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Abstract

We consider the minimum vertex cover problem in hypergraphs in which every hy-

peredge has size k (also known as minimum hitting set problem, or minimum set cover

with element frequency k). Simple algorithms exist that provide k-approximations,

and this is believed to be the best possible approximation achievable in polynomial

time. We show how to exploit density and regularity properties of the input hyper-

graph to break this barrier. In particular, we provide a randomized polynomial-time

algorithm with approximation factor k/(1+(k−1) d̄
k∆ ), where d̄ and ∆ are the average

and maximum degree, respectively, and ∆ must be Ω(nk−1/ log n). The proposed algo-

rithm generalizes the recursive sampling technique of Imamura and Iwama (SODA’05)

for vertex cover in dense graphs. As a corollary, we obtain an approximation factor

k/(2 − 1/k) for subdense regular hypergraphs, which is shown to be the best possible

under the unique games conjecture.

Keywords: Approximation Algorithms, Dense Hypergraphs, Vertex Cover, Inapprox-

imability Bounds, Unique Games

1 Introduction

A vertex cover of a graph is a subset of its vertices hitting all edges. The Minimum Vertex Cover

problem asks to find a minimum size vertex cover, and is one of the most classical NP-complete

problems. A k-uniform hypergraph is a hypergraph whose edges are k-element subsets of his
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vertex set, and the k-uniform Vertex Cover problem is the problem of finding a minimum size vertex

cover in a k-uniform hypergraph. This problem is equivalent to the Set Cover problem where each

element of the universe occurs in exactly k sets. For k = 2, it is the classical Vertex Cover problem

in graphs. A simple 2-approximation algorithm exists for this problem by constructing a maximal

matching greedily. However, currently best known approximation algorithms can only achieve an

approximation ratio of 2− o(1) [8, 12]. The problem is k-approximable in k-uniform hypergraphs,

by choosing a maximal set of nonintersecting edges, and picking all vertices in them. The best

known approximation factor is k − (k − 1) ln lnn/ lnn and is due to Halperin [8].

On the inapproximability side, one of the first hardness result for the k-uniform Vertex Cover

problem is due to Trevisan [20]. He obtained an inapproximability factor of k1/19. Holmerin [9]

proved that it is NP-hard to approximate within k1−ǫ, and in addition, in [10], that the 4-uniform

Vertex Cover problem is NP-hard to approximate within 2 − ǫ. Dinur et al. proved a (k − 3 − ǫ)
lower bound [5], later improved to (k − 1− ǫ) [6].

In [16], Khot introduced the Unique Games Conjecture (UGC) as an approach to tackle the

inapproximability of NP-hard optimization problems. Assuming the unique games conjecture,

an inapproximability factor of k − ǫ for the k-uniform Vertex Cover problem is due to Khot and

Regev [17] which implies that the achieved ratios are the best possible. Recently, Bansal and

Khot [2] were able to show in a conceptually different manner that this UGC-based inapproxima-

bility bound also holds on k-uniform hypergraphs that are almost k-partite.

In order to break these complexity barriers, we propose to consider dense instances of the

Vertex Cover problem in hypergraphs, as was done previously for many other problems [1, 14,

15, 13]. Typically, a graph is said to be dense whenever the number of edges is within a constant

factor of n2, where n is the number of vertices. The Vertex Cover problem in dense hypergraphs,

defined as hypergraphs with Ω(
(n
k

)

) hyperedges, has been considered before by Bar-Yehuda and

Kehat [3]. They proposed an approximation algorithm which achieves a better approximation ratio

than k and showed that it is best possible under some assumptions similar to the UGC. To the

authors’ knowledge, this is the only result tackling the dense version of the Vertex Cover problem

in hypergraphs.

However, dense instances of the Vertex Cover problem in graphs (k = 2) has been considered

previously by Karpinski and Zelikovsky [15], Eremeev [7], Clementi and Trevisan [4], and later

by Imamura and Iwama [11]. In the latter contribution, the authors give an approximation ratio

parameterized by both the average and the maximum degree of the input graphs, that is strictly

smaller than 2 whenever the ratio between the two is bounded, and the graph has average degree

Ω(n/ log log n). Other works tackling special instances of the Vertex Cover problem in hypergraphs

include [18, 19].

1.1 Definitions

We use the notation [i] := {1, 2, . . . , i}. Let S be a finite set and k ∈ [|S|], we introduce the

abbreviation
(S
k

)

for the set of all subsets S′ ⊆ S such that |S′| = k. A k-uniform hypergraph is a

pair (V,E), where V is the vertex set, and E is a subset of
(V
k

)

. We will usually set n := |V | and

m := |E|. In the remainder, unless stated explicitly, we will suppose that k = O(1).
A Vertex Cover of a k-uniform hypergraph (V,E) is a set C ⊆ V such that e ∩ C 6= ∅ ∀e ∈ E.
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The minimum Vertex Cover problem consists of finding a vertex cover of minimum size in a given

hypergraph.

The degree d(v) of a vertex v is equal to |{e ∈ E : v ∈ e}|. Analogously, we define the degree

d(S) of a S ⊆ V to be |{e ∈ E : S ⊆ e}|. We refer to the average and maximum degree of a vertex

as d̄ and ∆, respectively. A hypergraph is said to be d-regular whenever d(v) = d ∀v ∈ V , and

regular whenever there exists a d such that it is d-regular.

We say that a k-uniform hypergraph is ℓ-wise ǫ-dense for ℓ + 1 ∈ [k] and ǫ ∈ [0, 1] whenever

for every subset S ∈
(

V
ℓ

)

, we have d(S) ≥ ǫ
(

n−ℓ
k−ℓ

)

. Thus, for instance a 0-wise ǫ-dense k-uniform

hypergraph is a hypergraph with at least ǫ
(

n
k

)

hyperedges, while a 1-wise ǫ-dense k-uniform hyper-

graph is such that every vertex is contained in at least ǫ
(

n−1
k−1

)

hyperedges. This definition naturally

generalizes the notion of weak and strong density in graphs defined in previous works [15]. We call

a k-uniform hypergraph subdense if d̄ = Ω
(

nk−1

logn

)

holds.

1.2 Our Results

We propose new approximation algorithms for the k-uniform Vertex Cover problem with approxi-

mation factors parameterized by the density and regularity parameters of the input hypergraph.

In 2004, Bar-Yehuda and Kehat [3] proved that the minimum vertex cover in 0-wise ǫ-dense

k-uniform hypergraphs was approximable within a factor k/(k − (k − 1)(1 − ǫ)
1

k ). In the next

section, we generalize this result to ℓ-wise ǫ-dense hypergraphs with ℓ > 0. We also provide a

shorter proof of their result.

In Section 3, we propose a randomized algorithm yielding an approximation factor

k/(1 + (k − 1) d̄
k∆) on k-uniform hypergraphs with d̄ = Ω(nk−1/ log n). This implies a k/(2 − 1/k)-

approximation algorithm for subdense regular hypergraphs. The proposed algorithm is based on

Imamura and Iwama’s recursive sampling technique [11] for vertex cover in dense graphs. We

generalize the technique to hypergraphs, and also improve its analysis.

Finally, in Section 4, we prove the optimality of our bounds for a specified range of ∆ under the

Unique Games Conjecture [17]. Essentially, we show that any improvement on the approximation

factor of our algorithms would yield an approximation factor asymptotically smaller than k for the

Vertex Cover problem in arbitrary k-uniform hypergraphs.

2 Approximating Vertex Cover in Dense Hypergraphs

We prove the following result:

Theorem 1. The Vertex Cover problem is approximable in polynomial time within a factor

k

k − (k − 1)(1 − ǫ) 1

k−ℓ

− o(1)

in ℓ-wise ǫ-dense k-uniform hypergraphs.
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In order to attain theorem 1, we provide several lemmas which are crucial to the proof of

the main result in this section. We start with the following simple extension of a Lemma from

Bar-Yehuda and Kehat [3].

Lemma 1. LetG = (V,E) be a k-uniform hypergraph with a minimum vertex cover C, and letW ⊆ V
such that |W ∩ C| ≥ δ|W | for some constant δ ∈ [0, 1]. For every constant j ∈ N, given W , we can

compute an approximate solution to the Vertex Cover problem in G, with an approximation factor

k

1 + (δk − 1) |W |
n−j

,

in polynomial time.

Proof. For a fixed j ≥ k, we can check for all i ∈ {k − 1, .., j} and for all S ∈
( V
n−i

)

whether S
is a vertex cover of G in polynomial time. Thus, our solution can be assumed to be smaller than

n− j. Then, the algorithm computes a k-approximation in the hypergraph G′ induced by the edges

that are not covered by W , and returns the union of this with W . Let us denote by S the returned

solution, by C the considered optimal solution, by ρ the approximation factor |S|/|C|, and by C ′

the optimal solution of the Vertex Cover problem on G′. Clearly, we can assume
ρ|C|
n−j ≤ 1. Hence,

we obtain:

|S| = ρ|C| ≤ |W |+ k|C ′| (1)

= |W |+ k(|C| − δ|W |) (2)

= k|C| − (δk − 1)|W | (3)

≤ k|C| − (δk − 1)
|W |
n − j ρ|C| (4)

ρ ≤ k − (δk − 1)
|W |
n − j ρ (5)

ρ ≤ k

1 + (δk − 1) |W |
n−j

. (6)

The following lemma also plays a key role in our analysis.

Lemma 2. In a 0-wise ǫ-dense k-uniform hypergraphG, the first (1−(1−ǫ) 1

k )n highest-degree vertices

all have degree at least (1− (1− ǫ)k−1

k )
(n−1
k−1

)

.

Proof. We consider a hypergraph G containing m ≥ ǫ
(n
k

)

hyperedges. Let us denote by H the set of

the first (1 − (1 − ǫ) 1

k )n highest-degree vertices (breaking ties arbitrarily). Suppose the statement

is not true. Then the number m of edges in G is strictly smaller than the number of edges in

a hypergraph in which all vertices of H have degree
(n−1
k−1

)

(the maximum possible), and all the
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remaining edges have degree exactly (1− (1− ǫ)k−1

k )
(n−1
k−1

)

. Thus

m <
1

k

(

|H|
(

n− 1

k − 1

)

+ (n− |H|)(1 − (1− ǫ)k−1

k )

(

n− 1

k − 1

))

(7)

=
1

k

(

(1− (1− ǫ) 1

k )n

(

n− 1

k − 1

)

+ (n− (1− (1− ǫ) 1

k )n)(1− (1− ǫ)k−1

k )

(

n− 1

k − 1

))

(8)

= (1− (1− ǫ) 1

k )

(

n

k

)

+ (1− ǫ) 1

k (1− (1− ǫ)k−1

k )

(

n

k

)

(9)

= ǫ

(

n

k

)

(10)

which is a contradiction, since G is weakly ǫ-dense.

We now prove Theorem 1, and first consider the case ℓ = 0. In order to apply Lemma 1, we

need to find a large subset W of a minimum vertex cover. The following recursive algorithm

returns a polynomial-size collection W of subsets Wi ⊆ V , such that at least one of them is

contained in a minimum vertex cover.

input: a 0-wise ǫ-dense k-uniform hypergraph G = (V,E)

1. if k = 1 then

(a) return a minimum vertex cover of G, of size |E| ≥ ǫn

2. else:

(a) let H be the set of the first (1 − (1 − ǫ) 1

k )n highest-degree vertices (breaking ties arbi-

trarily)

(b) add H toW
(c) for each v ∈ H:

i. let G′ be the (k − 1)-uniform hypergraph (V − {v}, {e − {v} : e ∈ E, v ∈ e})
ii. let ǫ′ := 1− (1− ǫ) k

k+1

iii. call the procedure recursively, with the parameters G′, ǫ′, k−1; letW ′ be its output

iv. add the sets ofW ′ toW
(d) returnW

Lemma 3. Given a 0-wise ǫ-dense k-uniform hypergraph G, we can find in polynomial time a set

W := {Wi}si=1 of size s = O(nk), with Wi ⊆ V , and such that

1. There exists i ∈ [s] such that Wi is a subset of a minimum vertex cover of G,

2. |Wi| ≥ (1− (1− ǫ) 1

k )(n− k + 1), ∀i ∈ [s].

Proof. The above algorithm outputs of set W of size O(nk) in time O(nk), which is polynomial

since we assumed k = O(1).
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The first condition is verified by induction. If all vertices in H belong to a minimum vertex

cover, we are done. Otherwise, there exists v ∈ H that does not belong to any minimum vertex

cover. But then a minimum vertex cover of G must contain a minimum vertex cover of the (k − 1)-
uniform hypergraph G′, as otherwise some edges will not be covered. By induction, the recursive

call returns one subset contained in a minimum vertex cover of G′, hence also in a minimum vertex

cover of G. The base case k = 1 is trivial.

We prove the second property by induction as well. Suppose that |Wi| ≥ (1− (1− ǫ) 1

k )(n− k+
1), ∀i ∈ [s] holds for k-uniform hypergraphs, for some fixed value of k. We now prove the property

for k + 1. From Lemma 2, the recursive calls are performed on weakly ǫ′-dense hypergraphs with

n − 1 vertices. Thus by the induction hypothesis, the recursive call returns a collection of sets Wi

of size

|Wi| ≥ (1− (1− ǫ′) 1

k )((n − 1)− k + 1) (11)

= (1− (1− (1− (1− ǫ) k

k+1 ))
1

k )(n− (k + 1)− 1) (12)

= (1− (1− ǫ) 1

k+1 )(n − (k + 1)− 1), (13)

as claimed. The base case k = 1 is verified, as in that case the procedure yields at least ǫn vertices.

We now tackle the case ℓ > 0, i.e. hypergraphs in which every subset of ℓ vertices is contained

in ǫ
(n−ℓ
k−ℓ

)

hyperedges.

Lemma 4. Given a ℓ-wise ǫ-dense k-uniform hypergraph G, we can find in polynomial time a set

W := {Wi}si=1 of size s = O(nk), with Wi ⊆ V , and such that

1. There exists i ∈ [s] such that Wi is a subset of a minimum vertex cover of G,

2. |Wi| ≥ (1− (1− ǫ) 1

k−ℓ )(n− k + 1), ∀i ∈ [s].

Proof. Let V be the vertex set of G. Consider a subset S of ℓ vertices that do not belong to a given

minimum vertex cover C of G. We define the hypergraph G′ as the subhypergraph of G whose

vertex set is V ′ := V \ S, and whose hyperedges are the hyperedges of G containing S, restricted

to V \ S. Since S is not contained in C, C must contain a vertex cover of G′. From the definition

of ℓ-wise ǫ-density, G′ has at least ǫ
(n−ℓ
k−ℓ

)

edges. Hence G′ is a 0-wise ǫ-dense (k − ℓ)-uniform

hypergraph with n − ℓ vertices. From Lemma 3, we can extract O(nk−ℓ) candidates Wi, which are

subsets of V ′ of size at least (1 − (1 − ǫ) 1

k−ℓ )(n − k + 1). One of them at least is contained in a

minimum vertex cover of G′, and hence of G. By enumerating all O(nℓ) possibilities for S, we get

the result in time O(nk).

The proof of Theorem 1 is now straightforward. By testing all possible sets Wi ∈ W and

choosing the one that yields the smallest cover, we get from Lemma 1 (with δ = 1) a polynomial-

time approximation algorithm with approximation factor

k

1 + (k − 1) |W |
n−j

=
k

1 + (k − 1)(1 − (1− ǫ) 1

k−ℓ )
− o(1) =

k

k − (k − 1)(1 − ǫ) 1

k−ℓ

− o(1)

in ℓ-wise ǫ-dense k-uniform hypergraphs.
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3 A Randomized Approximation Algorithm for Near-

Regular Hypergraphs

We now prove a complementary result, yielding an approximation factor for the problem that

is parameterized by both the average and the maximum degree of the input hypergraph. Our

algorithm and analysis extend the work of Imamura and Iwama [11].

Theorem 2. For every ǫ > 0 and k = o(log n), there is a randomized approximation algorithm which

computes with high probability a solution for the Vertex Cover problem on k-uniform hypergraphs with

approximation ratio
k

1 + (k − 1) d̄
k∆

+ ǫ,

where d̄ and ∆ denote the average and maximum degree of the hypergraph, respectively. The running

time is nO(1)2O(k·ψ(n) log log k), which is polynomial if k ·ψ(n) log log k = O(log n) and quasi-polynomial

if ψ(n) = polylog n.

By letting d̄/∆→ 1 and d̄ = Ω
(

nk−1

logn

)

, we get the following corollary.

Corollary 1. The Vertex Cover problem is approximable in polynomial time within a factor k
2−1/k in

subdense regular k-uniform hypergraphs with k = O(1).

3.1 Outline

The algorithm first iteratively removes vertex subsets, until a sufficiently small set of vertices re-

main, then applies the trivial k-approximation algorithm on the remaining induced hypergraph. We

first suppose that at every step i of the algorithm, we are able to guess a sufficiently large subset of

an optimal solution of the current hypergraph Gi. This subset of vertices is removed, together with

the edges that they cover, to form Gi+1. We will see in the next subsection how we can sample the

set W computed in the algorithm of section 2 to perform this guessing step efficiently. The union

of the removed sets will form the set W allowing us to use Lemma 1. We aim at obtaining such a

set W of size approximately βn, with β := d̄/(k∆).
Letting Gi be the hypergraph considered at the ith step, we denote by ni its number of vertices,

by Ei its edge set, by ǫi := |Ei|/
(

ni

k

)

its density (in the ℓ = 0 sense), and by d̄i := |Ei|k/ni its

average degree. We also let ψ(n) :=
(

n
k−1

)

/∆. Let si := ni − (1 − β)n. Note that si = 0 ⇒ ni =
(1− β)n⇒ n− ni = βn. Since n− ni is the size of the extracted set W , si can serve as a measure

of progress of the procedure. At every step, we remove cn/ψ(n) vertices, until si ≤ cn, for a small

constant c ∈ [0, 1]. Thus at the end of the procedure, we will have si ≤ cn ⇒ |W | ≥ (β − c)n.

We now show we can always find a set of this size contained in a minimum vertex cover. From

Lemma 3, we know there exists such a set of size at least ri, where

ri :=
(

1− (1− ǫi)
1

k

)

(ni − k + 1).

We suppose that we can efficiently guess this subset, and prove that it is large enough.
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Lemma 5. provided si ≥ cn, we have the following inequality:

ri ≥ c
n

ψ(n)
. (14)

We need three simple intermediate results.

Lemma 6. Let H be a k-uniform hypergraph with n vertices, maximum degree ∆ and maximum

independent set of size at least x. Then H has at most ∆(n− x) edges.

Proof. Every vertex covers at most ∆ edges, hence the size of a minimum vertex cover of H, say

τ , satisfies |E(H)| ≤ ∆τ . Also, by definition, the largest independent set of H has size n − τ ≥ x,

hence τ ≤ n− x.

Lemma 7. |Ei| ≥ ∆si

Proof. The hypergraph G′ := G − Ei has an independent set of size at least ni = si + (1 − β)n, as

by definition all the vertices of Gi form an independent set in G′. Thus from Lemma 6, G′ can have

at most ∆(n− (si + (1− β)n)) = ∆(βn− si) edges. So we obtain

|Ei| = |E| − |E(G′)| ≥ d̄n

k
−∆(βn− si) = ∆βn−∆(βn− si) = ∆si.

Lemma 8. 1− (1− ǫ) 1

k ≥ ǫ
k ∀ǫ ∈ [0, 1], k ≥ 1.

Proof of Lemma 5. Combining the two previous lemmas, we obtain:

ri
si
≥ ǫi(ni − k + 1)

ksi
(from Lemma 8) (15)

=
|Ei|(ni − k + 1)

ksi
(ni

k

) (16)

≥ ∆si(ni − k + 1)

ksi
(ni

k

) (from Lemma 7) (17)

=
∆

( ni

k−1

) ≥ ∆
( n
k−1

) =
1

ψ(n)
(18)

ri ≥
si
ψ(n)

≥ c n

ψ(n)
. (19)

Thus we know we can extract this number of vertices at each step. The number t of required

steps is therefore

t :=
(β − c)n
c n
ψ(n)

= ψ(n)(β/c − 1). (20)

8



3.2 The recursive sampling procedure

We now define a recursive sampling procedure that will allow us to efficiently guess the subsets.

The procedure IR returns a small set of candidate subsets. It is a sampling version of the procedure

given in the previous section.

Procedure IR(G, l) (Inner Recursion)

Input: a k-uniform hypergraph G = (V,E) and l ∈ N

1. W ← ∅

2. if k = 1 then

(a) return {C}, where C is set of cn/ψ(n) arbitrary vertices of E

3. else:

(a) let H be the set of the first cn/ψ(n) highest-degree vertices (breaking ties arbitrarily)

(b) add H toW
(c) let H ′ ⊆ H be a random subset of l vertices

(d) for each v ∈ H ′:

i. let G′ be the (k − 1)-uniform hypergraph (V \ {v}, {e \ {v} : e ∈ E, v ∈ e})
ii. call the procedure recursively with the parameters k − 1, G′, l; letW ′ be its output

iii. add the sets ofW ′ toW
(e) returnW

The procedure ER below iterates this extraction until si ≤ cn, using t recursion levels. It is

initially called with i = 0 and t = ψ(n)(β/c − 1). It also uses a variable l, which sets the size of the

sample used.

Algorithm ER(G, i) (Outer Recursion)

Input: a k-uniform hypergraph G with i ∈ N, i ≤ t

1. W ← ∅

2. if i < t then:

(a) W ← IR(G, l)

(b) return min{W ′ ∪ER(G \W ′, i+ 1) |W ′ ∈ W}

3. else (i = t)

(a) apply a k-approximation algorithm to G and let C be the resulting vertex cover

(b) return C

9



Let us choose a constant p ∈ (0, 1), and define the sample size l as

l := ⌈log(1− p 1

k )/ log p⌉.

Note that 1 − p
1

k = Θ( 1
k ), hence l = Θ(log k). With this value of l, the procedure IR has the

following property. We denote by C an arbitrary vertex cover of the input hypergraph.

Lemma 9. The setW returned by the procedure IR contains a subset W ′ such that |W ′ ∩C| ≥ p|W ′|
with probability at least p.

Proof. Let H be the first cn/ψ(n) highest-degree vertices. If |H∩C| ≥ p|H| then we are done. Thus

we can suppose that |H ∩C| < p|H|, and the probability that a random vertex of H belongs to C is

at most p. Thus with probability at least 1− pl we get a vertex v 6∈ C in the selected sample, and C
must contain a vertex cover of the hypergraph G′ defined by v. By iterating, we eventually get that

the probability is at least (1− pl)k ≥ p, from the definition of l.

The procedure ER performs a recursive exploration of a search tree, branching on every subset

W ′ in the set of candidatesW. A root-to-leaf path in this tree yields a set W , defined as the union

of all the candidates W ′ selected along the path. We now prove that with high probability, this

search tree contains a path yielding a suitable set W .

Lemma 10. For any δ > 0, the procedure ER constructs a set W of (β − c)n vertices, such that

|W ∩ C| ≥ (1− δ)p2|W |, with probability at least 1− e−ψ(n)(β/c−1)p δ
2

2 .

Proof. We introduce the random variable Xi denoting the success in the ith step. Therefore, we

have p(Xi = 1) = p and p(Xi = 0) = 1− p. We let X =
∑

i∈[t]Xi. Clearly, we have

E[X] ≥ tp = ψ(n)(β/c − 1)p.

Since cn/ψ(n) vertices are chosen at every step, the expected number of vertices of W that are

contained in C is

E[X]pc
n

ψ(n)
≥ (β/c− 1)p2cn (21)

= (β − c)p2n. (22)

The claimed statement is obtained using Chernoff bounds.

3.3 Assembling the pieces

The proof of Theorem 2 follows directly from the previous lemmas.

Proof of Theorem 2. The algorithm is as follows. First, select a constant c < 1, arbitrarily small,

and a probability p, that can be arbitrarily close to 1. Then compute the corresponding value of

the sample size l and the number of steps t, and run the procedure ER with these parameters.

From Lemmas 10 and 1, with probability at least 1 − e−ψ(n)(β/c−1)p δ
2

2 , the procedure ER achieves

an approximation ratio
k

1 + ((1− δ)p2k − 1)(β − c) .
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When c→ 0 and p→ 1, this ratio is arbitrarily close to k/(1 + (k − 1)β).
The procedure ER generates a search tree of height t and fan-out less than lk. At every node of

the tree, the procedure IR is called, taking O(nO(1)) +O(lk) time. The overall running time of the

procedure is therefore O(nO(1) · lkt). We have kt = kψ(n)(β/c − 1) = Θ(kψ(n)) and l = Θ(log k).
Hence the running time is nO(1)2O(kψ(n) log log k), as claimed.

4 Lower bounds

In this section, we provide several inapproximability results based on two well-known conjectures,

namely the UGC and P 6= NP . In particular, we show that the achieved approximation ratios in

section 2 and 3 are optimal in a specified range of ∆ assuming the Unique Game Conjecture.

We introduce two hardness results on which our inapproximability bounds are based. The

following hardness result is due to Khot and Regev [17] and is underlying the UGC.

Theorem 3. Given a k-uniform hypergraph H = (V,E), let OPT denote an optimal vertex cover of

H. For every δ > 0, the following is UG-hard to decide:

|V |(1 − δ) ≤ |OPT | or |OPT | ≤ |V |(1/k + δ)

On the other hand, Dinur et al. [6] proved the following NP-hardness result.

Theorem 4. Given a k-uniform hypergraphH = (V,E) with k ≥ 3, letOPT denote an optimal vertex

cover of H. For every δ > 0, the following is NP-hard to decide:

|V |(1− δ) ≤ |OPT | or |OPT | ≤ |V |(1/(k − 1) + δ)

The next theorem shows that the approximation algorithm from theorem 1 is optimal assuming

the UGC.

Theorem 5. Assuming the UGC and P 6= NP , respectively, there is no polynomial time algorithm

with an approximation ratio better than

k

k + (k − 1)(1 − ǫ) 1

k−ℓ

and for any k ≥ 3
k − 1

k − 1 + (k − 2)(1 − ǫ) 1

k−ℓ

,

respectively, by a constant for the Vertex Cover problem in ℓ-wise ǫ-dense k-uniform hypergraphs.

Proof. As a starting point of the reduction, we use the hypergraph H = (V,E) from theorem 3 and

construct a ℓ-wise ǫ-dense k-uniform hypergraph H ′ = (V ′, E′). We introduce the abbreviations

N := |V ′| and n := |V |. First, we join a clique C = (V (C),
(V (C)

k

)

) of size c ·N (that is, c ·N vertices

with all possible hyperedges of size k) to H. Furthermore, we add all hyperedges e ∈
(C∪V

k

)

, such

that at least one vertex in e is from C. Thus, we obtain N = cN +n and N = n/(1− c). We denote

by OPT ′ an optimal vertex cover of H ′. The UG-hard decision question from theorem 3 transforms

into the following:

n(1− δ) +
cn

1− c ≤ |OPT
′| or |OPT ′| ≤ n(

1

k
+ δ) +

cn

1− c

11



Assuming the UGC, this implies the hardness of approximating the Vertex Cover problem in ℓ
wise ǫ-dense hypergraphs for every δ′ > 0 to within:

n(1− δ) + cn
1−c

n(1/k + δ) + cn
1−c

=
n(1− δ)(1 − c) + nc

n(1/k + δ)(1 − c) + cn
=

1− δ(1 − c)
1/k − c/k + c+ δ/k(1 − c) (23)

=
k

1 + (k − 1)c
− δ′ (24)

By using Theorem 4, an analog calculation leads to the fact that it is NP-hard to approximate the

Vertex Cover problem in ℓ wise ǫ-dense hypergraphs for every δ′ > 0 to within:

k − 1

1 + (k − 2)c
− δ′ (25)

In order to obtain a ℓ-wise ǫ-dense k-uniform hypergraph, we have to determine the right value

for c. Let S ∈
(V
ℓ

)

be a subset of V , and d(S) denote its degree in H ′. We can assume that

min{d(S′) | S′ ∈
(

V ′

ℓ

)

} = min{d(S) | S ∈
(

V
ℓ

)

}. Hence, it suffices to ensure that d(S) ≥ ǫ
(

N−ℓ
k−ℓ

)

=

ǫ (N−ℓ)k−ℓ

(k−ℓ)! − o
(

(N−ℓ)k−ℓ

(k−ℓ)!

)

holds. We obtain

d(S) ≥
(

N − ℓ
k − ℓ

)

−
(

N − ℓ− cN
k − ℓ

)

≥ (N − k + 1)k−ℓ

(k − ℓ)! − (N − ℓ− cN)k−ℓ

(k − ℓ)!

=
Nk−ℓ[(1− (k + 1)/N)k−ℓ − (1− ℓ/N − c)k−ℓ]

(k − ℓ)!

By comparing the factors, we get (1− (k + 1)/N)k−ℓ − (1− ℓ/n′ − c)k−ℓ = ǫ− o(1). Therefore,

we deduce that H ′ is ℓ-wise ǫ-dense for

c = 1− [(1− k/n′)k−ℓ − ǫ] 1

k−ℓ + o(1) = 1− (1− ǫ) 1

k−ℓ + o(1).

Plugging c into equation (24), we obtain the following inapproximability factor R assuming the

UGC.

R =
k

1 + (k − 1)c
− δ′

=
k

k + (k − 1)(1 − ǫ) 1

k−ℓ

− o(1)− δ′

Analogously, by using equation (25) instead, we get for every δ′ > 0 the inapproximability factor

k − 1

1 + (k − 2)(1 − ǫ) 1

k−ℓ

− o(1) − δ′

assuming P 6= NP .

12



The next theorem generalizes the former result in the sense that the inapproximability factor

is parameterized by the maximum degree ∆ of the hypergraph. In addition, it shows that the

approximation algorithm from theorem 2 is optimal in a specified range of ∆ assuming the UGC.

Theorem 6. Assuming the UGC and P 6= NP , respectively, for every c ∈ N, there is a c2 ∈ [0, 1] such

that no polynomial time algorithm can find a solution with an approximation ratio better than

k

1 + (k − 1) d̄
k∆

and for any k ≥ 3
k − 1

1 + (k − 2) d̄
k∆

,

respectively, by a constant for the Vertex Cover problem k-uniform hypergraphs with average degree d̄,

maximum degree ∆ = Ω(n
k−1

c ) and ∆ ≤ c2 nk−1

kk−1(k−1)!
.

Proof. We proceed as before, by considering the hypergraph H = (V,E) of Theorem 3, with n :=

|V |. Since the only way to achieve a better factor than k is in case of d̄
∆ ∈ (0, 1], we will set

d̄
∆ := ǫ ∈ (0, 1] in the remainder. We construct a new hypergraph H ′ = (V ′, E′) consisting of

(1− ǫ/k)n disjoint copies of H, together with nǫ/k disjoint complete k-uniform hypergraphs of size

n+ k (cliques). We let V1 be the set of vertices in the copies of H, and V2 the set of vertices of the

cliques, and n′ := |V ′| = |V1|+ |V2| = n2 + o(n2). Note that the degrees of the vertices restricted to

neighbors in V1 or V2 are at most
(n+k−1
k−1

)

= O(nk−1) = O(
√
n′k−1). Hence, we can make H ′ to have

asymptotically the average degree d̄ = ω(n′
k−1

2 ) and maximum degree ∆ = ω(n′
k−1

2 ) by adding as

many hyperedges as needed with vertices in both V1 and V2, thus defining E′. By construction, the

maximal degree which can be obtained is proportional to
(n2ǫ/k
k−1

)

.

By definition, a vertex cover of H ′ must contain at least n + k − k = n vertices of each clique.

Thus, we need to include at least n2ǫ/k vertices. We now consider the two cases in the decision

problem above. If a vertex cover of H requires n(1−δ) vertices, then we need (1−ǫ/k)n ·n(1−δ) =
(1− ǫ/k)n2(1 − δ) additional vertices to cover all the copies. In the other case, (1− ǫ/k)n2(1/(k −
1) + δ) vertices suffice. Up to a O(n) term, those vertices are sufficient to cover H ′. Denoting

by OPT ′ an optimal vertex cover of H ′, the UG-hard decision question from theorem 4 therefore

becomes:

(1− ǫ/k)n2(1− δ) +
n2ǫ

k
+ o(n2) ≤ |OPT ′| or (1− ǫ/k)n2(1/(k − 1) + δ) +

n2ǫ

k
+ o(n2) ≥ |OPT ′|

Under the UGC, this implies the hardness of approximating within a factor:

(1− ǫ/k)n2(1− δ) + n2ǫ
k

(1− ǫ/k)n2(1/(k − 1) + δ) + n2ǫ
k

=
(k − 1) (1− ǫ/k) (1− δ) + (k − 1) ǫk

(k − 1) (1− ǫ/k) (1/(k − 1) + δ) + (k − 1) ǫk
(26)

=
k − 1

1− ǫ/k + (k − 1)ǫ/k
− δ′ (27)

=
k − 1

1 + (k − 2)ǫ/k
− δ′. (28)

Since we can add O(nc) copies of H with an arbitrary c = O(1) to construct H ′, the result follows.

A similar construction with ǫ→ 1 yields the following.

13



Theorem 7. Assuming the UGC and P 6= NP , respectively there is no polynomial time algorithm

yielding an approximation ratio better than k
2−1/k and for k ≥ 3 than k

2 , respectively, by a constant for

the Vertex Cover problem in k-uniform regular hypergraphs.
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