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Abstract

We study the approximability of the reconstruction problem of phy-
logenetic trees with respect to three different cost measures and give
the first explicit lower bounds, under standard complexity-theoretic
assumptions. For the Steiner Tree Problem in Phylogeny (STPP) and
the Generalized Tree Alignment (GTA) problem, we show that un-
less P = NP, no polynomial-time algorithm can approximate these

problems with an approximation ratio below 322. For the Ancestral

Mazimum Likelihood (AML) problem we give ?E’LSEglower bound of %.
Furthermore we construct a polynomial-time approximation scheme
(A¢)eso for the AML problem, such that for each € > 0, A; is a poly-
nomial time approximation algorithm with ratio (1+6)-(1+@). This
result is based on the Steiner tree algorithm of Robins and Zelikovsky
[RZ00] and on a new exact algorithm for AML instances of constant
size. This improves upon recent results by Alon et al. [ACPR08] who

gave a 1.78-approximation algorithm for the AML problem.

1 Introduction

Concerning the reconstruction of phylogenetic trees, two major approaches
have been considered in the literature: Distance-based methods where only
the distances between the n species are given, and character-based methods
where for each of the n species the states of m characters are given.

Mazimum Likelihood (ML) [F81] and Mazimum Parsimony (MP) [F71] are
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two well-known optimality criteria that belong to the category of character-
based methods. While ML asks for a tree maximizing the likelihood of the
given taxa over an arbitrary evolutionary model, MP assumes parsimony as
the underlying evolutionary model: The probably that two taxa are closely
related is proportional to their similarity.

We consider two versions of MP: The Steiner Tree Problem in Phylogeny
(STPP) and the problem of Generalized Tree Alignment (GTA). STPP is a
variant of MP where the underlying genetic distance measure is the Ham-
ming distance, that counts the number of differing characters. In GTA, the
n species are given as unaligned biological sequences of variable length, so
the underlying metric is the edit distance. Ancestral Maximum Likelihood
(AML) is a mixture of MP and ML. AML asks for a tree that maximizes the
likelihood of the given species.

STPP, GTA and AML are variants of the Steiner Tree Problem where the
underlying metric space is some m-dimensional hypercube and the distance
measure is the Hamming distance, the edit distance and the binary entropy
of the normalized Hamming distance respectively. The Steiner Tree Problem
asks for a minimum-length tree 7' connecting a given set S of terminals in an
underlying metric space (V,d). This is one of the most fundamental network
design problems, which is well-known to be NP-hard [K72] and even NP-
hard to approximate [CC02|. The currently best known approximation lower
bound for the Steiner Tree Problem in weighted graphs is 1.01063 [CCO02].

In this paper we give the first explicit lower bounds for the approximabil-
ity of the Steiner Tree Problem in Phylogeny (STPP), the Generalized Tree
Alignment (GTA) and the Ancestral Maximum Likelihood (AML). Namely
we show that for each ¢ > 0 it is NP-hard to approximate GTA and STPP
with an approximation ratio better than ggzlz and AML with an approxi-
mation ratio better than E%;E These results are obtained by constructing
approximation-preserving reductions from the Bounded Degree Vertex Cover
Problem (B-VC) and using explicit lower bounds for the approximability of
5-VC given by Berman and Karpinski [BK98|.

Concerning upper bounds, recently Alon et al. [ACPRO08| gave a 1?fj—aupproxi—
mation algorithm for the AML problem. This algorithm combines the Steiner
Tree approximation algorithm of Berman and Ramaiyer [BR94| with a new




algorithm that efficiently computes optimum Steiner trees for sets of termi-
nals of size at most 4. In this paper we improve upon this result and give a
polynomial-time 1.55-approximation algorithm for the AML problem. More
precisely, we construct an approximation scheme (A.).~¢, such that for each
fixed € > 0, A, is a polynomial-time approximation algorithm for the AML

problem with A.R. (1+¢)- <1 + @ ~ (1+¢)-1.55. Here our contribution
is a family of algorithms Fy, k € N, such that for each k, F} is a polynomial-
time algorithm that solves to optimality the AML problem for instances with
terminal sets up to size k. Plugging this in the algorithm of Robins and Ze-

likovsky [RZ00] gives the desired algorithm.

The rest of the paper is organized as follows. First we give the precise
problem formulations of the STPP, GTA and AML problems. In section 1.2
we refer to previous work. In the sections 2, 3 and 4 we describe our hard-
ness results for the STPP, GTA and AML respectively. The approximation
algorithm for the AML problem is described in section 4.3.

1.1 Problem Formulations

In this section, we give some definitions and notations that will be used in

the sequel. Furthermore we will give the precise problem formulations of the
STPP, GTA and AML.

Let H™ = {0,1}™ denote the m-dimensional Boolean hypercube and dg
the Hamming distance, i.e. for z,y € H™ dy(z,y) = > ;" |zi — yi|. Given
two strings x,y € {0,1}*, an alignment of x and y is a pair of strings
z,7 € {0,1, A}* with the following properties:

(i) Deleting all occurrences of A from Z produces x.
(ii) Deleting all occurrences of A from g produces y.

(iii) # and g are of the same length.
A scoring scheme is a function s: {0,1,A} x {0,1,A} — R,. The asso-
ciated edit distance dg is defined as follows: for =,y € {0,1}*, ds(z,y) =
min {Z‘Zﬂl s(Z;,9;) | T, 7 is an alignment of = and y}.
The notion of an L-reduction was introduced by Papadimitriou and Yan-
nakakis [PY91|. If A and B are optimization problems, then A is L-reducible

3



to B with parameters «, 3, if there exist two polynomial-time computable
functions f, g, such that the following conditions hold: (i) f maps each in-
stance = of A to an instance f(x) of B. (ii) For each instance x of A and
solution y to instance f(x) of B, g(x,y) is a solution for instance x of A. (iii)
OPTg(f(z)) < a-OPTa(x). (iv) For each solution y for instance f(x) of B,
|OPTa(x) — cost(g(z,y))| < 8- |OPTp(f(x)) — cost(y)|

We are now ready to give a precise description of the STPP, GTA and AML
problem.

STEINER TREE PROBLEM IN PHYLOGENY (STPP)
Input: A set of n binary sequences s, ..., s,, each of length m
Find: A tree T' = (V, E) such that {s;,...,s,} CV C H™
Objective: Minimize the length dy(T') := > du(e)

ecl
GENERALIZED TREE ALIGNMENT ( GTA)
Input: a set of n binary sequences si,...,s,, each of length < m, a
scoring scheme s: {0,1, A} x {0,1,A} — R,
Find: A tree T'= (V, E) such that {s;,...,s,} CV C{0,1}"
Objective: Minimize the mutational length d(T) := ) ds(e).

eck

ANCESTRAL MAXIMUM LIKELIHOOD (AML) Version I
Input: A set of n binary sequences s1,...,s, € H™
Find: A tree T'= (V, E) such that {sy,...,s,} CV C H™
and an assignment of edge probabilities p: £ — [0, 1]

Objective: Maximize the overall probability [] ng(e) (1 —pe)m—dute)
eck

In [ACH+04]| and [ACPROS§] it is shown that the AML problem can also be
reformulated as a special case of the Steiner Tree Problem in the Boolean
hypercube H™: If we consider the individual edge likelihood pde(1 — p, )™ 4
for a given edge e of length d, := dy(e) between two taxa with m characters,
this term is maximized for p, = %e. Since taking the m-th root and the loga-
rithm are monotone operations that do not change the argument maximizing
a function, we are able to reformulate the objective function of AML as a
sum and obtain the following discrete variant:



ANCESTRAL MAXIMUM LIKELIHOOD (AML) Version IT

Input: A set of n binary sequences s1,...,s, € H™

Find: A tree T'= (V, E) such that {s;,...,s,} CV C H™
Objective: Maximize the overall probability p(T) of T', where p(T') :=
> d_ni '10g2(d_,§) + (1 - d_,ﬁ) -logy (1 — %)

eck

Note that p(T') = > —Ha(%), where Hy(p) = —plog,(p) — (1 —p)loga(1 —p)
eck

is the binary entropy function.

1.2 Previous Work

The NP-hardness of STPP has been shown by Foulds and Graham [FG82],
see also [DJS86]. Bern and Plassmann [BP89| proved that already a very
restricted version of the Steiner Tree Problem, namely the (1,2)-Steiner Tree
Problem, is APX-hard. This is the Steiner Tree Problem restricted to met-
ric instances, where all non-zero distances are 1 or 2. Ferniandez-Baca and
Lagergren showed that the k-restricted STPP is APX-complete for k > 4
and the k-Steiner ratio for the STPP matches the corresponding ratio for
metric spaces defined on networks [FBL98|. Note that for the case k = 3
there is a randomized polynomial-time approximation scheme, that solves
the 3-restricted Steiner Tree Problem with arbitrary precision [PS97]. The
GTA problem was shown to be APX-hard by Jiang et al. [JW94]. Their
basic idea was to construct a polynomial-time reduction f, that embeds in-
stances I of the STP resulting from Bern and Plassmann’s reduction into
some hypercube {0,1}™ and to show that optimal solutions for these em-
bedded instances f(I) can be assumed not to use any Steiner points from
{0,1}™\ f(I). The NP-hardness of the AML problem was shown by Addario-
Barry et al. [ACH+04]. Alon et al. gave a %—approximation algorithm for
the AML problem [ACPROS].

Both, the previously known hardness results and our new explicit lower
bounds for approximablility of the STPP, GTA and AML are essentially
based on existing hardness results for the Bounded Degree Vertex Cover Prob-
lem (B-VC).



B-BOUNDED DEGREE MINIMUM VERTEX COVER (B-VC)
Input: A Graph G = (V| E) of maximum degree Ag < B
Find: A subset C C V, such that for alle € EenC # ()
Objective: Minimize |C|

The B-VC problem is known to be APX-hard for B > 3 [PY91]. The
best known explicit bounds for non-approximability have been obtained by
Berman and Karpinski [BK98|.

2 Explicit Lower Bounds for STPP

In 1994, Jiang et al. have already proposed an L-reduction from triangle-free
B-VC to STPP [JW94]. Here we analyse this reduction in order to compute
an initial approximation lower bound for STPP. For this purpose we will first
describe their transformation.

Let G = (V, E) be a triangle-free graph with maximum degree B and V =
{1,2,...,m}. Without loss of generality, we assume that G is connected.
Let 0;, 4,4, denote the binary sequence of length m with 0’s at the i;-th
positions and 1’s at the rest. Then we construct an STPP instance with
S :={0;,|{4,j} € E}. Assuming that G has a vertex cover U of size ¢, we
can construct a phylogeny for S as follows: Connect each sequence 0;,; € S
to some O, where k =4 or j, and k € U. Afterwards connect the sequences
{0; | i € U} to 1™. Thus each connection has a length of 1, the length of the
resulting phylogeny 7' is dy (1) = |E|+ c. We refer the reader to the original
paper for more details and verification.

The currently best approximation lower bounds for B-VC are due to Berman,
Karpinski [BK98|. Here we need the following theorem.

Theorem 2.1 (|[BK98]). For any € > 0, it is NP-hard to decide, whether
a graph with 140n nodes, 12n of degree 5 and 128n of degree 4, has the
minimum size of a verter cover above (73 — €)n or below (72 + €)n.

If we combine this result with the reduction from B-VC to Triangle Free
B-VC that was given by Jiang et al. [JW94|, we obtain the following result.

Lemma 2.1. For any € > 0, it ws NP-hard to decide, whether an instance of
Triangle Free 5-VC with 712n nodes and 858n edges has the minimum size
of a vertex cover above (359 — €)n or below (358 + €)n.
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Proof. The reduction given in [JW94]| maps each instance G = (V, E) of the
B-VC problem to a graph G’ = (V/,E’) with V' =V U{v. | v € e € E}
and E' = {{v, v}, {ve, we}, {we, w} | € = {u,v} € E}, and it is shown there
that in polynomial time each vertex cover C’ of G’ can be transformed into
a vertex cover U’ = {u,w, | u € Uje = {u,w} € E} such that U C V is a
vertex cover in G and |U'| < |C'|. If G is a graph with 140n nodes, 12n of
degree 5 and 128n of degree 4 then G’ consists of (140 + 2 - 286)n = 712n
nodes and 3 - W = 858n edges, and a vertex cover C of size ¢ in G
corresponds to a vertex cover C’ of size ¢ + 286n in G'. O

Now we combine the reduction from Triangle-Free Bounded Degree Vertex
Cover to the STPP given by Jiang et al. with lemma 2.1. This yields the
following theorem.

Theorem 2.2. For any e > 0, it is NP-hard to decide, whether an instance of
STPP with 858n taxa has the minimum length of a phylogeny above (1217 —
e)n or below (1216 + €)n.

We increase this initial bound by using a different reduction from B-VC

to STPP described below. It turns out that using this reduction, there is no
need to require the B-VC instances to be triangle-free anymore.
We start with an arbitrary B-VC instance G = (V, F)) with vertex set V =
{1,2,...,m}. We define S¢ := {0, | {i,7} € E} U {1™} as the set of taxa
of our STPP instance. Note that in contrast to T. Jiang et al.’s reduction,
we add the node 1™ to the set of terminals.

[ | terminal vertex
() Steiner vertex

[0i ] [0 ] [On ][ O J[ O]

Figure 1: Phylogeny for S = {0, ;,0;x,0;, 01k, 01m, 1™}

Definition 2.1. Let G = (V, E) be a graph with verter set V = {1,...,m}.
For each vertex cover U CV for G we define an associated phylogeny Ty as
follows: L(Ty) :={0;; | {t,7} € E} is the set of leaves of Tyy. Each leaf 0;
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is connected to an inner node O, k € {i,j} N U and each inner node Oy is
connected to the root 1™.

It is easy to see, that Ty is a phylogeny for Sg. See figure 1 for an
example. We will now show, that there always exits phylogenies of minimum
length that are of the form Ty, where U is a minimum vertex cover for G.

Lemma 2.2. For each B-VC instance G = (V, E) and each solution T of
the corresponding STPP instance S¢ = {0;; | {i,7} € E} U {1™} one can
construct a verter cover U for G in polynomial time, such that dg(Ty) <

dy (T).

Proof. To show this, we start with an arbitrary phylogeny 7" for S and show
that 7' can be transformed into a phylogeny Ty for Sg without increasing
the tree length.
Nodes with sequences that have more than one 0 and are not in S are called
bad. All other nodes are good. Without loss of generality we can assume that
for each edge e in T dy(e) = 1 and the tree is rooted at 1™.

Now we will remove all bad nodes in T iteratively from the bottom to

0 1m () bad node

good node

L0 ] [ 0] L0 ] [ 0] subtree containing
/ \no bad nodes

Figure 2: (a) Bad node with two 0’s at the lowest level of the tree. (case
1) (b) Elimination of the bad node.

the top. Let s be a bad node at the lowest level of the tree. All child nodes
of s are good and therefore have at most two 0’s. Due to the fact that the
Hamming distance of all edges is 1, including the distance between s and
each of its children, s cannot have more than three 0’s. So it has two or
three 0’s. We consider these two cases separately.

Case 1: s = 0;; . Since there are no sequences with two 0’s and Hamming
distance 1 from s, the children of s must have exactly one 0, namely at
position i or j. Observe that they have also Hamming distance 1 from 1™,
and so we can connect them to 1™ without increasing the length of the tree.



Figure 3: (a) Bad node with three 0’s and two children at the lowest level
of the tree. (case 2.1) (b) Elimination of the bad node.

[0 ] [Owe]  [04]

(a) (b)

Figure 4: (a) Bad node with three 0’s and three children at the lowest level
of the tree. (case 2.2) (b) Elimination of the bad node.

Now we can delete the bad node s, see figure 2.

Case 2: s = 0; ;1 . In this case all children of s must have two 0’s, that are
at the positions ¢, j or k. It is easy to see that s can have at most three child
nodes. We consider two subcases, depending on the number of children.
Case 2.1: s =0, j and s has one or two children . If s has two child nodes
they must share one 0-position 7. If it has only one we define i as any of the
child’s O-positions. Note that all child nodes also have Hamming distance 1
from 0;. We replace s with 0; and directly connect this node to 1, so that
the number of edges is still the same and all edges have Hamming distance
1, see figure 3.

Case 2.2: s = 0; ;5 and s has three children . In this case, the parent node
p of s must have four 0’s, because all sequences with two 0’s and Hamming
distance 1 from s are already spent for the three child nodes of s. This



implies that all siblings of s have three 0’s. (Note that they cannot have
five 0’s, because they are at the same level as s, which means that all nodes
below them are good and thus have at most two 0’s.) Since all siblings of
s share exactly two 0-positions with s, they can have at most two children.
By removing all its siblings as described in case 2.1, we achieve that s is the
only child of p. Then we connect two children of s, let’s say 0; ; and 0, x, via
0; to 1™, which increases the length by 1. Next, we link the remaining child
0;% to 1™ via a 0; or Og, which increases the length by 1 for a second time.
Finally we remove s and p and thereby decrease the length by 2, see figure 4
(c). O

Proposition 2.1. The described mapping is an L-reduction from B-VC to
STPP with parameters « = B+ 1 and § = 1.

Proof. Let G = (V,E) be an instance of the B-VC. Let T* be an op-
timum solution for the associated instance Sg of the STPP, and let Ty
be the phylogeny resulting from application of lemma 2.2 to 7. Then
dy(T*) = dy(Ty) = |E| + |U|, which implies opt(Sg) = opt(G) + |E|. Since
each node in a vertex cover in G can cover at most B edges, opt(G) > %
and thus opt(Sg) = opt(G) - (1 + B). This yields a« = B + 1. Furthermore,
if T" is an arbitrary solution for the instance Sg of the STPP and Ty is
the associated solution resulting from lemma 2.2, then |dg(T") — opt(Sg)| <
|dg(Ty) — opt(Sg)| = |da(Ty) — du(Ty<)| = |U| — opt(G) (where U* is a
minimum vertex cover in ) and thus § = 1. O

To finish our reasoning, it remains to perform the accounting. Let G
be the 5-VC instance constructed by Berman and Karpinski [BK98|. It has
12n degree-5 nodes and 128n degree-4 nodes and the difficult question is,
whether G has the minimum size of a vertex cover U above (73 — ¢)n or
below (72 + ¢)n. Each of the 286n terminals corresponding to edges in G is
connected to some 0;, ¢ € U, that is connected to 1. Since each connection
costs 1, the cost of the resulting phylogeny is at least (73 4+ 286 — ¢)n, or at
most (72 4 286 + ¢)n.

Theorem 2.3. For any e > 0, it s NP-hard to decide whether an instance of
STPP with 286n taxa has the minimum length of a phylogeny above (359—¢)n
or below (358 + £)n.
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3 Generalized Tree Alignment

The reduction from B-VC to STPP given by Jiang et al. [JW94]|, which
we described in the preceding section, also gives a reduction from B-VC to
GTA, if we use the score scheme presented in table 1. Thus the approximation
lower bound of 1.0027 which is obtained by combining this reduction with
the hardness results of Berman and Karpinski for 5-VC [BK98| as shown
in section 2 also holds for GTA. Here we show, that the L-reduction from
B-VC to STPP constructed in section 2 also works for the GTA problem.
This gives the new lower bound of 1.0028 also for GTA.

0|1 A
O |0]|1]2
1 1012
A2]1210

Table 1: score scheme

For the sake of completeness, we will first describe how to transform an
arbitrary Bounded Degree Vertex Cover Problem into a special GTA instance.
Let G = (V,E) be a graph with degree bounded by B. We number the
vertices of V' consecutively from 1 to m. As input sequences of the GTA
instance, we choose for each edge {7, j} in G a "1’-sequence of length m, with
only two zeros at the positions ¢ and j. Finally we add 1™ to the set Sg of
input sequences.

Let U C V be a minimum vertex cover for G. We build a phylogeny T' of
minimum (mutational) length for Si as described in the previous section.
We define the score scheme s as in table 1. We still have to prove, that the
sum of distances along the edges of T" is minimum. To show this, we start
with an arbitrary phylogeny 7" for S and show, that 7" can be transformed
into T" without increasing the tree length.

Again we divide the nodes in T” into bad nodes, that are neither in S nor
of form 0; and good nodes, that are not bad. The following lemma allows to
restrict our considerations to trees 7" with additional structural properties.

Lemma 3.1. There is an polynomial-time algorithm that transforms a given
phylogeny T into a phylogeny T' of length ds(T") < ds(T), such that the
following properties hold.
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(i) For each edge e in T", ds(e) = 1.

(11) All node sequences in T' have length m.
(11i) Each bad node in T' has at least two children.
(iv) Fach sequence appears at most once in T".

Proof. Property (i) can be achieved by deleting each edge that is longer than
1. This separates 1" into two components. One of them contains the input
sequence 1™ and the other one must contain any input sequence of form 0, ;.
If not, the other component would not contain any input sequence and could
be removed. We reconnect the two components by linking 0; ; and 1™ to
some sequence Og, kK € U N {i,7}. Since both new edges have length 1 and
the length of the original edge was at least 2, this does not increase the length
of the tree. Since the score of a gap is 2, (ii) follows from (i). Bad nodes
with only one child can be deleted with both connecting edges of length 1
and the two disconnected components can be reconnected as before with at
most two new edges, each of length 1. Thus afterwards (iii) holds. (iv) can

easily be achieved by moving edges and removing the isolated duplicates.
O

Now we can remove all bad nodes in 7" iteratively from the bottom to
the top, assuming that the tree is rooted at 1™. We refer the reader to the
proof of proposition 2.1 in section 2, because due to lemma 3.1 all distances
occurring in 7" and T equal the Hamming distance.

Proposition 3.1. The described mapping is an L-reduction from B-VC to
GTA with parameters « = B+ 1 and 3 = 1.

Combining this result with the 5-VC approximation lower bound of Berman
and Karpinski [BK98] we obtain the following theorem.

Theorem 3.1. For any € > 0, it is NP-hard to decide, whether an instance
of GTA with 286n input sequences has the minimum mutational length of a
phylogeny above (359 — )n or below (358 + ¢)n.
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4 Ancestral Maximum Likelihood

In the general version of AML given above, we have to optimize over tree
topologies, sequence assignments and edge probabilities. In 2000, Pupko
et al. developed a dynamic programming solution for a special version of
AML, where the topology and the edge lengths are given as part of the input
[PPSGO04]. Three years later Addario-Barry et al. proved that its general
version is NP-hard [ACH+04], by using a reduction from Vertex Cover. Here
we use these results to show that AML is even APX-hard and to compute
an explicit approximation lower bound.

4.1 APX-Hardness

For proving the APX-hardness of AML we use the existing polynomial re-
duction given by Addario-Barry et al. from Vertex Cover (VC) to AML. In
their construction, in a first step the Vertex Cover Problem is reduced to
a special case, the Vertex Cover Problem in h-bajan graphs. An h-bajan
graph of GG basically consists of h disjoint copies of GG connected to each
other along the edges of G. This intermediate step was necessary in order
to obtain a polynomial-time reduction to the AML, since in the case of the
binary entropy cost function used in AML the construction, described in
the proof of lemma 3.1 does not apply to trees resulting from general Ver-
tex Cover instances (cf. [ACH+04]). Here we will show that Vertex Cover
on h-bajan graphs remains APX-hard. Subsequently one can L-reduce from
Vertex Cover on h-bajan graphs to AML.

We begin with the definition of h-bajan graphs. For any integer h > 1,
the h-bajan graph B(G,h) of a graph G consists of h isomorphic copies of
G. The copy of vertex u in the ith copy of G is denoted as u’. Two vertices
u® and v/ are connected in B(G, h), if u and v are connected in the original
graph G.

Definition 4.1 (h-bajan [ACH-04]). Let G = (V, E) be a graph and
h > 1 be an integer. The h-bajan graph of G is defined as follows: B(G,h) :
(Vi, Eg), where Vg := ] {v' | v € V} and Ep = {{u’,v} | 1 < i,j
h A{u,v} € E}.

<

Addario-Barry et al. have shown, that Vertex Cover on h-bajan graphs
remains NP-hard. Here we need the following lemma:
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Lemma 4.1. For any h > 1, Vertex Cover on h-bajan graphs is APX-hard.

Proof. Let G = (V, E') be an arbitrary graph, h > 1 and B(G, h) = (Vg, Eg)
be the h-bajan graph of G. Obviously B can be created in polynomial time.
Suppose that U is a vertex cover in B. Since the edges inside each copy
of G can be covered only by vertices inside this copy, U can be written as
U?Zl U;, where each U; contains only vertices of the i-th copy of G. We can
transform each vertex cover of B into a so called normalized vertex cover
without increasing its size by choosing the minimal |U;| and carrying it to
the other copies of G. Let Ug be a vertex cover of GG of size c. The size of a
corresponding vertex cover in B is h - ¢, so it depends linearly on c. O

Let G = (V, E) be an h-bajan graph with V' = {1,...,m} and |E| = n.
One can construct an instance S of AML, such that |[S| = |E|+1=n+1
and S C {0,1}™. Again let 0;, 4, ;, denote the binary sequence of length
m with 0’s at the i;-th positions and 1’s at the rest. Then we define S
as {0;; | {¢,7} € E} U{1™}. Addario-Barry et al. have shown, that any
phylogenetic tree T' for S can be transformed into a tree 7" of the following
form, without increasing its likelihood:

e For any edge e in T": d, = 1.
e All nodes connected to 1™ are internal vertices of the form 0;.
o All leaves of 77 are in S\ {1™}.

In the sequel we consider 1™ as the root of T7’. The set {i | 0; € V(T)}
corresponds to a vertex cover in G.

Let U be a minimal vertex cover in G and ¢ = |U|. The likelihood of the
corresponding phylogeny can be computed as follows: There are n edges
from the leaves to the inner nodes and ¢ edges from the inner nodes to the
root. For each edge e in T, d. = 1. So the likelihood of the phylogeny is
(n+¢)- (—H(L)), which is linear in c. Theorem 4.1 follows.

Theorem 4.1. AML is APX-hard.

4.2 Explicit Lower Bounds

In this subsection we compute an explicit lower bound for AML. Therefore
we use a combination of the above described reduction from vertex cover
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to AML and the lower bounds for the approximability of 5-VC given by P.
Berman and M. Karpinski [BK98].

Let G = (V, F) be a graph with 12n degree-5 nodes and 128n degree-4 nodes.
For GG it is NP-hard to decide, if the minimum size of a vertex cover U is
above (73 — ¢)n or below (72 + ¢)n.

Therefore, the 2-bajan graph B(G, 2) of G has 2-n nodes and (3-2—1)-286n =
1430 edges and the difficult question is, whether it has a vertex cover of above
(73 — ¢)2n or below (72 + ¢)2n vertices.

Let S be the corresponding AML instance with 1431n terminals. It is NP-
hard to decide, if the maximum likelihood of a phylogeny for S is above
(1577—¢)(— H(280 )) or below (1576+¢)(—H (555-)). Thus the approximation

lower bound for AML is }g;?f ~ 1.00063.

Theorem 4.2. For any € > 0, it is NP-hard to decide, whether an instance
of AML with 1431n taxa has the mazimum likelihood of a phylogeny above

(1577 — e)(—H (555-)) or below (1576 + &) (—H (557))-

4.3 Approximate Solutions

In this subsection we describe our new approximation scheme (A.).~¢ for the
AML problem. For each € > 0, A, will be a polynomial-time approximation

algorithm with ratio (1+¢)- (1 + ln(3 . Recall that the Steiner tree approx-

imation algorithm k-LCS of [RZ00] con51sts of a greedy algorithm that starts
with a minimum spanning tree 7 and iteratively inserts optimum Steiner
trees T; for subsets of the terminal set of size at most k. Thus, in order to
get, the same results for the AML problem it is sufficient to construct a family
of polynomial-time algorithms Fj, k € N such that for each k, F} solves the
AML problem for terminal sets up to size k.

We will now describe how to construct such a family Fj, k € N. First
recall that the probability of an edge e for an instance S C H™ of the AML
problem is —H, (m) We observe that edge probabilities can take only m+1
different values —Hs (%) € {0, —Hy(2),...,—H>(1)}.

Pupko et al. [PPSG04] gave a polynomial—time algorithm A, which
constructs a phylogeny T for a given set of leaves S C H™, a given topology
7T and given edge lengths d(e). More formally, a topology (7,1) for a given
set of leaves consists of a tree 7 = (V,E) and a bijection I: L(T) — S
between the set of leaves L(7) of T and the set S.
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A topology with given edge lengths for a given set of leaves S is a topology
(7,1) for S with a labeling d: E — [0,00), where 7 = (V, E). Algorithm
Ay on input S, 7, [, d either constructs an assignment /: V' \ L(7) — H™ of
points from H™ to the inner nodes of 7 such that this assignment is consistent
with the edge lengths and the labeling [ of the leaves - or Ay, retuns "no” in
case no such assignment exists. Here we call such an assignment [ consistent
if for all e = {u,v} € E with u,v € V\ L(7), dy(I(u),I(v)) = d(e) and for
all e = {u,v} € Ewithu e L(T) andv e V\ L(T), d(e) = dg(I(v), L(u)).

Let Ty = T,(S,7T,1,d) denote the resulting tree, i.e. Ty = (Vyu, Egit)
is a tree, such that S C Vy,, C H™.

Algorithm F}, gets as an input a set of terminals S C H™ of size |S| < k.
F}, simply enumerates all topologies (7,1) for the given set of leaves S and
for each topology all assignments of lengths from {0, 1,...,m} to the edges
of 7. For each triple 7,1, d the algorithm F}, uses Pupko et al.’s algorithm
Ay to compute a tree T,,(7,1,d). Finally Fy returns one of these trees
maximizing the overall probability p(7).

Algorithm Fy
Input: set of terminals S C H™ of size |S| < k
Output:  optimum Steiner tree T for S in H™

(1) for all topologies with edge lengths 7,1, d for S:
(2)  Trya:=Au(7T,1,d);
(3) T := arg ??ﬁp(TT,l,d);

(4) return T

Figure 5: Algorithm Fy

For a given set S of cardinality |S| C k, we estimate the number tg of
topologies for the set of leaves S as follows. A tree with at most k& leaves has
at most & — 1 inner nodes and at most 2k — 2 edges, thus tg = k°*). For
each such topology 7, the number of assignments of lengths to edges can be
bounded by m®® which is a polynomial bound in m if k is constant. Thus
we obtain the following result.

Theorem 4.3. For terminal sets S C H™ of size at most k, algorithm F},
solves the AML problem to optimality. Its running time is Ty(m) = mP®
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which is polynomaial in m if k is constant.

Corollary 4.1. There is a polynomial-time approzimation scheme (A:)eso

for the AML problem with approximation ratio (1+¢€) - @ ~ (1+¢)-1.55.

5 Conclusion

In this paper we have given the first explicit lower bounds for the approx-

imability of the STPP, GTA and AML problems. Furthermore, based on

the Robins-Zelikovsky algorithm for the Steiner Tree problem we construct
In(n)

a (1 + T)—approximation scheme for the AML problem.

Several open questions remain. We believe that the lower bounds pre-
sented here can be improved by using more direct reductions from MAX
E3-LIN2 in the style of Chlebik, Chlebikova [CC02|. Note that their re-
duction produces edge-weighted instances of the Steiner Tree Problem which
cannot be directly embedded into sufficiently small hypercubes. It would also
be interesting to extend the hardness result to the case of arbitrary alphabets
of constant size.
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