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Abstract

We study the approximation complexity of the Metric Dimension problem in
bounded degree, dense as well as in general graphs. For the general case, we prove
that the Metric Dimension problem is not approximable within (1 − ǫ) ln n for any
ǫ > 0, unless NP ⊆ DTIME(nlog log n), and we give an approximation algorithm
which matches the lower bound.

Even for bounded degree instances it is APX-hard to determine (compute) the
value of the metric dimension which we prove by constructing an approximation
preserving reduction from the bounded degree Vertex Cover problem.

The special case, in which the underlying graph is superdense turns out to be
APX-complete. In particular, we present a greedy constant factor approximation
algorithm for these kind of instances and construct an approximation preserving
reduction from the bounded degree Dominating Set problem. We also provide first
explicit approximation lower bounds for the Metric Dimension problem restricted
to dense and bounded degree graphs.

1 Introduction

In a connected graph G = (V, E), a vertex v ∈ V resolves or distinguishes a pair u, w ∈ V
if d(v, u) 6= d(v, w), where d(·, ·) denotes the length of a shortest path between two vertices
in G. A resolving set of G is a subset V ′ ⊆ V such that for each pair u, w ∈ V there exists
some v ∈ V ′ that distinguishes u and w. The minimum cardinality of a resolving set is
called the metric dimension of G, denoted by dim(G). The Metric Dimension problem
asks to find a resolving set of minimum cardinality. We call here a graph G = (V, E)
k-superdense if the degree of every vertex is at least |V | − k where k is a constant.
Throughout the paper, we will use the notation n := |V |.

1.1 Related Work

The notion of resolving sets were introduced independently by Harary and Melter [13] and
Slater [19]. Applications of resolving sets arise in various areas including coin weighing
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problems [21], drug discovery [6], robot navigation [17], network discovery and verification
[1], connected joins in graphs [18], and strategies for the Mastermind game [9]. The
Metric Dimension problem has been widely investigated from the graph theoretical point
of view [20, 6, 10, 3, 14, 22, 5, 4]. So far only a few papers discuss the computational
complexity issues of this problem. The NP-hardness of the Metric Dimension problem
was first mentioned in Gary and Johnson [11]. An explicit reduction from the 3-SAT
problem was given by Khuller, Raghavachari, and Rosenfeld [17]. They also obtain for
the Metric Dimension problem a (2 ln(n) + Θ(1))-approximation algorithm based on the
well-known greedy algorithm for the Set Cover problem and showed that the Metric
Dimension problem is polynomial-time solvable for trees. Beerliova et al. [1] showed that
the Metric Dimension problem (which they call the Network Verification problem) cannot
be approximated within a factor of o(log(n)) unless P = NP .

Berman, DasGupta, and Kao [2] study various Test Set problems and in particular
give a (1 + ln(n))-approximation algorithm for the Test Set Collection (TSC) problem.
The Metric Dimension problem can be seen as a variant of the Test Set Collection problem
where only certain combinations of tests (corresponding to the vertices of the input graph)
are available (cf. Section 2.2).

Halldórsson, Halldórsson, and Ravi [12] study the Test Set Collection problem with
bounded test size. They give a (3 + 3 ln(k))-approximation algorithm for the Test Set
Collection problem with test of size at most k.

The approximation complexity of dense and superdense instances of various optimiza-
tion problems was studied in Karpinski and Zelikovsky [16], see also Karpinski [15].

1.2 Our Contributions

This work is the first, best to our knowledge, providing explicit approximation lower
bounds for both bounded degree and dense instances of the Metric Dimension problem.
Furthermore, we improve the upper bounds for general and dense instances as well as the
lower bound for general instances. We also observe that the Metric Dimension problem
restricted to point sets in R

d is polynomial-time solvable whenever d is constant.
In particular, we prove that the Metric Dimension in graphs cannot be approximated

to within a factor of (1−ǫ) ln(n) for any constant ǫ > 0, unless NP ⊂ DTIME(nlog(log(n))).
Moreover, we give an (1 + (1 + o(1)) ln(n))-approximation algorithm based on a modified
version of the approximation algorithm for the Test Set Collection problem from [2].
This improves the previously best approximation algorithm of Khuller, Raghavachari,
and Rosenfeld with approximation ratio (2 ln(n) + Θ(1)) [17].

For the Metric Dimension problem on bounded degree graphs, we prove that it is APX-
hard with degree bound B ≥ 3, and we provide explicit approximation lower bounds under
the assumption P 6= NP .

By constructing an approximation preserving reduction from the Dominating Set
problem on bounded degree graphs, we show that the Metric Dimension problem on k-
superdense graphs is APX-hard for k ≥ 6. We obtain explicit approximation lower bounds
by combining this reduction with results from [8]. We also provide a constant-factor ap-
proximation algorithm with approximation ratio (2 + 2 ln(k) + ln(log2(k − 1)) + o(1)) for
k-superdense instances.
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Figure 1: The graph G′ =: τ1(G)

2 Metric Dimension of Graphs

In this section, we show that it is impossible (under reasonable complexity theoretic
assumptions) to approximate the Metric Dimension of a Graph G = (V, E) any better
than (1 − ǫ) ln(|V |) for any ǫ > 0. We construct an approximation preserving reduction
from the Dominating Set problem to the Metric Dimension problem.

2.1 Approximation Lower Bound

The Dominating Set problem is a special case of the Set Cover problem where we have
to cover the vertex set of a given graph G = (V, E) with sets from {N(v) ∪ {v} | v ∈ V }.
Here N(v) denotes the set of neighbors of node v in G. Now we formulate our main result.

Theorem 2.1. For any constantǫ > 0, the Metric Dimension problem cannot be approxima-
ted in polynomial time to within a factor of (1−ǫ) ln(n), unless NP ⊂DTIME(nlog(log(n))).

Proof. In order to reduce the Dominating Set problem to the Metric Dimension problem,
we have to convert a splitting problem into a covering problem. This will be done by
introducing pairs of nodes for every element that needs to be covered. The pairs can only
be distinguished by special vertices representing the sets N(v) ∪ {v}.

The proof of the above theorem uses the following lemma.

Lemma 2.1. There exists a polynomial-time computable function τ1 that maps an in-
stance G = (V, E) of the Dominating Set problem into instance G′ = (V ′, E ′) of the Met-
ric Dimension problem such that optimal solutions of G and G′, OPTDS and dimM(G′)
respectively, satisfy the following:

dimM(G′) ≤ |OPTDS| + ⌈log2(|V |)⌉ + 3

Proof. For notional simplicity, we introduce n := |V | and d := ⌈log2(n)⌉. The corre-
sponding graph G′ = (V ′, E ′) contains for every vi ∈ V the pair of vertices {v1

i , v
0
i } and

2(d + 3) special vertices uk
1, ..., u

k
d+1, u

k
a, u

k
w with k ∈ {0, 1}. Finally, we add a vertex

c which is connected to all other vertices. Furthermore, we connect u1
k and u0

k for all
k ∈ {1, . . . , d + 1, w}. We join the vertices v1

j and v0
j with both u1

k and u0
k by an edge if

and only if the binary representation of j has a 1 on the k-th position. The vertices u1
a

and u0
a are both connected to all vertices vj

i with j ∈ {0, 1} and vi ∈ V . Last of all, we
add edges {v1

i , v
1
j} iff {vi, vj} ∈ E. The graph G′ is depicted in Figure 1. In the following,

we show that B := {u1
1, ..., u

1
d+1, u

1
a, u

1
w} ∪ {v1

j | vj ∈ OPTDS} is a resolving set for G′:
The pairs {c, v} with v ∈ V ′\{c} can be distinguished by u1

a and u1
w. u1

a also resolves the
pairs of the form {uk

j , v
j
i }. In case of {u0

j , u
0
j′} with a 6= j 6= j′, we have d(u1

j , u
0
j) = 1

3



and d(u1
j , u

0
j′) = 2. Since the binary representation of numbers is unique, there is always

a u1
j ∈ B which can resolve {vm

s , vz
r} with s 6= r. Now we are left with pairs of the form

{v1
j , v

0
j}. But these pairs are ”covered” by v1

l with vl ∈ OPTDS.
Since the metric dimension of G′ can be upper bounded by the cardinality of any resolving
set, we conclude dimM(G′) ≤ |B| ≤ d + 3 + |OPTDS|.

The following lemma provides an algorithm that tranforms a solution for G′ into a
dominating set of the original graph G.

Lemma 2.2. There is a polynomial-time computable function τ2 that maps a solution B
of τ1(G) into solution DS of G such that |DS| ≤ |B| holds.

Proof. At least one vertex of each pair u1
i , u

0
i with ∈ {1, .., d, a, w} must be included in a

resolving set B of G′ since for all other vertices v ∈ V ′\{u1
i , u

0
i} we have d(u1

i , v) = d(v, u0
i ).

Recall that this set can resolve any pair but pi for all vi ∈ V . Therefore, we have to
determine which vertices are able to distinguish the remaining pairs. Notice that the only
vertices which can resolve the pair pi are exactly w ∈ {v1

i , v
0
i , v

1
j | vj ∈ N(vi)}. According

to that fact, the set DS(B) := {vk | {v1
k, v

0
k} ∩ B 6= ∅} is a dominating set for G with

|DS(B)| ≤ |B|.

In order to prove Theorem 2.1, we need the following straightforward extension of the
hardness result in [8] for a restricted version of the Dominating Set problem.

Lemma 2.3. Assuming NP 6⊂ DTIME(nlog(log(n))), instances of the Dominating Set
problem for which the optimal dominating set requires at least log2(n) vertices cannot be
approximated to within a factor of (1 − ǫ) ln(n) for any ǫ > 0 in polynomial time.

We are ready to prove Theorem 2.1. Assume there exists a polynomial-time approx-
imation algorithm A1 for the Metric Dimension problem with ratio (1 − ǫ) ln(n) for an
ǫ > 0. Next, we apply τ1, A1, and τ2 consecutively and get the following upper bound for
the solution DS(B) of the combined algorithms:

|DS(B)| ≤ |B| ≤ (1 − ǫ) ln (|V ′|) dimM (G′) ≤ (1 − ǫ) ln (2n + 2d + 7) dimM(G′)

≤ (1 − ǫ) ln(n) [1 + o(1)] (|OPTDS(G)| + d + 3)

≤ (1 − ǫ) [1 + o(1)] ln(n)|OPTDS(DS)|

[

1 +
d + 3

Ω(ln2(n))

]

≤ [1 − ǫ + o(1)] ln(n)|OPTDS(G)|

This is a contradiction to Lemma 2.3, and Theorem 2.1 holds.

2.2 Approximation Algorithm

In this section, we construct a (1+(1+o(1)) ln(n))-approximation algorithm for the Metric
Dimension problem in graphs. This improves on the previous existing (1 + 2 ln(n))-
approximation algorithm (cf. [17]). Our approximation algorithm is a variant of the
algorithm of Berman, DasGupta, and Kao [2] for the TSC problem with an appropriately
chosen information content function.

In the TSC problem, we are given an universe U and a subcollection of tests T ⊂ P (U),
and we ask for a set of tests T ′ ⊆ T of minimum cardinality |T ′| such that ∀e ∈ P2(U) ∃t ∈
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T ′ : |t ∩ e| = 1. The following notations were introduced in [2]. A set of tests T ⊂ S
defines an equivalence relation ≡T on U given by [i ≡ j] ⇔ [∀t ∈ T (i ∈ t ⇔ j ∈ t)].
Let A1, .., Ak be the equivalence classes of ≡T , then the entropy of T is defined as
HT = log2(Π

k
i=1|Ai|!). The information content of a test t ∈ U with respect to T is

defined as IC(t, T ) = HT −HT∪{t}. Berman, DasGupta, and Kao [2] provided the follow-
ing simple greedy heuristic for the Min TSC problem:

Information Content Heuristic
(ICH)

T ′ := ∅
while (HT ′ 6= 0) do

select a t ∈ argmaxt∈T\T ′(IC(t, T ′))
T ′ := T ′ ∪ {t}

endwhile

Theorem 2.2. ([2]) ICH is a polynomial-time approximation algorithm for the TSC prob-
lem with ratio 1 + ln(maxt IC(t, ∅)).

We apply the ICH to the Metric Dimension problem, where the tests correspond
to the vertices of G and a test splits the set V into possibly more than two classes
of indistinguishable nodes. Hence, for each subset of V ′ ⊆ V we have the associated
equivalence relation ≡V ′ given by:

u ≡V ′ w ⇐⇒ [∀v ∈ V ′ : d(v, u) = d(w, v)].

Modified ICH is now ICH applied to the information content function IC(v, V ′) :=
HV ′ − HV ′∪{v}.

Modified ICH

V ′ := ∅
while (HV ′ 6= 0) do

select a v ∈ argmaxv∈V \V ′(IC(v, V ′))
V ′ := V ′ ∪ {v}

endwhile

Theorem 2.3. Modified ICH is a polynomial-time approximation algorithm for the Metric
Dimension problem with ratio 1 + ln(|V |) + ln(ln2(|V |)).

Proof. A test set corresponding to a vertex v in the Metric Dimension problem now
partitions the vertex set V of G into at most n classes A0, .., An−1 where Ai := {s ∈ U |
dist(v, s) = i}. The procedure that partitions V into n classes can be thought of as a
group of n tests each of which partitions V successively into 2 classes. Thus, we conclude
maxv∈V IC(v, ∅) ≤ log2(n!) − log2(1) ≤ n log2(n).

3 Metric Dimension of Bounded-Degree Graphs

In this section, we show that the Metric Dimension problem restricted to bounded degree
graphs is APX-hard with degree bound B ≥ 3. The Metric Dimension problem with
degree bound B ≤ 2 is in PO (see [17]). We construct an approximation preserving
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Figure 2: The graph G′
vi

is depicted in (a) and the graph G′
e in (b).

reduction from the bounded degree Vertex Cover problem and derive in this way the first
explicit approximation lower bounds under the assumption P 6= NP . Now we formulate
our theorem.

Theorem 3.1. The B-bounded Metric Dimension problem is APX-hard for every B ≥ 3
and is NP-hard to approximate within any constant better than 353

352
.

Proof. Given a 4-regular graph G as an instance of Min-4-VC. We construct a graph G′

similarly to the approximation preserving reduction in Theorem 2.1 and we introduce
pairs of nodes representing the edges of the original graph that need to be covered. The
high diameter of the graph G′ is the main difficulty we have is to deal with. Since we
cannot reach vertices quickly, we have to take care of pairs that are not supposed to be
”covered”.

The proof of the Theorem 3.1 uses the following lemma:

Lemma 3.1. There exists a polynomial-time computable function f that maps every in-
stance G = (V, E) of MIN-4-VC to an instance G′ = (V ′, E ′) of the 3-Metric Dimension
problem such that optimal solutions of G = (V, E) and G′ = (V ′, E ′), V C∗ and R∗ respec-
tively, satisfy |R∗| ≤ |V C∗| + |E| + |V |.

Proof. The graph G′ consists of the the subgraphs G′
vi

for every vi ∈ V and G′
ej

for
every ej ∈ E. These subgraphs are depicted in Figure 2. We connect the vertex vcs

e

with exactly one w ∈ {v8
i , v

12
i , v16

i , v20
i } and vcf

e with exactly one x ∈ {vf1
i , vf2

i , vf3
i , vf4

i } if
we have vi ∈ ej and degG′(x) = degG′(w) = 1. The assignment of the vertices above is
arbitrary as long as the degree of the vertices vcs

e and vcf
e is exactly 3 for every e ∈ E.

See Figure 3 for an example of G′. Given a vertex cover V C of G, we show that R :=
{vp1

ej
, vp1

i , vs1
k | vi ∈ V, ej ∈ E, vk ∈ V C} is resolving for G′.

First of all, we see that the set R′ := {vp1
ej

, vp1
i | vi ∈ V, ej ∈ E} can distinguish every pair

of vertices of G′ except the pairs p1
e := {vcs

e , vct
e } and p2

e := {vs
j , v

t
j} for every e ∈ E. Notice

that the vertex vs1
k can resolve the pairs p1

e and p2
e if and only if vk ∈ e holds. Since V C

is a vertex cover for G, the set R\R′ can distinguish the remaining pairs. Therefore, the
metric dimension of G′ can be bounded by dim(G′) ≤ |R| = |E| + |V | + |V C|.

In order to construct an approximation preserving reduction, we need to transform a
resolving set of G′ into a vertex cover of G.
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Figure 3: As an example, we illustrate a part of the graph G′ which is constructed in the
proof of Theorem 3.1/Lemma 3.1.

Lemma 3.2. There exists a polynomial-time computable function f ′ that maps a resolving
set R of G′ := f(G) into a vertex cover V C of G such that |V C| ≤ |R| − |E| − |V |.

Proof. In every resolving set, we have to have at least one vertex of {vp2
e , vp1

e } for every
e ∈ E since these are the only vertices resolving themselves. The same holds for the pair
{vp1

i , vp2
i } for every vi ∈ V . Recall that the set {vp1

e , vp2
e , vp1

i , vp2
i | ej ∈ E, vi ∈ V } leaves

only the pairs p1
e and p2

e for every e ∈ E unresolved. Moreover, the only vertices which
can distinguish both pairs p1

e and p2
e are v ∈ p1

e ∪ p2
e ∪ {vsj

i | j ∈ {1, .., 17}, i ∈ e}. Given
a resolving set R of G′, we build a set V C(R) which is a vertex cover of G. For every
e := {vi, vj} ∈ E, we add either vi or vj to V C(B) iff (p1

e ∪ p2
e) ∩ R 6= ∅. Further, we add

vi to V C(R) iff {vsj
i | j ∈ {1, .., 17}}∩R 6= ∅. Clearly, V C(R) is a vertex cover of G with

|V C(R)| + |E| + |V | ≤ |R|.

In order to prove Theorem 3.1, we use the following hardness result given in [7]:

Theorem 3.2. ([7]) Given a 4-regular graph G = (V, E), let OPT (G) denote the size of
a minimal vertex cover of G. Then, the following partial decision problem is NP -hard to
decide for ǫ ∈ (0, 1

2
):

|V |
53 + 2ǫ

100
< OPT (G) or |V |

52 − 2ǫ

100
> OPT (G)

By applying Lemma 3.1 and 3.2, we construct a 3 bounded degree graph G′ = (V ′, E ′)
for which the following is NP -hard to decide for all ǫ ∈ (0, 1

2
):

|E| + |V | + |V |
53 + 2ǫ

100
< dim(G′) or |E| + |V | + |V |

52 − 2ǫ

100
> dim(G′)

Therefore, we conclude that it is NP -hard to approximate the Metric Dimension of a
3-bounded graph to within any constant better than 353

352
, which completes the proof of

Theorem 3.1.
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4 Metric Dimension of k-Superdense Graphs

In this section, we study the approximation complexity of the Metric Dimension problem
restricted to k-superdense graphs. We show that this special case is APX-hard to approx-
imate for k ≥ 6. In addition, we give an approximation algorithm with approximation
ratio (2 + 2 ln(k) + ln(log2(k − 1)) + o(1)).

Note that the diameter of a k-superdense graph is at most 2. This fact will be crucial
for our analysis.

4.1 Approximation Lower Bound

We construct an approximation preserving reduction from the Dominating Set problem on
bounded degree graphs in order to obtain the following result. The explicit lower bounds
will be given in Theorem 4.3.

Theorem 4.1. The Metric Dimension problem on k-superdense graphs is APX-hard.

Proof. For a given graph G = (V, E) with vertex degree bound B, we construct a (B +3)-
superdense graph G′ in polynomial-time. G′ consists of subgraphs Gv corresponding to
every vertex v of G. Every resolving set of G′ contains two vertices of every Gv that
distinguish all pairs of vertices of G′ except the special pairs pv = {tv, sv} of Gv for every
v ∈ V . pv can only be distinguished by vertices u ∈ {tv} ∪ {tw | w ∈ N(v)}. This is
equivalent to cover V with sets of the form {v} ∪ N(v).

Lemma 4.1. There exists a polynomial-time computable function g that maps an instance
G = (V, E) with deg(v) ≤ B for every vertex v ∈ V of the Dominating Set problem
into instance G′ of the (B + 3)-superdense Metric Dimension problem such that optimal
solutions of G and G′, OPT and OPT ′, respectively, satisfy the following: OPT ′ ≤
OPT + 2|V |.

Proof. For notational simplicity, we describe the complement graph G′ of G′ = (V ′, E ′)
given by G′ := (V ′,

(

V ′

2

)

\E ′). The graph G′ consists of the subgraphs Gi for every vi ∈ V .
The subgraph Gi is depicted in Figure 4(a). Finally, we connect the subgraphs Gi by
adding edges {si, sj} iff {vi, vj} ∈ E.

Notice that the constructed graph G′ is (B + 3)-superdense. As an example, we
constructed in Figure 4(b) a graph G and the corresponding complement graph of g(G).

Let DS(G) be an optimal dominating set of G. We claim that the set R := {a1
i , b

1
i , sj |

vi ∈ V, vj ∈ DS(G)} is resolving for G′. Firstly, we see that a1
i and b1

i can distinguish all
pairs of vertices of the graph Gi except the pair pi := {si, ti}. Since we have V \N(a1

i ) ∪
V \N(b1

i ) = V (Gi) for all vi ∈ V , V \N(a1
i ) ∩ V \N(a1

j ) = ∅, and V \N(b1
i ) ∩ V \N(b1

j ) = ∅
for vi 6= vj, the pairs of the form {x, y} with x ∈ V (Gi) and y ∈ V (Gj) can be resolved.The
remaining pairs pi with vi ∈ V are distinguished by {sj | vj ∈ DS(G)}. Therefore, the
metric dimension of G′ can be bounded by dim(G′) ≤ |R| = 2|V | + OPT .

Lemma 4.2. There exists a polynomial-time computable function g′ that maps every
resolving set B of the graph G′ := g(G) into a dominating set DS(B) of G such that
|DS(B)| ≤ |B| − 2|V | holds.
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Proof. In every resolving set B′ of G′ at least one of the vertices a1
i , a

0
i and at least one of

b1
i , b

0
i for every vi ∈ V must be contained in B′ since for every vertex u in V (G′)\{a1

i , a
0
i }

we have d(u, a1
i ) = d(u, a0

i ). An equivalent statement holds for b1
i , b

0
i . Recall that the only

pairs of vertices which cannot be distinguished by the set {a1
i , b

1
i | vi ∈ V } are {si, ti} for

every vi ∈ V . On the other hand, the only vertices which can distinguish the pair {si, ti}
are given by B(i) := {si, ti, sj | vi ∈ N(vj)}. Therefore, every resolving set contains a
u ∈ B(i) for every vi ∈ V . Clearly, DS(B) := {vi ∈ V | B(i) ∩ B 6= ∅} is a dominating
set of G with |DS(B)| + 2|V | ≤ |B|.

Since the Dominating Set Problem on bounded degree graphs is APX-hard, there
exists a r > 1 such that it is NP-hard to approximate this problem with a better ratio
than r. Assume, we could approximate the Metric Dimension on bounded degree graphs
with a ratio r′ := r−1−ǫ

2(B+1.5)
+ 1 for any ǫ > 0, then we get:

|DS(B)| ≤ |B| − 2|V | ≤ dim(G′) · r′ − 2|V |

≤ (2|V | + OPT (G)) · r′ − 2|V | = OPT (G)

(

r′ +
2(r′ − 1)|V |

OPT (G)

)

≤ OPT (G) [r′ + 2(r′ − 1)(|B| + 1)] ≤ OPT (G) · (r − ǫ)

This is a contradiction to our assumption and Theorem 4.1 holds.

Using the results of [8] for the B-Dominating Set problem, we get explicit approxima-
tion lower bounds. In particular, we make use of the following theorem:

Theorem 4.2. [8] It is NP-hard to approximate the B-Dominating Set problem to within
any constant better than 391

390
for B = 3, 100

99
for B = 4, and 53

52
for B = 5.

Combining this result with the approximation preserving reduction of Theorem 4.1,
we obtain:

Theorem 4.3. It is NP-hard to approximate the Metric Dimension on k-superdense
graphs to within any constant better than 3511

3510
for k = 6, 1090

1089
for k = 7, and 677

676
for

k = 8.
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4.2 Approximation Algorithm

We combine the greedy approximation algorithm for the k-Set Cover problem with Modi-
fied ICH in order to obtain a (2+2 ln(k)+ln(log2(k−1))+o(1))-approximation algorithm
for the Metric Dimension problem in k-superdense graphs. Previously, Halldórsson et al.
[12] used a similar approximation algorithm for the TSC problem with bounded test sizes,
based on a twofold application of the greedy k-set cover algorithm. Here, we apply first
the greedy k-set cover algorithm and afterwards use the Modified ICH to generate a re-
solving set. If we apply Modified ICH directly on an instance, in worst case we would
only achieve an approximation ratio of 1 + ln(k) + ln(ln2(n)). So, we have to preprocess
the vertex set by dividing it into small fractions at first in order to obtain a constant
approximation ratio. Recall that in a k-superdense graph we have only d(v, w) ∈ {0, 1, 2}
and therefore only three equivalence classes occur. For every v ∈ V , let Av

0, A
v
1 and Av

2 be
the equivalence classes under ≡v. Consider the following algorithm Pre-ICH:

1. Apply the greedy algorithm for the Min k-Set Cover problem
to instance SC(G) := (V, {Av

0 ∪ Av
2 | v ∈ V })

with solution {Av
0 ∪ Av

2 | v ∈ V ′′}.
2. Apply Modified ICH with initial set V ′ := V ′′.

Theorem 4.4. Pre-ICH is a (2+2 ln(k)+ln(log2(k−1))+o(1))-approximation algorithm
for the Metric Dimension problem on k-superdense graphs.

Proof. Let G be a k-superdense graph and B the solution produced by Pre-ICH. In or-
der to distinguish every pair in P2(V ), every vertex but one must be contained in a set
Aw

0 ∪ Aw
2 , otherwise we would have two vertices u and x with d(x, v) = d(u, v) = 1

for every vertex v in a resolving set. Therefore, the optimal solution OPT (SC(G))
of SC(G) can be upper bounded by OPT (SC(G)) ≤ dim(G) + 1. Since the simple
greedy heuristic for the k-Set Cover problem is a (1 + ln(k))-approximation algorithm,
we conclude |V ′′| ≤ (1 + ln(k))(dim(G) + 1). Next, we want to derive an upper bound
of the cardinality of R := B\V ′′. We observe that the proof of Theorem 1 in [2] ac-
tually yields the following slightly more general result: When modified ICH is started
with an initial set T ′ := V ′′ (instead of T ′ := ∅) it constructs a resolving set R of size
|R| ≤ (1 + ln(maxv∈V \V ′′ IC(v, V \V ′′)))dim(G). Thus, we have to analyze the worst-case
behavior of the term IC(v, V \V ′′). Let V ′′ = {v1, . . . , vc} be the cover generated in step
1 of Pre-ICH. A node v ∈ V \ V ′′ might split an equivalence class into two or three parts,
and furthermore |Av

0 ∪ Av
2| ≤ k. Hence, v has a total budget of at most k to split classes,

each of which is of size at most k − 1. When it splits a class of size s into two classes
of size s − a and a, this contributes log2(

(

s

a

)

) to the information content. This term is
monotone in s, thus we have the following setup: We are given k classes each of size k−1
and another node v with budget k, and we ask for an upper bound of the information
content when v spends this budget into splitting the classes into two or three parts (at
most one is split into three). Consider two classes that are split by v by use of budget a
and b respectively, where 1 ≤ b ≤ a < k−1

2
. From

(

k−1
a

)(

k−1
b

)

≥
(

k−1
a+1

)(

k−1
b−1

)

we see that the
contribution to the information content is maximized when a = 1. Now we consider the
case that v splits a class into three parts of size 1, x and k − 1− x− 1 respectively, where
x ≤ k−1

2
. Since the contribution to the information content is log2[(k − 1) ·

(

k−2
x

)

], by the
same argument as before we get that this term attains a maximum for x = 1. Therefore,
an upper bound for the maximum is attained when v splits k classes, each by using an

10



amount of 1 from its budget. For notational simplicity, we set c := ⌈n/k⌉ and get

IC(v, V \V ′′) ≤ log2

(

(1!)c[(k − 1)!]c

(1!)(c+k)[(k − 2)!]k[(k − 1)!](c−k)

)

≤ k log2(k − 1).

We are ready to analyze the approximation ratio of Pre-ICH:

|B| ≤ |R| + |V ′′|

≤ [1 + ln(k) + 1 + ln(k) + ln(log2(k − 1))] dim(G) + 1 + ln(k)

≤ [2 + 2 ln(k) + ln(log2(k − 1)) + o(1)]dim(G)

In the last inequality, we used the facts n
k
≤ dim(G) + 1 and k = Θ(1).

5 Metric Dimension in R
d

In this section, we consider the Metric Dimension problem in R
d.

Theorem 5.1. For each d ∈ N, the Metric Dimension problem restricted to finite sets of
points in R

d with the Euclidean distance is in PO.

Proof. Let X = {x1, . . . , xn} ⊂ R
d and assume X spans the R

d - otherwise we replace R
d

by the subspace generated by X. Let d2 denote the Euclidean distance in R
d and 〈·, ·〉

the inner product. For 1 ≤ i < j ≤ n, the set of points which cannot distinguish xi and
xj is an affine hyperplane

Iij = {x ∈ R
d|d2(x, xi) = d2(x, xj)} = {x ∈ R

d|〈x − mij , xi − xj〉 = 0}

with mij = 1
2
(xi +xj). Consider a set X ′ = {xi0 , . . . , xid} ⊆ X such that the xij −xi0 , j =

1, . . . d are linearly independent. Assume X ′ is not a resolving set for X, then X ′ ⊂ Iij

for some 1 ≤ i < j ≤ n which would be a contradiction to the xij − xi0 being linearly
independent. Thus, we can construct a minimum cardinality resolving set by enumerating
all subsets of X of size at most d + 1.

Acknowledgment

We thank Marek Karpinski for a number of interesting discussions and for his support.

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák, and L.
Ram, Network Discovery and Verification, IEEE J. on Selected Areas in Communi-
cations 24, pp. 2168–2181, 2006.

[2] P. Berman, B. DasGupta, and M. Kao, Tight Approximability Results for Test Set
Problems in Bioinformatics, J. Comput. Syst. Sci. 71, pp. 145–162, 2005.
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[8] M. Chleb́ık and J. Chleb́ıková, Approximation Hardness of Dominating Set Problems
in Bounded Degree Graphs, Inf. Comput. 206, pp. 1264–1275, 2008.
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