the left- and right-hand sides of (13)
are clearly C(π3) and C(π⊛) respectively. We showed C(π3) ≤ C(π⊛) + O(ǫ)C(π⊛) in Lemma 23.

Second we consider the contribution of constraints with exactly 1 vertex in V \ U . Consider
some v ∈ V \ U . We want to compare b(π3, v, σ4(v)) and b((π∗

U), v, π∗(v)). Let p be the half-
integer so that Ranking(v 7→p π⊛

U) = Ranking(v 7→π∗(v) π∗
U). The algorithm’s greedy choice

minimizes b(π3, v, σ4(v)) so b(π3, v, σ4(v)) ≤ b(π3, v, p). Now using Lemmas 13 and 21 we have
b(π3, v, p) ≤ b(π⊛, v, p)+O(

√

d(π3, π⊛)nk−2) = b(π⊛, v, p)+O(
√

OPT/nknk−1). Note b(π⊛, v, p) =
b((π∗

U), v, π∗(v)). Let γ = OPT/nk. We conclude by Lemma 15 that the contribution of constraints

with exactly 1 vertex in V \ U is O(|V \ U |
√

OPT/nknk−1) = O(γ3/2nk

ǫ) = O(ǫOPT).
Finally by Lemma 15 there are at most |V \U |2nk−2 = O((γ

ǫ)2n2nk−2) = O(ǫ2OPT) constraints
containing two or more vertices from V \ U .

This ends the proof of (13).
Finally we prove (14). By Lemma 21 we have

d(π3, π⊛) = O(C(π⊛)/nk−2).

Finally a pair of vertices can only be counted in d(π4, π∗) but not d(π3, π⊛) if at least one of the
vertices is in the ambiguous set V \ U . By Lemma 15 |V \ U | = O(n

ǫ · OPT
nk) so there at most

O(n · OPT
ǫnk−1) = O(OPT

ǫnk−2) such pairs.

15

