
Approximability of Sele
tedPhylogeneti
 Tree ProblemsMathias Hauptmann∗ Marlis Lamp†Abstra
tWe study the approximability of the re
onstru
tion problem of phy-logeneti
 trees with respe
t to three di�erent 
ost measures and givethe �rst expli
it lower bounds, under standard 
omplexity-theoreti
assumptions. For the Steiner Tree Problem in Phylogeny (STPP) andthe Generalized Tree Alignment (GTA) problem, we show that un-less P = NP , no polynomial-time algorithm 
an approximate theseproblems with an approximation ratio below 359
358 . For the An
estralMaximum Likelihood (AML) problem we give a lower bound of 1577

1576 .Furthermore we 
onstru
t a polynomial-time approximation s
heme
(Aǫ)ǫ>0 for the AML problem, su
h that for ea
h ε > 0, Aε is a poly-nomial time approximation algorithm with ratio (1+ε)·(1+ ln(3)

2 ). Thisresult is based on the Steiner tree algorithm of Robins and Zelikovsky[RZ00℄ and on a new exa
t algorithm for AML instan
es of 
onstantsize. This improves upon re
ent results by Alon et al. [ACPR08℄ whogave a 1.78-approximation algorithm for the AML problem.1 Introdu
tionCon
erning the re
onstru
tion of phylogeneti
 trees, two major approa
heshave been 
onsidered in the literature: Distan
e-based methods where onlythe distan
es between the n spe
ies are given, and 
hara
ter-based methodswhere for ea
h of the n spe
ies the states of m 
hara
ters are given.Maximum Likelihood (ML) [F81℄ and Maximum Parsimony (MP) [F71℄ are
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two well-known optimality 
riteria that belong to the 
ategory of 
hara
ter-based methods. While ML asks for a tree maximizing the likelihood of thegiven taxa over an arbitrary evolutionary model, MP assumes parsimony asthe underlying evolutionary model: The probably that two taxa are 
loselyrelated is proportional to their similarity.We 
onsider two versions of MP: The Steiner Tree Problem in Phylogeny(STPP) and the problem of Generalized Tree Alignment (GTA). STPP is avariant of MP where the underlying geneti
 distan
e measure is the Ham-ming distan
e, that 
ounts the number of di�ering 
hara
ters. In GTA, the
n spe
ies are given as unaligned biologi
al sequen
es of variable length, sothe underlying metri
 is the edit distan
e. An
estral Maximum Likelihood(AML) is a mixture of MP and ML. AML asks for a tree that maximizes thelikelihood of the given spe
ies.STPP, GTA and AML are variants of the Steiner Tree Problem where theunderlying metri
 spa
e is some m-dimensional hyper
ube and the distan
emeasure is the Hamming distan
e, the edit distan
e and the binary entropyof the normalized Hamming distan
e respe
tively. The Steiner Tree Problemasks for a minimum-length tree T 
onne
ting a given set S of terminals in anunderlying metri
 spa
e (V, d). This is one of the most fundamental networkdesign problems, whi
h is well-known to be NP-hard [K72℄ and even NP-hard to approximate [CC02℄. The 
urrently best known approximation lowerbound for the Steiner Tree Problem in weighted graphs is 1.01063 [CC02℄.In this paper we give the �rst expli
it lower bounds for the approximabil-ity of the Steiner Tree Problem in Phylogeny (STPP), the Generalized TreeAlignment (GTA) and the An
estral Maximum Likelihood (AML). Namelywe show that for ea
h ε > 0 it is NP-hard to approximate GTA and STPPwith an approximation ratio better than 359−ε

358+ε
and AML with an approxi-mation ratio better than 1577−ε

1576+ε
. These results are obtained by 
onstru
tingapproximation-preserving redu
tions from the Bounded Degree Vertex CoverProblem (B-VC) and using expli
it lower bounds for the approximability of

5-VC given by Berman and Karpinski [BK98℄.Con
erning upper bounds, re
ently Alon et al. [ACPR08℄ gave a 16
9
-approxi-mation algorithm for the AML problem. This algorithm 
ombines the SteinerTree approximation algorithm of Berman and Ramaiyer [BR94℄ with a new2



algorithm that e�
iently 
omputes optimum Steiner trees for sets of termi-nals of size at most 4. In this paper we improve upon this result and give apolynomial-time 1.55-approximation algorithm for the AML problem. Morepre
isely, we 
onstru
t an approximation s
heme (Aǫ)ǫ>0, su
h that for ea
h�xed ǫ > 0, Aǫ is a polynomial-time approximation algorithm for the AMLproblem with A.R. (1+ ǫ) ·
(

1 + ln(3)
2

)

≈ (1+ ǫ) · 1.55. Here our 
ontributionis a family of algorithms Fk, k ∈ N, su
h that for ea
h k, Fk is a polynomial-time algorithm that solves to optimality the AML problem for instan
es withterminal sets up to size k. Plugging this in the algorithm of Robins and Ze-likovsky [RZ00℄ gives the desired algorithm.The rest of the paper is organized as follows. First we give the pre
iseproblem formulations of the STPP, GTA and AML problems. In se
tion 1.2we refer to previous work. In the se
tions 2, 3 and 4 we des
ribe our hard-ness results for the STPP, GTA and AML respe
tively. The approximationalgorithm for the AML problem is des
ribed in se
tion 4.3.1.1 Problem FormulationsIn this se
tion, we give some de�nitions and notations that will be used inthe sequel. Furthermore we will give the pre
ise problem formulations of theSTPP, GTA and AML.Let Hm = {0, 1}m denote the m-dimensional Boolean hyper
ube and dHthe Hamming distan
e, i.e. for x, y ∈ Hm dH(x, y) =
∑m

i=1|xi − yi|. Giventwo strings x, y ∈ {0, 1}∗, an alignment of x and y is a pair of strings
x̃, ỹ ∈ {0, 1, ∆}∗ with the following properties:(i) Deleting all o

urren
es of ∆ from x̃ produ
es x.(ii) Deleting all o

urren
es of ∆ from ỹ produ
es y.(iii) x̃ and ỹ are of the same length.A s
oring s
heme is a fun
tion s : {0, 1, ∆} × {0, 1, ∆} → R+. The asso-
iated edit distan
e ds is de�ned as follows: for x, y ∈ {0, 1}∗, ds(x, y) =

min
{

∑|x̃|
i=1 s(x̃i, ỹi) | x̃, ỹ is an alignment of x and y

}.The notion of an L-redu
tion was introdu
ed by Papadimitriou and Yan-nakakis [PY91℄. If A and B are optimization problems, then A is L-redu
ible3



to B with parameters α, β, if there exist two polynomial-time 
omputablefun
tions f, g, su
h that the following 
onditions hold: (i) f maps ea
h in-stan
e x of A to an instan
e f(x) of B. (ii) For ea
h instan
e x of A andsolution y to instan
e f(x) of B, g(x, y) is a solution for instan
e x of A. (iii)
OPTB(f(x)) ≤ α ·OPTA(x). (iv) For ea
h solution y for instan
e f(x) of B,
|OPTA(x) − cost(g(x, y))| ≤ β · |OPTB(f(x)) − cost(y)|.We are now ready to give a pre
ise des
ription of the STPP, GTA and AMLproblem.STEINER TREE PROBLEM IN PHYLOGENY (STPP)Input: A set of n binary sequen
es s1, . . . , sn, ea
h of length mFind: A tree T = (V, E) su
h that {s1, . . . , sn} ⊆ V ⊆ HmObje
tive: Minimize the length dH(T ) :=

∑

e∈E

dH(e)GENERALIZED TREE ALIGNMENT (GTA)Input: a set of n binary sequen
es s1, . . . , sn, ea
h of length ≤ m, as
oring s
heme s : {0, 1, ∆} × {0, 1, ∆} → R+Find: A tree T = (V, E) su
h that {s1, . . . , sn} ⊆ V ⊆ {0, 1}∗Obje
tive: Minimize the mutational length ds(T ) :=
∑

e∈E

ds(e).ANCESTRAL MAXIMUM LIKELIHOOD (AML) Version IInput: A set of n binary sequen
es s1, . . . , sn ∈ HmFind: A tree T = (V, E) su
h that {s1, . . . , sn} ⊆ V ⊆ Hmand an assignment of edge probabilities p : E → [0, 1]Obje
tive: Maximize the overall probability ∏

e∈E

p
dH(e)
e ·(1−pe)

m−dH(e)In [ACH+04℄ and [ACPR08℄ it is shown that the AML problem 
an also bereformulated as a spe
ial 
ase of the Steiner Tree Problem in the Booleanhyper
ube Hm: If we 
onsider the individual edge likelihood pde

e (1− pe)
m−defor a given edge e of length de := dH(e) between two taxa with m 
hara
ters,this term is maximized for pe = de

m
. Sin
e taking the m-th root and the loga-rithm are monotone operations that do not 
hange the argument maximizinga fun
tion, we are able to reformulate the obje
tive fun
tion of AML as asum and obtain the following dis
rete variant:
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ANCESTRAL MAXIMUM LIKELIHOOD (AML) Version IIInput: A set of n binary sequen
es s1, . . . , sn ∈ HmFind: A tree T = (V, E) su
h that {s1, . . . , sn} ⊆ V ⊆ HmObje
tive: Maximize the overall probability p(T ) of T , where p(T ) :=
∑

e∈E

de

m
· log2(

de

m
) + (1 − de

m
) · log2(1 − de

m
)Note that p(T ) =

∑

e∈E

−H2(
de

m
), where H2(p) = −p log2(p)− (1−p)log2(1−p)is the binary entropy fun
tion.1.2 Previous WorkThe NP-hardness of STPP has been shown by Foulds and Graham [FG82℄,see also [DJS86℄. Bern and Plassmann [BP89℄ proved that already a veryrestri
ted version of the Steiner Tree Problem, namely the (1,2)-Steiner TreeProblem, is APX-hard. This is the Steiner Tree Problem restri
ted to met-ri
 instan
es, where all non-zero distan
es are 1 or 2. Fernández-Ba
a andLagergren showed that the k-restri
ted STPP is APX-
omplete for k ≥ 4and the k-Steiner ratio for the STPP mat
hes the 
orresponding ratio formetri
 spa
es de�ned on networks [FBL98℄. Note that for the 
ase k = 3there is a randomized polynomial-time approximation s
heme, that solvesthe 3-restri
ted Steiner Tree Problem with arbitrary pre
ision [PS97℄. TheGTA problem was shown to be APX-hard by Jiang et al. [JW94℄. Theirbasi
 idea was to 
onstru
t a polynomial-time redu
tion f , that embeds in-stan
es I of the STP resulting from Bern and Plassmann's redu
tion intosome hyper
ube {0, 1}m and to show that optimal solutions for these em-bedded instan
es f(I) 
an be assumed not to use any Steiner points from

{0, 1}m\f(I). The NP-hardness of the AML problem was shown by Addario-Barry et al. [ACH+04℄. Alon et al. gave a 16
9
-approximation algorithm forthe AML problem [ACPR08℄.Both, the previously known hardness results and our new expli
it lowerbounds for approximablility of the STPP, GTA and AML are essentiallybased on existing hardness results for the Bounded Degree Vertex Cover Prob-lem (B-VC).
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B-BOUNDED DEGREE MINIMUM VERTEX COVER (B-VC)Input: A Graph G = (V, E) of maximum degree ∆G ≤ BFind: A subset C ⊆ V , su
h that for all e ∈ E e ∩ C 6= ∅Obje
tive: Minimize |C|The B-VC problem is known to be APX-hard for B ≥ 3 [PY91℄. Thebest known expli
it bounds for non-approximability have been obtained byBerman and Karpinski [BK98℄.2 Expli
it Lower Bounds for STPPIn 1994, Jiang et al. have already proposed an L-redu
tion from triangle-free
B-VC to STPP [JW94℄. Here we analyse this redu
tion in order to 
omputean initial approximation lower bound for STPP. For this purpose we will �rstdes
ribe their transformation.Let G = (V, E) be a triangle-free graph with maximum degree B and V =
{1, 2, . . . , m}. Without loss of generality, we assume that G is 
onne
ted.Let 0i1,i2,...,ir denote the binary sequen
e of length m with 0's at the ij-thpositions and 1's at the rest. Then we 
onstru
t an STPP instan
e with
S := {0i,j | {i, j} ∈ E}. Assuming that G has a vertex 
over U of size c, we
an 
onstru
t a phylogeny for S as follows: Conne
t ea
h sequen
e 0i,j ∈ Sto some 0k, where k = i or j, and k ∈ U . Afterwards 
onne
t the sequen
es
{0i | i ∈ U} to 1m. Thus ea
h 
onne
tion has a length of 1, the length of theresulting phylogeny T is dH(T ) = |E|+ c. We refer the reader to the originalpaper for more details and veri�
ation.The 
urrently best approximation lower bounds for B-VC are due to Berman,Karpinski [BK98℄. Here we need the following theorem.Theorem 2.1 ([BK98℄). For any ε > 0, it is NP-hard to de
ide, whethera graph with 140n nodes, 12n of degree 5 and 128n of degree 4, has theminimum size of a vertex 
over above (73 − ε)n or below (72 + ε)n.If we 
ombine this result with the redu
tion from B-VC to Triangle Free
B-VC that was given by Jiang et al. [JW94℄, we obtain the following result.Lemma 2.1. For any ε > 0, it is NP-hard to de
ide, whether an instan
e ofTriangle Free 5-VC with 712n nodes and 858n edges has the minimum sizeof a vertex 
over above (359 − ε)n or below (358 + ε)n.6



Proof. The redu
tion given in [JW94℄ maps ea
h instan
e G = (V, E) of the
B-VC problem to a graph G′ = (V ′, E ′) with V ′ = V ∪ {ve | v ∈ e ∈ E}and E ′ = {{v, ve}, {ve, we}, {we, w} | e = {u, v} ∈ E}, and it is shown therethat in polynomial time ea
h vertex 
over C ′ of G′ 
an be transformed intoa vertex 
over U ′ = {u, we | u ∈ U, e = {u, w} ∈ E} su
h that U ⊆ V is avertex 
over in G and |U ′| ≤ |C ′|. If G is a graph with 140n nodes, 12n ofdegree 5 and 128n of degree 4 then G′ 
onsists of (140 + 2 · 286)n = 712nnodes and 3 · 60n+512n

2
= 858n edges, and a vertex 
over C of size c in G
orresponds to a vertex 
over C ′ of size c + 286n in G′.Now we 
ombine the redu
tion from Triangle-Free Bounded Degree VertexCover to the STPP given by Jiang et al. with lemma 2.1. This yields thefollowing theorem.Theorem 2.2. For any ε > 0, it is NP-hard to de
ide, whether an instan
e ofSTPP with 858n taxa has the minimum length of a phylogeny above (1217−

ε)n or below (1216 + ε)n.We in
rease this initial bound by using a di�erent redu
tion from B-VCto STPP des
ribed below. It turns out that using this redu
tion, there is noneed to require the B-VC instan
es to be triangle-free anymore.We start with an arbitrary B-VC instan
e G = (V, E) with vertex set V =
{1, 2, . . . , m}. We de�ne SG := {0i,j | {i, j} ∈ E} ∪ {1m} as the set of taxaof our STPP instan
e. Note that in 
ontrast to T. Jiang et al.'s redu
tion,we add the node 1m to the set of terminals. Steiner vertexterminal vertex1m

0l0i

0i,j 0i,k 0l,j 0l,k 0l,mFigure 1: Phylogeny for S = {0i,j, 0i,k, 0l,j, 0l,k, 0l,m, 1m}.De�nition 2.1. Let G = (V, E) be a graph with vertex set V = {1, . . . , m}.For ea
h vertex 
over U ⊆ V for G we de�ne an asso
iated phylogeny TU asfollows: L(TU) := {0i,j | {i, j} ∈ E} is the set of leaves of TU . Ea
h leaf 0i,j7



is 
onne
ted to an inner node 0k, k ∈ {i, j} ∩ U and ea
h inner node 0k is
onne
ted to the root 1m.It is easy to see, that TU is a phylogeny for SG. See �gure 1 for anexample. We will now show, that there always exits phylogenies of minimumlength that are of the form TU , where U is a minimum vertex 
over for G.Lemma 2.2. For ea
h B-VC instan
e G = (V, E) and ea
h solution T ofthe 
orresponding STPP instan
e SG = {0i,j | {i, j} ∈ E} ∪ {1m} one 
an
onstru
t a vertex 
over U for G in polynomial time, su
h that dH(TU) ≤
dH(T ).Proof. To show this, we start with an arbitrary phylogeny T for SG and showthat T 
an be transformed into a phylogeny TU for SG without in
reasingthe tree length.Nodes with sequen
es that have more than one 0 and are not in SG are 
alledbad. All other nodes are good. Without loss of generality we 
an assume thatfor ea
h edge e in T dH(e) = 1 and the tree is rooted at 1m.Now we will remove all bad nodes in T iteratively from the bottom to

0j 0i 0j

1m bad nodegood nodesubtree 
ontainingno bad nodes0i (a) (b)
0ij

Figure 2: (a) Bad node with two 0's at the lowest level of the tree. (
ase1) (b) Elimination of the bad node.the top. Let s be a bad node at the lowest level of the tree. All 
hild nodesof s are good and therefore have at most two 0's. Due to the fa
t that theHamming distan
e of all edges is 1, in
luding the distan
e between s andea
h of its 
hildren, s 
annot have more than three 0's. So it has two orthree 0's. We 
onsider these two 
ases separately.Case 1: s = 0i,j . Sin
e there are no sequen
es with two 0's and Hammingdistan
e 1 from s, the 
hildren of s must have exa
tly one 0, namely atposition i or j. Observe that they have also Hamming distan
e 1 from 1m,and so we 
an 
onne
t them to 1m without in
reasing the length of the tree.8



0i

1m

(a) (b)
p

0i,j 0i,k 0i,j 0i,k

0i,j,k

Figure 3: (a) Bad node with three 0's and two 
hildren at the lowest levelof the tree. (
ase 2.1) (b) Elimination of the bad node.
1m

(a) (b)
pp

0i,j 0i,k 0j,k 0i,j 0i,k 0j,k

0j0i

0i,j,k,l

0i,j,k

Figure 4: (a) Bad node with three 0's and three 
hildren at the lowest levelof the tree. (
ase 2.2) (b) Elimination of the bad node.Now we 
an delete the bad node s, see �gure 2.Case 2: s = 0i,j,k . In this 
ase all 
hildren of s must have two 0's, that areat the positions i, j or k. It is easy to see that s 
an have at most three 
hildnodes. We 
onsider two sub
ases, depending on the number of 
hildren.Case 2.1: s = 0i,j,k and s has one or two 
hildren . If s has two 
hild nodesthey must share one 0-position i. If it has only one we de�ne i as any of the
hild's 0-positions. Note that all 
hild nodes also have Hamming distan
e 1from 0i. We repla
e s with 0i and dire
tly 
onne
t this node to 1m, so thatthe number of edges is still the same and all edges have Hamming distan
e
1, see �gure 3.Case 2.2: s = 0i,j,k and s has three 
hildren . In this 
ase, the parent node
p of s must have four 0's, be
ause all sequen
es with two 0's and Hammingdistan
e 1 from s are already spent for the three 
hild nodes of s. This9



implies that all siblings of s have three 0's. (Note that they 
annot have�ve 0's, be
ause they are at the same level as s, whi
h means that all nodesbelow them are good and thus have at most two 0's.) Sin
e all siblings of
s share exa
tly two 0-positions with s, they 
an have at most two 
hildren.By removing all its siblings as des
ribed in 
ase 2.1, we a
hieve that s is theonly 
hild of p. Then we 
onne
t two 
hildren of s, let's say 0i,j and 0i,k, via
0i to 1m, whi
h in
reases the length by 1. Next, we link the remaining 
hild
0j,k to 1m via a 0j or 0k, whi
h in
reases the length by 1 for a se
ond time.Finally we remove s and p and thereby de
rease the length by 2, see �gure 4(
).Proposition 2.1. The des
ribed mapping is an L-redu
tion from B-VC toSTPP with parameters α = B + 1 and β = 1.Proof. Let G = (V, E) be an instan
e of the B-VC. Let T ∗ be an op-timum solution for the asso
iated instan
e SG of the STPP, and let TUbe the phylogeny resulting from appli
ation of lemma 2.2 to T ∗. Then
dH(T ∗) = dH(TU) = |E| + |U |, whi
h implies opt(SG) = opt(G) + |E|. Sin
eea
h node in a vertex 
over in G 
an 
over at most B edges, opt(G) ≥ |E|

Band thus opt(SG) = opt(G) · (1 + B). This yields α = B + 1. Furthermore,if T is an arbitrary solution for the instan
e SG of the STPP and TU isthe asso
iated solution resulting from lemma 2.2, then |dH(T ) − opt(SG)| ≤
|dH(TU) − opt(SG)| = |dH(TU) − dH(TU∗)| = |U | − opt(G) (where U∗ is aminimum vertex 
over in G) and thus β = 1.To �nish our reasoning, it remains to perform the a

ounting. Let Gbe the 5-VC instan
e 
onstru
ted by Berman and Karpinski [BK98℄. It has
12n degree-5 nodes and 128n degree-4 nodes and the di�
ult question is,whether G has the minimum size of a vertex 
over U above (73 − ε)n orbelow (72 + ε)n. Ea
h of the 286n terminals 
orresponding to edges in G is
onne
ted to some 0i, i ∈ U , that is 
onne
ted to 1m. Sin
e ea
h 
onne
tion
osts 1, the 
ost of the resulting phylogeny is at least (73 + 286 − ε)n, or atmost (72 + 286 + ε)n.Theorem 2.3. For any ε > 0, it is NP-hard to de
ide whether an instan
e ofSTPP with 286n taxa has the minimum length of a phylogeny above (359−ε)nor below (358 + ε)n.
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3 Generalized Tree AlignmentThe redu
tion from B-VC to STPP given by Jiang et al. [JW94℄, whi
hwe des
ribed in the pre
eding se
tion, also gives a redu
tion from B-VC toGTA, if we use the s
ore s
heme presented in table 1. Thus the approximationlower bound of 1.0027 whi
h is obtained by 
ombining this redu
tion withthe hardness results of Berman and Karpinski for 5-VC [BK98℄ as shownin se
tion 2 also holds for GTA. Here we show, that the L-redu
tion from
B-VC to STPP 
onstru
ted in se
tion 2 also works for the GTA problem.This gives the new lower bound of 1.0028 also for GTA.0 1 ∆0 0 1 21 1 0 2

∆ 2 2 0Table 1: s
ore s
hemeFor the sake of 
ompleteness, we will �rst des
ribe how to transform anarbitrary Bounded Degree Vertex Cover Problem into a spe
ial GTA instan
e.Let G = (V, E) be a graph with degree bounded by B. We number theverti
es of V 
onse
utively from 1 to m. As input sequen
es of the GTAinstan
e, we 
hoose for ea
h edge {i, j} in G a '1'-sequen
e of length m, withonly two zeros at the positions i and j. Finally we add 1m to the set SG ofinput sequen
es.Let U ⊂ V be a minimum vertex 
over for G. We build a phylogeny T ofminimum (mutational) length for SG as des
ribed in the previous se
tion.We de�ne the s
ore s
heme s as in table 1. We still have to prove, that thesum of distan
es along the edges of T is minimum. To show this, we startwith an arbitrary phylogeny T ′ for SG and show, that T ′ 
an be transformedinto T without in
reasing the tree length.Again we divide the nodes in T ′ into bad nodes, that are neither in SG norof form 0i and good nodes, that are not bad. The following lemma allows torestri
t our 
onsiderations to trees T ′ with additional stru
tural properties.Lemma 3.1. There is an polynomial-time algorithm that transforms a givenphylogeny T into a phylogeny T ′ of length ds(T
′) ≤ ds(T ), su
h that thefollowing properties hold. 11



(i) For ea
h edge e in T ′, ds(e) = 1.(ii) All node sequen
es in T ′ have length m.(iii) Ea
h bad node in T ′ has at least two 
hildren.(iv) Ea
h sequen
e appears at most on
e in T ′.Proof. Property (i) 
an be a
hieved by deleting ea
h edge that is longer than
1. This separates T ′ into two 
omponents. One of them 
ontains the inputsequen
e 1m and the other one must 
ontain any input sequen
e of form 0i,j.If not, the other 
omponent would not 
ontain any input sequen
e and 
ouldbe removed. We re
onne
t the two 
omponents by linking 0i,j and 1m tosome sequen
e 0k, k ∈ U ∩ {i, j}. Sin
e both new edges have length 1 andthe length of the original edge was at least 2, this does not in
rease the lengthof the tree. Sin
e the s
ore of a gap is 2, (ii) follows from (i). Bad nodeswith only one 
hild 
an be deleted with both 
onne
ting edges of length 1and the two dis
onne
ted 
omponents 
an be re
onne
ted as before with atmost two new edges, ea
h of length 1. Thus afterwards (iii) holds. (iv) 
aneasily be a
hieved by moving edges and removing the isolated dupli
ates.Now we 
an remove all bad nodes in T ′ iteratively from the bottom tothe top, assuming that the tree is rooted at 1m. We refer the reader to theproof of proposition 2.1 in se
tion 2, be
ause due to lemma 3.1 all distan
eso

urring in T ′ and T equal the Hamming distan
e.Proposition 3.1. The des
ribed mapping is an L-redu
tion from B-VC toGTA with parameters α = B + 1 and β = 1.Combining this result with the 5-VC approximation lower bound of Bermanand Karpinski [BK98℄ we obtain the following theorem.Theorem 3.1. For any ε > 0, it is NP-hard to de
ide, whether an instan
eof GTA with 286n input sequen
es has the minimum mutational length of aphylogeny above (359 − ε)n or below (358 + ε)n.
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4 An
estral Maximum LikelihoodIn the general version of AML given above, we have to optimize over treetopologies, sequen
e assignments and edge probabilities. In 2000, Pupkoet al. developed a dynami
 programming solution for a spe
ial version ofAML, where the topology and the edge lengths are given as part of the input[PPSG04℄. Three years later Addario-Barry et al. proved that its generalversion is NP-hard [ACH+04℄, by using a redu
tion from Vertex Cover. Herewe use these results to show that AML is even APX-hard and to 
omputean expli
it approximation lower bound.4.1 APX-HardnessFor proving the APX-hardness of AML we use the existing polynomial re-du
tion given by Addario-Barry et al. from Vertex Cover (VC) to AML. Intheir 
onstru
tion, in a �rst step the Vertex Cover Problem is redu
ed toa spe
ial 
ase, the Vertex Cover Problem in h-bajan graphs. An h-bajangraph of G basi
ally 
onsists of h disjoint 
opies of G 
onne
ted to ea
hother along the edges of G. This intermediate step was ne
essary in orderto obtain a polynomial-time redu
tion to the AML, sin
e in the 
ase of thebinary entropy 
ost fun
tion used in AML the 
onstru
tion, des
ribed inthe proof of lemma 3.1 does not apply to trees resulting from general Ver-tex Cover instan
es (
f. [ACH+04℄). Here we will show that Vertex Coveron h-bajan graphs remains APX-hard. Subsequently one 
an L-redu
e fromVertex Cover on h-bajan graphs to AML.We begin with the de�nition of h-bajan graphs. For any integer h > 1,the h-bajan graph B(G, h) of a graph G 
onsists of h isomorphi
 
opies of
G. The 
opy of vertex u in the ith 
opy of G is denoted as ui. Two verti
es
ui and uj are 
onne
ted in B(G, h), if u and v are 
onne
ted in the originalgraph G.De�nition 4.1 (h-bajan [ACH+04℄). Let G = (V, E) be a graph and
h > 1 be an integer. The h-bajan graph of G is de�ned as follows: B(G, h) :=
(VB, EB), where VB :=

⋃h

i=1{v
i | v ∈ V } and EB := {{ui, vj} | 1 ≤ i, j ≤

h ∧ {u, v} ∈ E}.Addario-Barry et al. have shown, that Vertex Cover on h-bajan graphsremains NP-hard. Here we need the following lemma:13



Lemma 4.1. For any h > 1, Vertex Cover on h-bajan graphs is APX-hard.Proof. Let G = (V, E) be an arbitrary graph, h > 1 and B(G, h) = (VB, EB)be the h-bajan graph of G. Obviously B 
an be 
reated in polynomial time.Suppose that U is a vertex 
over in B. Sin
e the edges inside ea
h 
opyof G 
an be 
overed only by verti
es inside this 
opy, U 
an be written as
⋃h

i=1 Ui, where ea
h Ui 
ontains only verti
es of the i-th 
opy of G. We 
antransform ea
h vertex 
over of B into a so 
alled normalized vertex 
overwithout in
reasing its size by 
hoosing the minimal |Ui| and 
arrying it tothe other 
opies of G. Let UG be a vertex 
over of G of size c. The size of a
orresponding vertex 
over in B is h · c, so it depends linearly on c.Let G = (V, E) be an h-bajan graph with V = {1, . . . , m} and |E| = n.One 
an 
onstru
t an instan
e S of AML, su
h that |S| = |E| + 1 = n + 1and S ⊆ {0, 1}m. Again let 0i1,i2,...,ir denote the binary sequen
e of length
m with 0's at the ij-th positions and 1's at the rest. Then we de�ne Sas {0i,j | {i, j} ∈ E} ∪ {1m}. Addario-Barry et al. have shown, that anyphylogeneti
 tree T for S 
an be transformed into a tree T ′ of the followingform, without in
reasing its likelihood:

• For any edge e in T ′: de = 1.
• All nodes 
onne
ted to 1m are internal verti
es of the form 0i.
• All leaves of T ′ are in S \ {1m}.In the sequel we 
onsider 1m as the root of T ′. The set {i | 0i ∈ V (T )}
orresponds to a vertex 
over in G.Let U be a minimal vertex 
over in G and c = |U |. The likelihood of the
orresponding phylogeny 
an be 
omputed as follows: There are n edgesfrom the leaves to the inner nodes and c edges from the inner nodes to theroot. For ea
h edge e in T , de = 1. So the likelihood of the phylogeny is

(n + c) · (−H( 1
m

)), whi
h is linear in c. Theorem 4.1 follows.Theorem 4.1. AML is APX-hard.4.2 Expli
it Lower BoundsIn this subse
tion we 
ompute an expli
it lower bound for AML. Thereforewe use a 
ombination of the above des
ribed redu
tion from vertex 
over14



to AML and the lower bounds for the approximability of 5-VC given by P.Berman and M. Karpinski [BK98℄.Let G = (V, E) be a graph with 12n degree-5 nodes and 128n degree-4 nodes.For G it is NP-hard to de
ide, if the minimum size of a vertex 
over U isabove (73 − ε)n or below (72 + ε)n.Therefore, the 2-bajan graph B(G, 2) of G has 2·n nodes and (3·2−1)·286n =
1430 edges and the di�
ult question is, whether it has a vertex 
over of above
(73 − ε)2n or below (72 + ε)2n verti
es.Let S be the 
orresponding AML instan
e with 1431n terminals. It is NP-hard to de
ide, if the maximum likelihood of a phylogeny for S is above
(1577−ε)(−H( 1

280n
)) or below (1576+ε)(−H( 1

280n
)). Thus the approximationlower bound for AML is 1576+ε

1577+ε
≈ 1.00063.Theorem 4.2. For any ε > 0, it is NP-hard to de
ide, whether an instan
eof AML with 1431n taxa has the maximum likelihood of a phylogeny above

(1577 − ε)(−H( 1
280n

)) or below (1576 + ε)(−H( 1
280n

)).4.3 Approximate SolutionsIn this subse
tion we des
ribe our new approximation s
heme (Aε)ε>0 for theAML problem. For ea
h ε > 0, Aε will be a polynomial-time approximationalgorithm with ratio (1+ε) ·
(

1 + ln(3)
2

). Re
all that the Steiner tree approx-imation algorithm k-LCS of [RZ00℄ 
onsists of a greedy algorithm that startswith a minimum spanning tree T0 and iteratively inserts optimum Steinertrees Ti for subsets of the terminal set of size at most k. Thus, in order toget the same results for the AML problem it is su�
ient to 
onstru
t a familyof polynomial-time algorithms Fk, k ∈ N su
h that for ea
h k, Fk solves theAML problem for terminal sets up to size k.We will now des
ribe how to 
onstru
t su
h a family Fk, k ∈ N. Firstre
all that the probability of an edge e for an instan
e S ⊆ Hm of the AMLproblem is −H2

(

de

m

). We observe that edge probabilities 
an take only m+1di�erent values −H2(
de

m
) ∈

{

0,−H2(
1
m

), . . . ,−H2(1)
}.Pupko et al. [PPSG04℄ gave a polynomial-time algorithm Aglt whi
h
onstru
ts a phylogeny T for a given set of leaves S ⊆ Hm, a given topology

T and given edge lengths d(e). More formally, a topology (T , l) for a givenset of leaves 
onsists of a tree T = (V, E) and a bije
tion l : L(T ) → Sbetween the set of leaves L(T ) of T and the set S.15



A topology with given edge lengths for a given set of leaves S is a topology
(T , l) for S with a labeling d : E → [0,∞), where T = (V, E). Algorithm
Aglt on input S, T , l, d either 
onstru
ts an assignment I : V \L(T ) → Hm ofpoints fromHm to the inner nodes of T su
h that this assignment is 
onsistentwith the edge lengths and the labeling l of the leaves - or Aglt retuns �no� in
ase no su
h assignment exists. Here we 
all su
h an assignment I 
onsistentif for all e = {u, v} ∈ E with u, v ∈ V \ L(T ), dH(I(u), I(v)) = d(e) and forall e = {u, v} ∈ E with u ∈ L(T ) and v ∈ V \ L(T ), d(e) = dH(I(v), L(u)).Let Tglt = Tglt(S, T , l, d) denote the resulting tree, i.e. Tglt = (Vglt, Eglt)is a tree, su
h that S ⊆ Vglt ⊆ Hm.Algorithm Fk gets as an input a set of terminals S ⊆ Hm of size |S| ≤ k.
Fk simply enumerates all topologies (T , l) for the given set of leaves S andfor ea
h topology all assignments of lengths from {0, 1, . . . , m} to the edgesof T . For ea
h triple T , l, d the algorithm Fk uses Pupko et al.'s algorithm
Aglt to 
ompute a tree Tglt(T , l, d). Finally Fk returns one of these treesmaximizing the overall probability p(Tglt).Algorithm FkInput: set of terminals S ⊆ Hm of size |S| ≤ kOutput: optimum Steiner tree T for S in Hm(1) for all topologies with edge lengths T , l, d for S:(2) TT ,l,d := Aglt(T , l, d);(3) T := arg max

T ,l,d
p(TT ,l,d);(4) return T ; Figure 5: Algorithm FkFor a given set S of 
ardinality |S| ⊆ k, we estimate the number tS oftopologies for the set of leaves S as follows. A tree with at most k leaves hasat most k − 1 inner nodes and at most 2k − 2 edges, thus tS = kO(k). Forea
h su
h topology T , the number of assignments of lengths to edges 
an bebounded by mO(k) whi
h is a polynomial bound in m if k is 
onstant. Thuswe obtain the following result.Theorem 4.3. For terminal sets S ⊆ Hm of size at most k, algorithm Fksolves the AML problem to optimality. Its running time is Tk(m) = mO(k)16



whi
h is polynomial in m if k is 
onstant.Corollary 4.1. There is a polynomial-time approximation s
heme (Aε)ε>0for the AML problem with approximation ratio (1 + ε) · ln(3)
2

≈ (1 + ε) · 1.55.5 Con
lusionIn this paper we have given the �rst expli
it lower bounds for the approx-imability of the STPP, GTA and AML problems. Furthermore, based onthe Robins-Zelikovsky algorithm for the Steiner Tree problem we 
onstru
ta (

1 + ln(n)
2

)-approximation s
heme for the AML problem.Several open questions remain. We believe that the lower bounds pre-sented here 
an be improved by using more dire
t redu
tions from MAXE3-LIN2 in the style of Chlebík, Chlebíková [CC02℄. Note that their re-du
tion produ
es edge-weighted instan
es of the Steiner Tree Problem whi
h
annot be dire
tly embedded into su�
iently small hyper
ubes. It would alsobe interesting to extend the hardness result to the 
ase of arbitrary alphabetsof 
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