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Abstract

We study the approximation complexity of the Minimum FEdge
Dominating Set problem in everywhere e-dense and average é-dense
graphs. More precisely, we consider the computational complexity of
approximating a generalization of the Minimum Edge Dominating Set
problem, the so called Minimum Subset Edge Dominating Set prob-
lem. As a direct result, we obtain for the special case of the Minimum
Edge Dominating Set problem in everywhere e-dense and average e-
dense graphs by using the techniques of Karpinski and Zelikovsky, the
approximation ratios of min{2, ﬁ} and of min{2, EF%\/TE}7 respec-
tively.

On the other hand, we give new approximation lower bounds for
the Minimum Edge Dominating Set problem in dense graphs. As-
suming the Unique Game Conjecture, we show that it is NP-hard to
approximate the Minimum Edge Dominating Set problem in every-
where e-dense graphs with a ratio better than %ﬂ with € > 1/2 and
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with € > 3/4 in average e-dense graphs.
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1 Introduction

In this paper we consider the computational complexity of approximating the
Minimum Subset Edge Dominating Set problem which generalizes the Mini-
mum Edge Dominating Set problem. As a direct result, we obtain improved
upper bounds for the Minimum Edge Dominating Set problem in everywhere
and average dense graphs, i.e. graphs with bounded minimum and average
vertex degree, respectively.

1.1 Problem Statement

An edge dominating set (for short EDS) of a finite undirected graph G =
(V,E) is a subset M C E of edges such that each edge in E shares an end-
point with some edges in M. The Minimum Edge Dominating Set problem
(for short MEDS problem) asks to find an edge dominating set of minimum
cardinality |M| (respectively minimum total weight in the weighted case).

For given graph G = (V| E) the Minimum Maximal Matching problem
(for short MMM problem) asks for a subset M C FE of non adjacent edges
with minimal cardinality such that each edge in £ shares an endpoint with
some edge in M.

It has been noted long time ago that the Minimum Edge Dominating
Set and the Minimum Maximal Matching problem admit optimal solutions
of the same size and that an optimal solution of the MEDS problem can
be transformed in polynomial time into an optimal solution of the MMM
problem (cf. [YG80(]), and vice versa.

The Minimum Subset Edge Dominating Set problem (for short MSED
problem) is a generalization of the MEDS problem and is defined as follows:
given a graph G = (V, F) and a subset S C V| find a minimum cardinality
EDS M of G with the property S C U.cas €.

For some €, € > 0, we call a graph G = (V, E) everywhere e-dense if every
vertex in G has at least ¢|V| neighbors, and we call a graph G = (V| E)
average é-dense if the average degree of the vertices in G is at least €|V, i.e.
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1.2 Related Work

The MEDS problem is already referred to in Gary and Johnson [GJ79]. Even
for planar or bipartite graphs of maximum degree 3 the MEDS problem
remains N P-hard [YGS80] in the exact setting. Some additional hard and
polynomial time solvable classes of graphs were given by Horten and Kiliakos
([HK93]), and much more recently by Demange and Ekim ([DE0S]). An
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inapproximability result was obtained by Chlebik and Chlebikova ([CCOG]),
who showed that it is N P-hard to approximate the MEDS problem within
any factor better than %. They further showed that the MEDS problem
is N P-hard to approximate within any constant less than 67;;, in graphs
with minimum degree at least en. A 2%—approximation algorithm was given
by Car et al. ([CEKPOI1]) for the Minimum Weighted Edge Dominating Set
problem, a result which was improved to 2 by Fujito and Nagamochi ([EN02]).

Cardinal et al. achieved the first upper bound smaller than 2 for suf-
ficiently dense graphs. More precisely, the obtained approximation ratio is

asymptotic to min{2, %} in everywhere e-dense graphs and to min{2, %\/ﬁ}

in average é-dense graphs ([CLLLMO05]). More recently Cardinal, Langer-

man, and Levy provided an improved bound on the approximation ratio for

the MEDS problem in average dense graphs. This bound is asymptotic to
L which is smaller than 2 when e is greater than 3 ([CLL09]).

1—/(1—e)/2’

1.3 Owur Contributions

This work is the first best to our knowledge studying the approximation
complexity of the MSED problem. We give an approximation algorithm
that achieves the approximation ratio at most min{2, W} For the
special case of the MEDS problem in dense graphs, it yields by using the
techniques of Karpinski and Zelikovsky for the dense Minimum Vertex Cover
problem ([KZ97]) an approximation ratio of min{2, ﬁ} for everywhere e-
dense graphs and min{2, 37%\/?} for average e-dense graphs, respectively.
On the other hand, we construct an approximation preserving reduction
from the Minimum Vertex Cover problem to the MEDS problem in dense
graphs. Thus assuming the unique game conjecture (cf. [KRO§|), it is NP-
hard to approximate the MEDS problem in everywhere e—dense graphs with
a ratio better than % with e > 1 5 and ﬁ with € > < in average e-dense
graphs. The same reduction shows that the MSED problem is UGC-hard to
approximate within any constant better than - ‘ s with 2|5| > |V].

vl

2 Subset Edge Dominating Set Problem

We start by introducing some basic notations and tools which are used in our
algorithms. Afterwards we state our approximation algorithm for the MSED
problem and prove the claimed result.



2.1 Definitions and Notations

Given a finite graph G = (V, E) and a subset S C V, the induced subgraph
G[S] is defined as (S,{e € E | e C S}). For a given set M C E we introduce
the notation V(M) := U.eps €.

The maximal matching heuristic is a standard algorithm that provides a 2-
approximation for the Minimum Edge Dominating Set problem. It is perhaps
one the simplest and best-known approximation algorithm. It consists in
finding a collection of disjoint edges (a matching) that is maximal (with
respect to edge inclusion) by iteratively removing adjacent vertices until no
more edges are left in the graph.

In the Maximum Subset Matching problem (for short MSM problem),
which generalizes the Maximum Matching problem, we are given a graph
G = (V,E) and S C V. The goal is to determine the maximum number
of vertices of S that can be matched in a matching of G. Alon and Yuster
considered this problem and introduced a randomized algorithm in [AY07].
The Maximum Subset Matching problem can be reduced to the Maximum
Weighted Matching problem. Just assign to every vertex with both end-
points in S weight 2, and edges from S to V\S weight 1. The currently
fastest algorithm for maximum weighted matchings in general graphs is the
algorithm of Gabow and Tarjan (see [GT91]).

In our setting, it runs in O(W(|E| + |S5]?) time. For a given graph
G=(V,E), SCV and U C V\S, let us denote by MSM(G, S,U) the set
of edges of a maximal subset matching in the graph G[S U U] and S.

An important theorem of for many problems related to the Minimum
Vertex Cover problem was proven by Nemhauser and Trotter (cf. [NT75]).
It enables us to reduce the problem to instances in which the value of a
minimum vertex cover is at least %|V| together with other nice properties.
Here we use a generalized version of the NT-Theorem given by Chlebik and
Chlebikova.

Theorem. (Optimal Version of the NT-Theorem [CCO04])

There exists a polynomial time algorithm that partitions the verter set V' of
any graph G into three subsets (Vo, Vi, Vi)2) with no edges between Vi and
Vija or within Vy such that

1. for any vertex cover VC of G[Vis] it holds [VC| > 1|V o]

2. every minimum vertex cover C' for G satisfies Vi € C C Vi UV and
C N Viye is a minimum vertex cover for G[Vy .

Such a partition can be constructed by computing maximal matching of a
specially constructed bipartite graph. The algorithm of Hopcroft and Karp
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is currently the fastest algorithm for maximum matching in bipartite graphs

and runs in time O(|E|,/|V]) (see [HKT73]).

2.2 Algorithm Agsgps

In order to explain the intuition behind the algorithm, notice that the set
S needs to be covered with edges and we want to achieve it by a maximum
matching which covers the whole set S. Clearly, we cannot expect that there
always exists a perfect matching in G[S]. Instead we compute a maximal
subset matching with endpoints in V; U Vj 5 for which we hope to have good
vertex cover properties in G[V'\S]. The remaining vertices of S will be cov-
ered greedily. Finally, we take care of the remaining graph by applying the
maximal matching heuristic.
We now present our main algorithm.

Algorithm Aggps
Input: Graph G = (V,E), SCV

Set M, = 0;
If |S| > Y Then
Compute the NT-Partition (Vp, V1, Vi/2) of G[V\S];
If |Vo| < 2|V1| Then
Compute My = MSM(G, S, V\S);
Else
Compute My = MSM(G,S, Vi U Vy);
EndIf
EndIf
Cover the remaining vertices of S greedily with edges M,;
Compute the remaining graph G' = G[V\V(M; U M,)];
Construct a maximal matching M, in G’ by applying the maximum
matching heuristic;

Output: M; U M, U M,

2.3 Analysis of Asgps

We now formulate our main theorem.

Theorem 2.1. Given a graph G = (V, E) and S C V, the algorithm Aspps
has an approximation ratio at most mm{Q, W}
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Proof. Let OPT denote some optimal solution for the SMEDS problem and
EDS 4 the solution produced by algorithm Aggps.
We have to consider three different cases:

Case |S| < ‘7‘:':

The algorithm covers the vertices of S greedily with edges, which means that
we use at most |S| edges. Since the maximal matching heuristic computes
a solution as well for the MEDS problem as for the Minimum Vertex Cover
problem (by choosing the endpoints of the constructed matching) with ap-
proximation ratio 2, our solution for the graph G[V'\S] has at most as much
edges as the cardinality of an optimal vertex cover VCopr of G[V\S] . Con-
sequently, the approximation ratio of the algorithm is bounded by

[EDSA| _ |S|+2[VCopr| _,
(OPT| = 1|S|+ [VCopr| =

Case |Vp| < 2|V4]:

First of all, the algorithm Asgps computes an maximum subset matching
M, := MSM(G,S,V\S) of G and then covers the remaining vertices of S
greedily with edges M, (see figure ).

Figure 1: The Partition of G in the case of |Vp| < 2|V1|.

For the sake of the analysis, let us now consider a maximum subset
matching M* = MSM(G*,S,V(OPT)\S) of the restricted graph G* =
(V(OPT),OPT) and denote by Mp the edges contained in OPT to cover
the vertices in S\V (M*).

In the following we will bound the approximation ratio of the solution



produced by algorithm Asgps:

EDSAl - 50151 = M) + 5lVi] + 5 Vipl +5lV0l + DAL
OPT| = 5(IS| = IMal) + 5[Vil + 41Vl + [ M|

ST+ VAl + [Vijel + Vol + | M|
ST+ Vil + 5[Vija| + [ M|
ST+ VAl + [Vije| + [Vo| + [Mag|
ST+ Vil + 5[Vijal + [ M|
o IS+l + Vigel + Vol
TSI+l Vgl

IN

IN

In (1) we used the property of the NT-theorem |Vi| + £|Vj/2| being a lower
bound on the size of a vertex cover of the remaining graph G[V'\S]. Since
OPT is contained in E(G), it is clear that

\MSM(G*, S, V(OPT\S)| < |[MSM(G,S,V\S)|

holds. Thus, we get |M,| < |Mg| which we used in (3).
To get (7) we are exploiting the property of the case |Vp| < 2|Vi]. The
remaining part follows by simple algebraic calculation:

S+ [Vl + Val + Vol _ 3 5
1S+ [Vi| + 5|Via| = BIS|H3VIl+3Vasl
[S|+Vil+[Vi 2|+ Vol
3
< 5 (6)
|S|+3[Va[+|V1 /2] + 2|S|+51Viy2l
[S|+Vil+[Vi 2|+ Vol [S|+Vil+Vi 2|+ Vol
3
< ; (7)
|S|+3|Va|+|V1 /2] 2S|+51Viy2l
[S]+3|Vi|+[V1 2] \%
3 3
= 2|S|+3|Vi 2l = 1+ 2@ <8)
1+ V] Vi

Case V| > 2|V4]:

Unlike to the previous case the algorithm Aggpg computes a maximum sub-
set matching MSM(G,S, Vi U Vi) of G (see figure ). As before M,
and Mp are the sets of edges to cover the remaining vertices of S, where
V(Mpg) NS are the vertices left uncovered by a maximum subset matching

MSM(G*, S, (Vi U Vi) NV(OPT)) of G* := (V(OPT), OPT).



Now, let us bound the approximation ratio of the solution produced by
the algorithm:

[EDSal _ 35S = [M]) + [Va| + 5[Vapo| + [ M,
OPT| = 5(S| = [Mgl) + {[Vij2| + |Mg]
S|+ 2[Vi| + [Vipe| + [ M|

S|+ 5 [Vije| + [ Mg
S|+ 2[Vi| + [Vije| + [ME]

S|+ 31Vija| + [ Mg
< IS 2N]+ V| + WA
- S|+ 5 [Vijel + VA

(9)

IA

(10)

IA

(11)

(12)

We obtain (9) since the maximal matching heuristic computes an EDS of
GIV\(S UV (M, U M,))] with approximation ratio 2. Thus, the cardinality
of the produced solution is bounded by [Vi| + 2|V 5|. In (11) we use the
maximality of the constructed maximum subset matching. In particular, it
holds |M,| < |Mg|.

Figure 2: The Partition of G in the case of |V, > 2|V1].

Since the edges M, were chosen greedily to cover the remaining vertices
in S, we cannot ensure that the endpoints of M, have good vertex cover
properties in G[V\S]. In contrast, some of the vertices of V(Mg) N Vj could
be used to cover edges between V;, and V. Nevertheless, the number of such
edges is bounded by | V4], since |V;|+3| V4 2| is a lower bound on the cardinality
of an optimal vertex cover of G[V\S]. In this way, we use |[Mg| > |Vi| to
attain (12).

To get (15) we are exploiting the property of the case |Vy| > 2|Vi|. The



rest of the proof follows by simple algebraic calculation:

S 3V Vi 3
S| + 3| 1|+1\ 12 < 3 (13)
|S| + |Vl| + §|V1/2| 3S|+3|Vi|+5 V12l
|S+3[Vi]+|V1 /2]
3
<
= IS8Vl +[Vayal 2[S|+3[Vayal (14)
[S]+3|Vi|+[V1 2] |S]+3[Vi]+[V1 /2]
3 3
< (15)
= 28|+ - 15|
1_'_ |\“2/|‘1/2\ 1+2m
]

3 MEDS Problem in Dense Graphs

In this section we consider the Minimum Edge Dominating Set problem in
dense graphs. Firstly, we start with a observation of fundamental importance
to our analysis.

Observation 3.1. Given a connected graph G = (V, E) and an optimal EDS
M of G. There is a vertex v € V with N(v) C V(M).

Proof. If M covers the whole vertex set V', then we have nothing to show.
Otherwise the whole neighborhood of a vertex v € V\V (M) belongs to V (M)
to cover the edges incident to v. O

This observation gives us a simple proof of the analysis of the approx-
imation ratio of the maximal matching heuristic in dense graphs studied
by Cardinal et al. (see |[CLLLMO05]). Since the cardinality of an optimal
EDS of an everywhere e-dense graph G = (V| E) can be lower bounded
by min,ey{|N(v)|}/2 > €|V|/2 and the worst case solution of the maxi-
mal matching heuristic is a maximum matching, the approximation ratio is

bounded by min{2, !“‘//“//22}

Next, we want to derive an equivalent statement for average e-dense
graphs. We need a lemma which was proven by Karpinski and Zelikovsky.

Lemma 3.1. [KZ97] Given an € average dense graph G = (V, E) and let W
be the set of (1 —+/1 —€)|V| vertices with highest degree. Then every vertex
of W has degree at least |W|.

As a direct consequence, we get the following

Corollary 3.1. Given an €-average dense Graph G = (V, E). The cardinality
of an optimal EDS M s at least (1 —+/1 —¢€)|V]/2.
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Proof. If the whole set W of (1 — /1 —¢€)|V| vertices with highest degree
belongs to V(M), we have nothing to show. Otherwise the neighborhood of
a vertex v € W\V(M) is a subset of V(M). According to lemma B.1] the
degree of this vertex v is at least (1 — /1 — €)|V/|. Therefore, the cardinality
of M can be lower bounded by |N(v)|/2 > (1 — /1 —¢€)|V|/2. O

Analogously, one can easily deduce similarly to observation B.1] that the
maximal matching heuristic computes an EDS in average e-dense graphs
with approximation ratio at most min{2, (1 — /1 — €)'} as analyzed in
[CLLLMO5].

We are ready to state the algorithm for the dense MEDS problem:

Algorithm -ADEDS
Input: Graph G = (V, E)

ForAllv eV
compute Aggps(G, N(v));
EndForAll
Let M; be the solution with smallest cardinality among
[Aspps(G, N()) | v e VY
Let W be the set of (1 —+/1 —€)|V] vertices with highest degree;
Compute M, := Aspps(G, W);
ForAllv e W
compute Aggps(G, N(v));
EndForAll
Let Mj; be the solution with smallest cardinality among

{ASEDS(G, N(U)) | v E W};
Output: The best solution among M;, My and M;

Corollary 3.2. The algorithm DEDS has an approzimation ratio at most

3 3 =
g Jor e-everywhere dense graphs and at most T for e-average dense

graphs.

Proof. Given an e-everywhere dense graph G = (V, E) and an optimal EDS
M, V(M) contains always the neighborhood N(v) of a vertex v € V' because
of observation[3.1l By exhaustive search we find the right vertex v and use the
algorithm for the MSED problem. We get a solution with an approximation

. 3 3
ratio at most 1+2“T‘(,”‘” < 1+2%.

In the case of e-average dense graphs we have to consider two cases. If
there is a vertex v € W, which does not belong to V(M), then we use the
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same argumentation as before. Since the smallest degree of a vertex in W is
at least (1 —+/1 — €)|V|, the approximation ratio can be bounded as follows:
3 3

3 _
1421 < 1+2(1—v/1—€) =~ 3-2y1-¢"

Vi

Otherwise the whole set W belongs to V(M). Since the cardinality of W is
(1 — /1 —¢)|V|, the corollary follows from theorem 2.1] O

4 Approximation Hardness Results

Assuming the Unique Game Conjecture (see [K02]), we provide new lower
bounds on efficient approximability for everywhere e-dense (resp. average
é-dense) instances of the MEDS problem with 1/2 < ¢ (resp. with 3/4 <€).
Using the hardness result of Khot and Regev [KRO§| as a starting point,
we construct an approximation preserving reduction from the Minimum Ver-
tex Cover problem to dense instances of the MEDS problem.
We now formulate our result in the form of a theorem.

Theorem 4.1. For every § > 0 it is unique game conjecture hard to approz-
imate the everywhere e-dense MEDS problem with € > 1/2 (resp. average
é-dense MEDS problem with € > 3/4) to within % — & (resp. %ﬂfg —0).

Proof. Given a general instance G = (V| E) of the Minimum Vertex Cover
problem with n := |V|, we construct an everywhere e-dense graph G’ =
(V') E") as an instance of the dense MEDS problem.

In order to construct G’ we add a clique K of size $=-n to G and connect
each vertex of V' with every vertex of K (Figure B illustrates this construc-
tion). Hence, every vertex of G’ has a vertex degree at least

€ € n' € n'

n = . = . —€'Nn.
1—e¢ l—e 147 1—-e¢ =+=

Every feasible solution of the Minimum Edge Dominating Set problem EDS
of G’ can be transformed in polynomial time into a vertex cover VC of
the original graph G: In order to simplify the analysis we define an op-
eration called switch. Let C be the simple cycle of length 4. A switch
replaces two arbitrary non-adjacent edges of C' with the remaining ones.
We can restrict ourselves to edge dominating sets of G’ with the property
ENEDS =0, since for every edge {u,w} € EN EDS there exist the edges
{z,y} € EDSNK {u,z} and {y,w} to form a cycle of length 4 on which we
can perform a switch. Now it is easy to see that the set V(EDS)NV(G) is
a vertex cover of G. Moreover, an optimal edge dominating set O PTgpg of
G’ can be transformed in this way into an optimal vertex cover O PTy ¢ of
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Figure 3: Construction of G’.

G in polynomial time. Since the whole vertex set of K should be contained

in V(EDS), we get 2|EDS| — < as an upper bound on the cardinality of

the derived vertex cover VC'. Assuming the existence of an approximation

algorithm with approximation ratio (1%5 — 5) with 0 > 0 for the every-

where e-dense Minimum Edge Dominating Set problem, we would achieve an
approximation algorithm for the Minimum Vertex Cover problem with the

following approximation ratio:

Vel < 2-\EDS\—1n€
—€
2 ne
5} 2. |OPTups| —
< (1+€ ) | EDs| 1<
< ( 2 _5>2 |OPTvc|+ ne __ne
1+e 2 2(1—c¢) 1—e¢
2 2ne ne(l +e)
< —— - |OPTyc| + - -6 - |OPT
S 15 [0PTvel I—e)1+e (I—e)(1+e) OPTvel
2 ne(l —e)
< —— . |OPT ——~— —§-|OPT
~ l+4e | VG‘+(1—€)(1+6) | vel

Using the NT-theorem, we can restrict ourselves to optimal solutions for the
Minimum Vertex Cover problem with sizes at least n/2.

2 2€
Vel < —— - |OPT;
| | - 1+4e€ | Vc|+1+e

< (2-9)-[0PTye|

-|OPTyc| — 6 - |OPTy¢|

This is a contradiction to the vertex cover hardness result by Khot and Regev
[KRO8] based on the Unique Game Conjecture.
In the case of average e-dense instances of the Minimum Edge Dominating

Set problem, we can use the same construction yielding a hardness result of

s With € > 3/4. O
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Using the same reduction for the MSED problem with S = V(K), we get
the following

Corollary 4.1. For every § > 0 and 2|S| > |V/|, it is UGC-hard to approxi-
mate the MSED problem within 1% — 4.
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