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Abstract

In 1977, L. Berman and J. Hartmanis [BH77] conjectured that all polynomial-
time many-one complete sets for NP are are pairwise polynomially isomorphic. It
was stated as an open problem in [LM99] to resolve this conjecture under the mea-
sure hypothesis from quantitative complexity theory. In this paper we study the
polynomial-time isomorphism degrees within deg? (SAT') in the context of polyno-
mial scaled dimension. Our results are the following:

1. We consider scaled dimensions of order in between —2 and —3. Especially we

define scaled dimensions diml(;Q’k), keN.

2. Let ISOL,(SAT) denote the polynomial-time isomorphism degree of SAT. While
for each k, dimé_Q’k)(degfn(SAT)) = dimjg;_Q’k)(NP)7 if  is a growth rate func-
tion of order smaller than every order (—2,k), then
dim{) (ISOR,(SAT)) = 0.

3. We consider the class of disjoint unions Ly & Lo of N P-complete languages
L1, Lo such that L; and Lo are polynomially isomorphic. We show that for
li| < 2 the i-th order scaled dimension o(f g}lil)s class equals that of NP. The

same holds for the scaled dimensions dimy,

1 Introduction

The Berman-Hartmanis Conjecture, also known as the Isomorphism Conjecture, states
that all N P-complete languages are pairwise polynomially isomorphic [BH77|, where two
sets A and B are polynomially isomorphic iff there exists a bijective polynomial-time com-
putable, polynomial-time invertible reduction from A to B. The Isomorphism Conjecture
is unsolved even under assumption P # NP. Kurtz et al. [KMR89] proved the failure of
the Isomorphism Conjecture relative to a random oracle, and Rogers [Rog95] was able to
construct an oracle relative to which the conjecture holds and one-way functions exist.
Lutz [Lut00] defined polynomial dimension as a generalization of Hausdorff dimension
and gave a characterization of polynomial dimension in terms of efficiently computable
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gales. While small-span theorems were proved for polynomial measure [JL95], Ambos-
Spies et al. [ASMRS01] proved the impossibility of small span theorems for polynomial
dimension. Scaled dimension was introduced by Hitchcock, Lutz and Mayordomo [HLM]
in order to overcome certain limitations and difficulties of polynomial dimesion. Hitchcock
[Hit04] gives several results concerning scaled dimensions of lower and upper spans and
of polynomial-time degrees. Especially he shows that for |i| < 2, the i-th order scaled
dimension of the polynomial-time m-degree of SAT equals that of NP, while for i = —3
the i-th order scaled dimension of this degree vanishes. It was stated in [LM99] as an
open problem to resolve the Isomorphism Conjecture under reasonable hypotheses from
Quantitative Complexity Theory.

In this paper we study scaled dimensions of polynomial-time isomorphism degrees inside
NP. We give the following refinement of the scaled-dimension results obtained in [Hit04]:
We define a class of growth rates r_s 5, k € N of order in between —3 and —2. It turns out
that for each k, the associated scaled dimension of the polytime m-degree of SAT equals
that of NP, while for each growth rate r that is in a certain sense of lower order than all
the r_y x, the scaled dimesion of the polynomial-time isomorphism degree of SAT' vanishes.

Furthermore we consider classes of disjoint unions L; & Ly of languages Li, Ly from
NP. We prove that for each |i| < 2 as well as for each growth rate r_sy, the according
scaled dimension of the set of all L; & Ly such that Ly, Ly are in the polytime m-degree of
S AT and such that L, and Ly are polynomial-time isomorphic equals the scaled dimension
of NP, while for scales order lower than that of every r_s,the scaled dimension of this
class is equal to 0. This result is obtained by combining techniques from [Hit04] with a new
operator that transforms a disjoint union L; @ L, into a disjoint union of two polynomial-
time isomorphic sets.

The rest of the paper is organized as follows: In section 2 we give provide some standard
notions and definitions concerning p-dimension and scaled dimensions. In section 3 we
introduce the new class of growth functions of order between —3 and —2. In section 4
we consider scaled dimensions of the polynomial-time isomorphism degree of SAT, and in
section 5 we study classes of disjoint unions of languages from N P.

2 Preliminaries

Let <P denote polynomial-time many-one reducibility. Given a set A C {0,1}*, let P,,(A)
and P, '(A) denote the lower cone and upper cone of A with respect to polynomial-
time many-one reducibility, i.e. P,(A) = {B C {0,1}*|B <2, A}, P,'(A) = {B C
{0,1}*|]A <k, B}. The polynomial-time m-degree of A is deg? (A) = P,(A) N P, (A).
Two sets A, B C {0,1}* are polynomially isomorphic (denoted as A ~, B) iff there exists
a bijection f:{0,1}* — {0,1}* such that both f and f~! are polynomial-time computable
and f is a many-one reduction from A to B. Let I.SO? (A) denote the polynomial-time
isomorphism degree of A, i.e. ISOP (A) ={B C {0,1}*|A ~, B}.

Resource-bounded measure and resource-bounded dimension [Lut00] are used to study
the quantitavive structure of complexity classes. Hitchcock, Lutz and Mayordomo [HLM]
defined scaled dimension which was subsequently used in order to study quantitative prop-



erties of complexity classes (see for instance [Hit04], [HLVM], [HPV]).

A martingale is a function d: {0,1}* — [0, 00) such that for each = € {0,1}*, d(x0) +
d(x1) = 2-d(z). A martingale d succeeds on a language L C {0, 1}* iff limsup,,_, . d(A|n) =
00. S*®[d] is the set of all languages L C {0,1}* on which d succeeeds. Let C C 2{®1" be
a class of languages. C has p-measure zero (1,(C) = 0) iff there is some polynomial-time
computable martingale d such that C C S*(C). As a generalization of Hausdorff dimension,
p-dimension was characterized in terms of the growth rate of martingales. The p-dimension
of a class C C 2{01" is defined the infimum of all s > 0 such that there is some polytime-
computable martingale d such that for all A € C 3*°n d(A|n) > (1 — s) - n. Lutz et al.
[HLM] defined g(n, s)-scaled dimension by replacing martingales by g-scaled s-supergales
in the above definition. A function d: {0,1}* — [0, 00) is called g-scaled s-supergale iff for
each x € {0,1}*, d(x) > 2729019 (d(20) + d(z1), where Ag(m, s) = g(m +1,5) — g(m, s).
Equivalently scaled dimension can be defined in terms of growth rate functions. A function
r:H x [0,00) = R, H = (a,00) for some a € RU{—0c0} is called a growth rate function iff
the following conditions hold:

(1) There exist constants ¢, ¢’ such that for each n € H, r(n,1) =¢, r(n,0) =n+ .
(2) For n sufficiently large, s — r(n, s) is strictly decreasing.
(3) For all & > s >0, lim,_..[r(n,s") —r(n,s)] = —cc.

Especially, in [HLM] for each integer i, a scale g; was defined, and dimg) denotes the
i-th order scaled dimension. The associated growth rate function is given by r;(n,s) =
n+270+D) — gi(n, s) for i < 0 and 74(n, s) = n — g;(n, s) for i > 0. The following table lists
the scales g; and associated growth rate functions r; for |i| < 3.

Scale Growth Rate Function
_ = 4 — 22(loglogn)lfs _ 22(10g10gn)1 s
. 3(n’ 8) " (log(n))*—* " 3(n 8) (log(n —s
9—1(n>5)2n+1—n*s r_ 1(77, 8)
gO(n,S):S.n T0<n,3)2<1—8)~n
g1(n,s) =n’ r(n,s) =n—n
gg(n, 8) = 2(1ogn)s Tg(ﬂ, 8) — 2(10gn)s
93<n7 8) — 22(loglogn) 7"3(7}7 S) —n— 22(loglogn)

3 Growth Rates of Order between —2 and —3

1—s
For each non-negative integer k we define r_5;(n,s) = 20°6(M) ¥  Note that r_5; = r_,.
The next lemma states that the functions r_y; are growth rates of order in between —2
and —3.

Lemma 3.1. For each k > 1, r_sy is a growth rate function. Furthermore, for each
€ (0,1) rgpt1(n, s) = o(r—2x(n, s)), r-2x(n,s) =w(r-s(n,s)).



Proof. From the definition of functions r_s we obtain r_sx(n,1) = 2,7_94(n,0) = n.

Since for each k& > 1, the exponent =% is monotone decreasing in s, property (3) in the

definition of growth rate functions is satisfied as well. a

We will additionally consider functions r(n, s) with the following property.

Property (P)
For each n € N there exists £ = k(n) € N such that for all s € [0,1], r(n,s) =
r_ok(n,s). The function n +— k(n) satisfies k(n) = o(loglog(n)). Furthermore, for
each k € N there exists ny = ng(k) such that for all n > ny, if r(n,s) = r_o 1 (n, s)
then £ > k.

Lemma 3.2. If r(n, s) has property (P), then r(n,s) is a growth rate function.

Proof. Since for each k, r_y, is a growth rate function with r_x(n,1) = 2,r_5x(n,0) = n,
properties (1) and (2) hold for r. Furthermore, for each ' > s > 0,n € N loglogr(n,s’) =
1—s'

B -loglogr(n,s) for B = =% < 1, hence using k(n) = o(loglog(n)), lim,_.(r(n,s") —
r(n,s)) = —oo. O

4 Scaled Dimension of ISO? (SAT)

In this section we consider the class ISO? (SAT) = {A € NPC(<P?)|A ~, SAT}. If we can
show that there exists some positive integer £ such that for each polynomial isomorphism
f from some set A € NP to SAT, for each s < 1 for infinitely many n, a sufficient majority
of all strings of length n are mapped to strings of length at most k- n under f, then we
can use an O(2°")-time bounded exhaustive search algorithm for SAT in order to obtain
dimér)(ISOfn(S AT')) = 0. Hence we seck for some growth rate function r such that if such
a condition is not satisfied by f, then f cannot be an isomorphism.

Theorem 4.1. If s € (0,1) and r is a growth rate function such that for all j € N there
are infinitely many n such that r(27' 1 —1,s) < 2", then dimg")(ISOfn(SAT)) < s.

Proof. Fix some k € N. Let L € NP and f be a a polynomial-time computable honest
reduction from L to SAT. We will show that if for almost all n,

He e {01} |z <, [f(@) < k- Jal}] < r(2" —1,5) (%)

then f cannot be onto. There exists some j € N such that f(z) can be computed in time
|z’ and |27 < |f(z)| < |z) for all x € {0,1}*. Assume (%) holds for almost all n. Then
for appropriate n large enough, the number of strings being mapped to strings of length
n under f is upper-bounded by r(2"'*! — 1, s) < 2" which implies that f cannot be onto.
Therefore, if f is a polynomial-time isomorphism from L to SAT, then for infinitely many
n,

e e {01} |z <, |f(@)| < k- Jal}] = r(2" = 1,5)

and hence we can use the fact SAT € FE in order to construct a polynomial-time computable
martingale d that r(n, s)-succeeds on ISO? (SAT). Let {f;|j € N} be an enumeration of all



polynomial-time computable functions. Let Z; = {f; ' (SAT)} iff f; is a polynomial-time
computable, polynomial-time invertible bijection and Z; = () otherwise. For j such that
Z; # 0, we will define a martingale d; for Z; as follows:

2+ dj(x) 3 [f(za))| < k- |20, b= SAT(f ()
dj(xb) = 0 if | f(z)] < k122, b=1— SAT(f(22))
dj(x)  otherwise
Obviously the d; are uniformly computable in time O(2°") for some ¢ > 0. Furthermore, for
each j there are infinitely many n € N such that d( fj_l(SAT)|n) > 27(™3) This establishes
dim{(ISO?, (SAT)) < s. O

Corollary 4.1. If r is a growth rate function that has property (P), then
dim{"(ISOP, (SAT)) = 0.
Proof. Let r have property (P). Then for given s and j, for n such that k(n) = k,

1-s 1-s 2j(1—s)
k k

P24~ 1, 5) = 200827 ) £ gllog ) E _ gn”E

hence if we choose n large enough such that £ > 2j, the condition of Theorem 4.1 is satis-

fied by r. a

5 On Disjoint Unions of NP Languages

Given two sets A, B C {0, 1}*, their disjoint union A @ B is defined as
A®B={a0|a€ A} U {b1|be B}

Note that {L; ® Ls|L;, Ly € NP} = NP if we consider NP as a subset of the power set of
{0,1}*. In this section we are concerned with subsets of {L; ® Ls|L1, Ly € NP} and their
scaled dimensions. First consider the set

{Li® Ly | L1,Ly € NP, Ly =P, Ly}
(the set of all pairs of languages from N P that are polytime many-one equivalent).

Lemma 5.1. Let C be a class of languages L C {0,1}* and D be a class of disjoint unions
of languages that contains {L @ L|L € C} Then for every growth rate function r such that
for almost all n, r(2n,s) —n > r(n,t), diml()r) (D) < s implies dimg") (C) <t.

Proof. Assume d is a polytime computable martingale s-succeeding on D, hence espe-
cially on the set of all L & L, L € C. Now we define a martingale d’ as follows: Let

d(r1zy ...ty 12,1 0) = a-d(xyzy ... T 1Tp1), [=2-—«
d(l‘ll‘l e Tp—1Tp—1 00) = Q- d([L‘lfL‘l e Tp—1Tp—1 O), ﬁl =2— (03]
d(l‘ll‘l e Tp—1Tp—1 10) = Q9 - d([L‘lfL‘l e Tp—1Tp—1 ].), ﬁg =2— 9



Then we define

d(zy...0,-10) = %ﬁa}ﬁg ~d'(xy .. Xpq)
d,<.T1 . .’L‘nfll) = ailﬁ‘i’%262 . d/<$'1 . .Tnfl)

By definition and the martingale property of d,

2
—_— >
a-ap+ G- B

1
2

o

Hence if the capital of d on L @ L is growing by factor f € {a-ay, - 52}, then the capital
of d on L is growing by at least 5 Thus from d(L @ L|1...2N) > 2"2N:%) we obtain
d(L|1...N) > 27N .27@Ns) — 9r@N:s)=N and hence the lemma follows. O

Corollary 5.1. For each s € (0,1), dim,(NP) > 2s implies dim,({Ly & Lo | L1, Ly €
NP, Ly = Ly}) > s.

Proof. For ry(n,s) = (1 — s) - n we obtain ro(2N,s) — N = (1 — 2s)N, hence
dim,(NP) > 2s implies dim,({Ly & Ly | L1, Le € NP, Ly =P Ly}) > s. a

We will now consider disjoint unions of sets from N P that are in the same polynomial-
time isomorphism degree.

Given L € NP, we define the even part L, = {z|x0 € L} and the odd part L, =
{z|x1 € L of L. By definition, L \ {A} = L. ® L,. Now we apply two operations to L,
and L,. The first is an operator considered already in [Hitchcock] and [Ambos-Spiess et
al.] which makes them N P-complete, the second - which does not affect the first - makes
them polynomially isomorphic. We are able to define these operations in such a way that
they produce only "minor changes”, hence we will be able to relate scaled dimensions of
the set

{L1 @ Lo | Ll, Ly € degfn(SAT), L4 >~ LQ}

to the scaled dimensions of NP. We will now describe the two steps in detail.

First Step: Let F}, denote the map such that for every n € N, Fj, maps all the strings of
length n to the first 2" strings of length n*:

Fy: 0,1}, Fi(x) = a0

Given some L = L. ® L, , the operator Fy:{0,1}* — {0,1}* applies the map Fj to L.
and L, separately in order to encode a stretched version of SAT into them: Fj(L) =
Fi(Le) ® Fi(L,) with

Fi(Ly) = (L; \ Fe({0,1}7) U F(SAT) (j € {e,0})

Note that for every L € NP, Fy(L) € {L1 ® L1|L1, Ly € deg? (SAT)}.

Second Step: Given a disjoint union L; @ Ly of two sets Ly, Ly C {0, 1}*, the operator
G encodes L into Ly and Ly into L; by encoding the strings of length n into the second
2" strings of length n*. Note that this does not affect the previous application of operator



Fr. More precisely: Let gg:{0,1}* — {0,1}* be defined by gy(z) = 210" ~l#I=1 Let
gk(Ll D LQ) - GL(Ll, Lg) D G;{:(LQ, Ll) with

GL(A, B) = (A\ gx({0,1}7)) U gx(B)
Now let

Hy: {Ll D L2|L1, Ly € NP} — {Ll D L2|L1, Ly € degﬁl(SAT), Iy >, LQ}
Hi(Ly & Ly) = Gp(Fi(Ly1 & Ly))

Analysis. Given some martingale d succeeding on
{L1 @ Loy | Ll, Ly € degﬁL(SAT), Ly >~ LQ},

we define the martingale dj - informally - as follows: On the first 4 - 2" strings of length
n* +1 it behaves neutrally (recall: 2-2" are needed for making L, and L, polynomial-time
isomorphic, 2 - 2" are needed for making them N P-complete). On all the other positions,
d behaves in the same way as d does.

/ nk
Hence if I/ = H,(L), then dy(L|1...22") > % We conclude that if r is a
growth rate function such that for almost all n, #(22",s) > 2.27 + (22" ¢) (s < 1),

then NP and {L, @ Ls|Ly, Ly € degl, (SAT), Ly ~, Lo} have the same r-scaled dimension.
Especially we obtain the following result.

Theorem 5.1. For each growth rate function r € {r; | |i] <2} U{r_oxlk € N},
dim? ({Ly @ L | Ly, Ly € deg,(SAT), Ly ~, L»}) = dim{)(NP)

On the other hand, using the methods from section 4 we obtain the following result (cf.
Theorem 4.1).

Theorem 5.2. Let r be a growth rate function. If r has property (P), then

diml()r)({L1 ® Ly | Ly, Ly € dedt, (SAT), Ly ~, Ly}) = 0.
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