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Abstract

In 1977, L. Berman and J. Hartmanis [BH77] conjectured that all polynomial-
time many-one complete sets for NP are are pairwise polynomially isomorphic. It
was stated as an open problem in [LM99] to resolve this conjecture under the mea-
sure hypothesis from quantitative complexity theory. In this paper we study the
polynomial-time isomorphism degrees within degp

m(SAT ) in the context of polyno-
mial scaled dimension. Our results are the following:

1. We consider scaled dimensions of order in between −2 and −3. Especially we

define scaled dimensions dim
(−2,k)
p , k ∈ N.

2. Let ISO
p
m(SAT ) denote the polynomial-time isomorphism degree of SAT . While

for each k, dim
(−2,k)
p (degp

m(SAT )) = dim
(−2,k)
p (NP ), if r is a growth rate func-

tion of order smaller than every order (−2, k), then

dim
(r)
p (ISO

p
m(SAT )) = 0.

3. We consider the class of disjoint unions L1 ⊕ L2 of NP -complete languages
L1, L2 such that L1 and L2 are polynomially isomorphic. We show that for
|i| ≤ 2 the i-th order scaled dimension of this class equals that of NP . The

same holds for the scaled dimensions dim
(−2,k)
p .

1 Introduction

The Berman-Hartmanis Conjecture, also known as the Isomorphism Conjecture, states
that all NP -complete languages are pairwise polynomially isomorphic [BH77], where two
sets A and B are polynomially isomorphic iff there exists a bijective polynomial-time com-
putable, polynomial-time invertible reduction from A to B. The Isomorphism Conjecture
is unsolved even under assumption P 6= NP . Kurtz et al. [KMR89] proved the failure of
the Isomorphism Conjecture relative to a random oracle, and Rogers [Rog95] was able to
construct an oracle relative to which the conjecture holds and one-way functions exist.

Lutz [Lut00] defined polynomial dimension as a generalization of Hausdorff dimension
and gave a characterization of polynomial dimension in terms of efficiently computable
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gales. While small-span theorems were proved for polynomial measure [JL95], Ambos-
Spies et al. [ASMRS01] proved the impossibility of small span theorems for polynomial
dimension. Scaled dimension was introduced by Hitchcock, Lutz and Mayordomo [HLM]
in order to overcome certain limitations and difficulties of polynomial dimesion. Hitchcock
[Hit04] gives several results concerning scaled dimensions of lower and upper spans and
of polynomial-time degrees. Especially he shows that for |i| ≤ 2, the i-th order scaled
dimension of the polynomial-time m-degree of SAT equals that of NP , while for i = −3
the i-th order scaled dimension of this degree vanishes. It was stated in [LM99] as an
open problem to resolve the Isomorphism Conjecture under reasonable hypotheses from
Quantitative Complexity Theory.

In this paper we study scaled dimensions of polynomial-time isomorphism degrees inside
NP . We give the following refinement of the scaled-dimension results obtained in [Hit04]:
We define a class of growth rates r−2,k, k ∈ N of order in between −3 and −2. It turns out
that for each k, the associated scaled dimension of the polytime m-degree of SAT equals
that of NP , while for each growth rate r that is in a certain sense of lower order than all
the r−2,k, the scaled dimesion of the polynomial-time isomorphism degree of SAT vanishes.

Furthermore we consider classes of disjoint unions L1 ⊕ L2 of languages L1, L2 from
NP . We prove that for each |i| ≤ 2 as well as for each growth rate r−2,k, the according
scaled dimension of the set of all L1 ⊕L2 such that L1, L2 are in the polytime m-degree of
SAT and such that L1 and L2 are polynomial-time isomorphic equals the scaled dimension
of NP , while for scales order lower than that of every r−2,k,the scaled dimension of this
class is equal to 0. This result is obtained by combining techniques from [Hit04] with a new
operator that transforms a disjoint union L1 ⊕L2 into a disjoint union of two polynomial-
time isomorphic sets.

The rest of the paper is organized as follows: In section 2 we give provide some standard
notions and definitions concerning p-dimension and scaled dimensions. In section 3 we
introduce the new class of growth functions of order between −3 and −2. In section 4
we consider scaled dimensions of the polynomial-time isomorphism degree of SAT , and in
section 5 we study classes of disjoint unions of languages from NP .

2 Preliminaries

Let ≤p
m denote polynomial-time many-one reducibility. Given a set A ⊆ {0, 1}∗, let Pm(A)

and P−1
m (A) denote the lower cone and upper cone of A with respect to polynomial-

time many-one reducibility, i.e. Pm(A) = {B ⊆ {0, 1}∗|B ≤p
m A}, P−1

m (A) = {B ⊆
{0, 1}∗|A ≤p

m B}. The polynomial-time m-degree of A is degp
m(A) = Pm(A) ∩ P−1

m (A).
Two sets A, B ⊆ {0, 1}∗ are polynomially isomorphic (denoted as A ≃p B) iff there exists
a bijection f : {0, 1}∗ → {0, 1}∗ such that both f and f−1 are polynomial-time computable
and f is a many-one reduction from A to B. Let ISOp

m(A) denote the polynomial-time
isomorphism degree of A, i.e. ISOp

m(A) = {B ⊆ {0, 1}∗|A ≃p B}.
Resource-bounded measure and resource-bounded dimension [Lut00] are used to study

the quantitavive structure of complexity classes. Hitchcock, Lutz and Mayordomo [HLM]
defined scaled dimension which was subsequently used in order to study quantitative prop-
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erties of complexity classes (see for instance [Hit04], [HLVM], [HPV]).
A martingale is a function d: {0, 1}∗ → [0,∞) such that for each x ∈ {0, 1}∗, d(x0) +

d(x1) = 2·d(x). A martingale d succeeds on a language L ⊆ {0, 1}∗ iff lim supn→∞ d(A|n) =
∞. S∞[d] is the set of all languages L ⊆ {0, 1}∗ on which d succeeeds. Let C ⊆ 2{0,1}∗ be
a class of languages. C has p-measure zero (µp(C) = 0) iff there is some polynomial-time
computable martingale d such that C ⊆ S∞(C). As a generalization of Hausdorff dimension,
p-dimension was characterized in terms of the growth rate of martingales. The p-dimension
of a class C ⊆ 2{0,1}∗ is defined the infimum of all s > 0 such that there is some polytime-
computable martingale d such that for all A ∈ C ∃∞n d(A|n) ≥ (1 − s) · n. Lutz et al.
[HLM] defined g(n, s)-scaled dimension by replacing martingales by g-scaled s-supergales
in the above definition. A function d: {0, 1}∗ → [0,∞) is called g-scaled s-supergale iff for
each x ∈ {0, 1}∗, d(x) ≥ 2−∆g(|x|,s)(d(x0) + d(x1), where ∆g(m, s) = g(m + 1, s) − g(m, s).
Equivalently scaled dimension can be defined in terms of growth rate functions. A function
r: H × [0,∞) → R, H = (a,∞) for some a ∈ R∪ {−∞} is called a growth rate function iff
the following conditions hold:

(1) There exist constants c, c′ such that for each n ∈ H , r(n, 1) = c, r(n, 0) = n + c′.

(2) For n sufficiently large, s 7→ r(n, s) is strictly decreasing.

(3) For all s′ > s ≥ 0, limn→∞[r(n, s′) − r(n, s)] = −∞.

Especially, in [HLM] for each integer i, a scale gi was defined, and dim(i)
p denotes the

i-th order scaled dimension. The associated growth rate function is given by ri(n, s) =
n + 2−(i+1) − gi(n, s) for i < 0 and ri(n, s) = n− gi(n, s) for i ≥ 0. The following table lists
the scales gi and associated growth rate functions ri for |i| ≤ 3.

Scale Growth Rate Function

g−3(n, s) = n + 4 − 22(log log n)1−s

r−3(n, s) = 22(log log n)1−s

g−2(n, s) = n + 2 − 2(log(n))1−s

r−2(n, s) = 2(log(n))1−s

g−1(n, s) = n + 1 − n1−s r−1(n, s) = n1−s

g0(n, s) = s · n r0(n, s) = (1 − s) · n
g1(n, s) = ns r1(n, s) = n − ns

g2(n, s) = 2(log n)s

r2(n, s) = n − 2(log n)s

g3(n, s) = 22(log log n)s

r3(n, s) = n − 22(log log n)s

3 Growth Rates of Order between −2 and −3

For each non-negative integer k we define r−2,k(n, s) = 2(log(n))
1−s
ks

. Note that r−2,1 = r−2.
The next lemma states that the functions r−2,k are growth rates of order in between −2
and −3.

Lemma 3.1. For each k ≥ 1, r−2,k is a growth rate function. Furthermore, for each
s ∈ (0, 1) r−2,k+1(n, s) = o(r−2,k(n, s)), r−2,k(n, s) = ω(r−3(n, s)).
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Proof. From the definition of functions r−2,k we obtain r−2,k(n, 1) = 2, r−2,k(n, 0) = n.
Since for each k ≥ 1, the exponent 1−s

ks is monotone decreasing in s, property (3) in the
definition of growth rate functions is satisfied as well. 2

We will additionally consider functions r(n, s) with the following property.

Property (P)
For each n ∈ N there exists k = k(n) ∈ N such that for all s ∈ [0, 1], r(n, s) =
r−2,k(n, s). The function n 7→ k(n) satisfies k(n) = o(log log(n)). Furthermore, for
each k ∈ N there exists n0 = n0(k) such that for all n ≥ n0, if r(n, s) = r−2,k′(n, s)
then k′ ≥ k.

Lemma 3.2. If r(n, s) has property (P), then r(n, s) is a growth rate function.

Proof. Since for each k, r−2,k is a growth rate function with r−2,k(n, 1) = 2, r−2,k(n, 0) = n,
properties (1) and (2) hold for r. Furthermore, for each s′ > s ≥ 0, n ∈ N log log r(n, s′) =
β · log log r(n, s) for β = 1−s′

1−s
< 1, hence using k(n) = o(log log(n)), limn→∞(r(n, s′) −

r(n, s)) = −∞. 2

4 Scaled Dimension of ISOp
m(SAT )

In this section we consider the class ISOp
m(SAT ) = {A ∈ NPC(≤p

m)|A ≃p SAT}. If we can
show that there exists some positive integer k such that for each polynomial isomorphism
f from some set A ∈ NP to SAT , for each s < 1 for infinitely many n, a sufficient majority
of all strings of length n are mapped to strings of length at most k · n under f , then we
can use an O(2cn)-time bounded exhaustive search algorithm for SAT in order to obtain
dim(r)

p (ISOp
m(SAT )) = 0. Hence we seek for some growth rate function r such that if such

a condition is not satisfied by f , then f cannot be an isomorphism.

Theorem 4.1. If s ∈ (0, 1) and r is a growth rate function such that for all j ∈ N there
are infinitely many n such that r(2nj+1 − 1, s) < 2n, then dim(r)

p (ISOp
m(SAT )) ≤ s.

Proof. Fix some k ∈ N. Let L ∈ NP and f be a a polynomial-time computable honest
reduction from L to SAT . We will show that if for almost all n,

|{x ∈ {0, 1}∗| |x| ≤ n, |f(x)| ≤ k · |x|}| < r(2n+1 − 1, s) (⋆)

then f cannot be onto. There exists some j ∈ N such that f(x) can be computed in time
|x|j and |x|1/j ≤ |f(x)| ≤ |x|j for all x ∈ {0, 1}∗. Assume (⋆) holds for almost all n. Then
for appropriate n large enough, the number of strings being mapped to strings of length
n under f is upper-bounded by r(2nj+1 − 1, s) < 2n which implies that f cannot be onto.
Therefore, if f is a polynomial-time isomorphism from L to SAT , then for infinitely many
n,

|{x ∈ {0, 1}∗| |x| ≤ n, |f(x)| ≤ k · |x|}| ≥ r(2n+1 − 1, s)

and hence we can use the fact SAT ∈ E in order to construct a polynomial-time computable
martingale d that r(n, s)-succeeds on ISOp

m(SAT ). Let {fj |j ∈ N} be an enumeration of all
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polynomial-time computable functions. Let Zj = {f−1
j (SAT )} iff fj is a polynomial-time

computable, polynomial-time invertible bijection and Zj = ∅ otherwise. For j such that
Zj 6= ∅, we will define a martingale dj for Zj as follows:

dj(xb) =







2 · dj(x) if |f(z|x|)| ≤ k · |z|x||, b = SAT (f(z|x|))
0 if |f(z|x|)| ≤ k · |z|x||, b = 1 − SAT (f(z|x|))
dj(x) otherwise

Obviously the dj are uniformly computable in time O(2cn) for some c > 0. Furthermore, for
each j there are infinitely many n ∈ N such that d(f−1

j (SAT )|n) ≥ 2r(n,s). This establishes

dim(r)
p (ISOp

m(SAT )) ≤ s. 2

Corollary 4.1. If r is a growth rate function that has property (P), then

dim(r)
p (ISOp

m(SAT )) = 0.

Proof. Let r have property (P). Then for given s and j, for n such that k(n) = k,

r(2nj+1 − 1, s) = 2(log(2nj+1−1))
1−s

k ≤ 2(log(2n2j
))

1−s
k = 2n

2j(1−s)
k

hence if we choose n large enough such that k > 2j, the condition of Theorem 4.1 is satis-
fied by r. 2

5 On Disjoint Unions of NP Languages

Given two sets A, B ⊆ {0, 1}∗, their disjoint union A ⊕ B is defined as

A ⊕ B = {a0 | a ∈ A} ∪ {b1 | b ∈ B}

Note that {L1 ⊕L2|L1, L2 ∈ NP} = NP if we consider NP as a subset of the power set of
{0, 1}∗. In this section we are concerned with subsets of {L1 ⊕ L2|L1, L2 ∈ NP} and their
scaled dimensions. First consider the set

{L1 ⊕ L2 | L1, L2 ∈ NP, L1 ≡
p
m L2}

(the set of all pairs of languages from NP that are polytime many-one equivalent).

Lemma 5.1. Let C be a class of languages L ⊆ {0, 1}∗ and D be a class of disjoint unions
of languages that contains {L ⊕ L|L ∈ C} Then for every growth rate function r such that
for almost all n, r(2n, s) − n ≥ r(n, t), dim(r)

p (D) < s implies dim(r)
p (C) ≤ t.

Proof. Assume d is a polytime computable martingale s-succeeding on D, hence espe-
cially on the set of all L ⊕ L, L ∈ C. Now we define a martingale d′ as follows: Let

d(x1x1 . . . xn−1xn−1 0) = α · d(x1x1 . . . xn−1xn−1), β = 2 − α

d(x1x1 . . . xn−1xn−1 00) = α1 · d(x1x1 . . . xn−1xn−1 0), β1 = 2 − α1

d(x1x1 . . . xn−1xn−1 10) = α2 · d(x1x1 . . . xn−1xn−1 1), β2 = 2 − α2
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Then we define
d′(x1 . . . xn−10) := 2·α·α1

α·α1+β·β2
· d′(x1 . . . xn−1)

d′(x1 . . . xn−11) := 2·β·β2

α·α1+β·β2
· d′(x1 . . . xn−1)

By definition and the martingale property of d,

2

α · α1 + β · β2
≥

2

4
=

1

2

Hence if the capital of d on L⊕L is growing by factor f ∈ {α ·α1, β · β2}, then the capital
of d′ on L is growing by at least f

2
. Thus from d(L ⊕ L|1 . . . 2N) ≥ 2r(2N,s) we obtain

d′(L | 1 . . . N) ≥ 2−N · 2r(2N,s) = 2r(2N,s)−N and hence the lemma follows. 2

Corollary 5.1. For each s ∈ (0, 1), dimp(NP ) ≥ 2s implies dimp({L1 ⊕ L2 | L1, L2 ∈
NP, L1 ≡

p
m L2}) ≥ s.

Proof. For r0(n, s) = (1 − s) · n we obtain r0(2N, s) − N = (1 − 2s)N , hence
dimp(NP ) ≥ 2s implies dimp({L1 ⊕ L2 | L1, L2 ∈ NP, L1 ≡

p
m L2}) ≥ s. 2

We will now consider disjoint unions of sets from NP that are in the same polynomial-
time isomorphism degree.

Given L ∈ NP , we define the even part Le = {x|x0 ∈ L} and the odd part Lo =
{x|x1 ∈ L of L. By definition, L \ {Λ} = Le ⊕ Lo. Now we apply two operations to Le

and Lo. The first is an operator considered already in [Hitchcock] and [Ambos-Spiess et
al.] which makes them NP -complete, the second - which does not affect the first - makes
them polynomially isomorphic. We are able to define these operations in such a way that
they produce only ”minor changes”, hence we will be able to relate scaled dimensions of
the set

{L1 ⊕ L2 | L1, L2 ∈ degp
m(SAT ), L1 ≃p L2}

to the scaled dimensions of NP . We will now describe the two steps in detail.

First Step: Let Fk denote the map such that for every n ∈ N, Fk maps all the strings of
length n to the first 2n strings of length nk:

Fk: {0, 1}
∗, Fk(x) = x0|x|

k−|x|

Given some L = Le ⊕ Lo , the operator Fk: {0, 1}
ω → {0, 1}ω applies the map Fk to Le

and Lo separately in order to encode a stretched version of SAT into them: Fk(L) =
F ′

k(Le) ⊕ F ′
k(Lo) with

F ′
k(Lj) = (Lj \ Fk({0, 1}

∗) ∪ Fk(SAT ) (j ∈ {e, o})

Note that for every L ∈ NP , Fk(L) ∈ {L1 ⊕ L1|L1, L2 ∈ degp
m(SAT )}.

Second Step: Given a disjoint union L1 ⊕ L2 of two sets L1, L2 ⊆ {0, 1}∗, the operator
Gk encodes L1 into L2 and L2 into L1 by encoding the strings of length n into the second
2n strings of length nk. Note that this does not affect the previous application of operator
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Fk. More precisely: Let gk: {0, 1}
∗ → {0, 1}∗ be defined by gk(x) = x10|x|

k−|x|−1 Let
Gk(L1 ⊕ L2) = G′

k(L1, L2) ⊕ G′
k(L2, L1) with

G′
k(A, B) = (A \ gk({0, 1}

∗)) ∪ gk(B)

Now let

Hk: {L1 ⊕ L2|L1, L2 ∈ NP} → {L1 ⊕ L2|L1, L2 ∈ degp
m(SAT ), L1 ≃p L2}

Hk(L1 ⊕ L2) = Gk(Fk(L1 ⊕ L2))

Analysis. Given some martingale d succeeding on

{L1 ⊕ L2 | L1, L2 ∈ degp
m(SAT ), L1 ≃p L2},

we define the martingale dk - informally - as follows: On the first 4 · 2n strings of length
nk +1 it behaves neutrally (recall: 2 · 2n are needed for making Le and Lo polynomial-time
isomorphic, 2 · 2n are needed for making them NP -complete). On all the other positions,
dk behaves in the same way as d does.

Hence if L′ = Hk(L), then dk(L|1 . . . 22nk

) ≥ d(L′|1...22nk
)

22·2n . We conclude that if r is a

growth rate function such that for almost all n, r(22nk

, s) ≥ 2 · 2n + r(22nk

, t) (s < t),
then NP and {L1 ⊕L2|L1, L2 ∈ degp

m(SAT ), L1 ≃p L2} have the same r-scaled dimension.
Especially we obtain the following result.

Theorem 5.1. For each growth rate function r ∈ {ri | |i| ≤ 2} ∪ {r−2,k|k ∈ N},

dim(r)
p ({L1 ⊕ L2 | L1, L2 ∈ degp

m(SAT ), L1 ≃p L2}) = dim(r)
p (NP )

On the other hand, using the methods from section 4 we obtain the following result (cf.
Theorem 4.1).

Theorem 5.2. Let r be a growth rate function. If r has property (P), then

dim(r)
p ({L1 ⊕ L2 | L1, L2 ∈ degp

m(SAT ), L1 ≃p L2}) = 0.
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