
Polynomial Time Approximation S
hemesfor Dense and Geometri
 k-Restri
tedForest ProblemsMathias Hauptmann�Ri
hard S
hmiedy S�oren K�uhlzClaus ViehmannxAbstra
tThe k-Steiner Forest Problem asks for a minimum 
ost forest F fora given terminal set S su
h that F 
onsists of at most k 
onne
ted
omponents. We 
onstru
t polynomial time approximation s
hemesfor dense and geometri
 versions of the k-Steiner Forest Problem andthe k-Tree Cover Problem.1 Introdu
tionThe k-Steiner Forest Problem asks for a minimum-
ost forest F that 
on-ne
ts (
overs) a given set of terminals S in a metri
 spa
e (V; 
) su
h that F
onsists of at most k 
onne
ted 
omponents. This problem was de�ned by R.Ravi who observed that the primal-dual approa
h yields a 2-approximationalgorithm for this problem ([R94℄). In 2003, Even et al. 
onsidered thek-Tree Cover Problem where a set of terminals is to be 
overed by at mostk not ne
essarily disjoint trees su
h as to minimize the maximum tree-
ost([EGKRS04℄). They obtain a (4 + �)-approximation s
heme for the generalmetri
 
ase of this problem.In this paper we 
onstru
t polynomial time approximation s
hemes fortwo spe
ial 
ases of these problems, namely �-dense instan
es and geometri
instan
es in 
onstant dimension. Furthermore we extend these results tothe variant of the k-Tree Cover Problem where the trees have to be pairwisenode-disjoint (Disjoint k-Tree Cover Problem).�Dept. of Computer S
ien
e, University of Bonn. Email:hauptman�
s.uni-bonn.deyDept. of Computer S
ien
e, University of Bonn. Work supported by Hausdor� PhDgrant. Email:s
hmied�
s.uni-bonn.dezDept. of Computer S
ien
e, University of Bonn. Email:kuehl�
s.uni-bonn.dexDept. of Computer S
ien
e, University of Bonn. Work partially supported by BonnInternational Graduate S
hool in Mathemati
s. Email:viehmann�
s.uni-bonn.de1



Our approximation s
hemes for the geometri
 instan
es are based on anadaption of te
hniques from [A98℄ 
ombined with a sophisti
ated 
hoi
e ofsubproblems whi
h are then solved in a dynami
 programming approa
h.First, the instan
e is de
omposed into disjoint subproblems to whi
h theperturbation te
hniques from [A98℄ and [ARR98℄ be
ome appli
able.The �-Dense Steiner Tree Problem was de�ned by Karpinski and Ze-likovsky ([KZ98℄) who showed that for every �xed �, there exists a polyno-mial time approximation s
heme for this problem with density parameter �.An instan
e of the Steiner Tree Problem is 
alled �-Dense if the underlyingmetri
 spa
e is indu
ed by a graph G = (V;E) (with all edges of weight 1),su
h that ea
h terminal has at least � � jV n Sj neighbours in V n S.In [H07℄, the results of Karpinski and Zelikovsky were extended to givean eÆ
ient polynomial time approximation s
heme (i.e. the running time isf(1=�) �p(n) where p(n) is a polynomial of �xed degree not depending on �).Furthermore, the density notion was relaxed, and polytime approximations
hemes were also 
onstru
ted for several other Steiner problems in
ludingGroup Steiner Tree and Pri
e Colle
ting Steiner Tree (
f. [H04a℄, [H04b℄,[H07℄). Our approximation s
hemes for the �-dense version of the k-SteinerForest, k-Tree Cover and Disjoint k-Tree Cover Problem 
ombine the meth-ods from [KZ98℄ and [H07℄ with a 
areful 
ase analysis depending on theparameter k. Our results are listed in the table below.Problem General �-Dense Geometri
De�nitions Case Case Casek-Steiner Forest A.R. 2 [R94℄ PTAS PTASPTAS fork-Tree Cover A.R. 4 [EGKRS04℄ k2!(log jSj) \ o(jSj) PTASdisjoint PTAS fork-Tree Cover ? k2!(pjSj) \ o(jSj) PTASTable 1: Overview of our results.The rest of the paper is organized as follows: In Se
tion 2 we 
onstru
ta ptas for the �-Dense k-Steiner Forest Problem. Se
tion 3 deals with the �-Dense k-Tree Cover Problem. In se
tion 4 a polynomial-time approximations
heme for geometri
 instan
es of the k-Steiner Forest Problem is given.Finally, Se
tion 5 des
ribes the polynomial time approximation s
hemes forthe k-Tree Cover and the disjoint k-Tree Cover Problem.2



2 A PTAS for the �-Dense CaseConsider an instan
e of the �-Dense k-Steiner Forest Problem 
onsistingof graph G = (V;E), terminal set S � V and an integer number k 2f1; : : : ; jSjg. For a given node v 2 V and a subset of verti
es U � V , letNU(v) denote the set of neighbours of v in U . By de�nition of �-density, forea
h terminal s 2 S we have jNV nS(s)j � � � jV n Sj. Hen
e there exists atleast one node v 2 V n S with jNS(v)j � � � jSj.The approximation s
hemes for the �-Dense Steiner Problems 
onstru
tedin [KZ98℄ and [H07℄ are based on repeatedly pi
king and 
ontra
ting su
hstars that 
ontain at least a 
onstant fra
tion of the 
urrent terminal set.This greedy phase ends up with a residual instan
e of suÆ
iently small sizesu
h that it 
an be solved to optimality using an exa
t algorithm for theSteiner Tree Problem.It turns out [H07℄ that in order to preserve density in the greedy phase,these greedy pi
ks have to be made pairwise disjoint. This gives a residualinstan
e of logarithmi
 size (number of terminals) whi
h 
an be solved tooptimality using the Dreyfus-Wagner algorithm ([DW71℄).In this se
tion we will 
onstru
t a ptas for the �-Dense k-Steiner ForestProblem. This is based on a 
areful 
ase analysis depending on k: If k =n�O(1) then we 
an solve the problem to optimality. If k = O(log(n)) thenwe 
an justify suÆ
iently many greedy pi
ks su
h that the residual instan
eis of logarithmi
 size and 
an be solved to optimality. For this purposewe 
onstru
t an exa
t algorithm k-St-DW for the k-Steiner Forest Problemwhi
h runs in time polynomial in the number of non-terminals and linearly-exponential in the number of terminals. In the remaining 
ase we will arguethat a set of greedily pi
ked stars will already give a good approximation.The se
tion is organized as follows. In subse
tion 2.1 we des
ribe theexa
t algorithm for the k-Steiner Forest Problem whi
h we denote as k-St-DW. In subse
tion 2.2 we des
ribe the greedy phase of our algorithm wherewe 
onsider various distin
t 
ases 
on
erning the value of k.2.1 An Exa
t AlgorithmLet St-DW denote the Dreyfus-Wagner algorithm [DW71℄. Given an in-stan
e G = (V;E); S � V of the Steiner Tree Problem in graphs, Dreyfus-Wagner algorithm 
omputes a minimum-length Steiner tree T = St-DW(S;G)for terminal set S in G. Based on this algorithm we will now 
onstru
t anexa
t algorithm k-St-DW for the k-Steiner Forest Problem. Algorithm k-3



St-DW is best des
ribed in terms of the following re
ursion formula:k-St-DW(S; k) = min;�S0�S(k-St-DW(S 0; 1) + k-St-DW(S n S 0; k� 1))Note that k-St-DW(S 0; 1) = St-DW(S). However, if one would implementthe algorithm in this way, the running time would be of orderO(2jSj � (3jSjjV j+ 2jSjjV j2 + jV j3) + (k � 1)3jSj).Instead we implement the algorithm k-St-DW by 
ombining the re
ur-sion formulas of k-St-DW and St-DW in order to build up just one singledynami
 programming table. The algorithm is given below.Algorithm k-St-DWInput: G = (V;E), 
 :E ! R+, S � V , k 2 f1; : : : ; jSjgOutput: minimal 
ost 
(T ) for a forest T = (V 0; E 0)with S � V 0, E 0 � E 
onsisting of at most k trees.Compute dist(G;
)(x; y) for all x; y 2 VSet p(fx; yg; 1) := dist(G;
) for all x; y 2 VFor i := 2 to jSj � k + 1For all U � S with jU j = i and all x 2 V n Uset q(U [ fxg; x) := min;6=U 0�U (p(U 0 [ fxg; 1)+ p((U n U 0) [ fxg; 1))For all U � S with jU j = i and all x 2 V n Uset p(U [ fxg; 1) := minfminy2U (p(U; 1)+ dist(G;
)(x; y));miny2V nU(q(U [ fyg; y) + dist(G;
)(x; y))gFor i = 2 to kFor all U � S with U 6= ;set p(U; i) = min;�U 0�U; jU 0j�jSj�k+1(p(U 0; 1) + p(U nU 0; i� 1))Return p(S; k)Lemma 2.1. The running time of algorithm k-St-DW isO(3jSjjV j+ 2jSjjV j2 + jV j3 + (k � 1)3jSj).2.2 The Greedy Contra
tion PhaseAssume that there are no edges 
onne
ting two terminals, sin
e otherwise,if there are g su
h edges with g > 0, then we 
olle
t minfg; jSj � kg ofthese edges and 
onsider the remaining instan
e with jSj �minfg; jSj � kgterminals and the same value k.Case 1: k � jSj � 
 for a 
onstant 
 (the 
hoi
e of 
 will depend on theapproximation parameter Æ). In this 
ase we solve the problem to optimalityby a brute-for
e approa
h: We enumerate all subsets of terminals of size up4



to 2 �
 and for ea
h of them 
ompute an optimum Steiner forest with at most
 
omponents. The best of all these solutions together with the remainingterminals as one-element 
omponents is an optimum solution for the k-Steiner Forest Problem. This brute-for
e algorithm 
an be implemented tohave time 
omplexity O(jSj2
 � jV j2
+3).Case 2: k is suÆ
iently small, namely k � 
2 � log(jSj). Then we 
aniteratively pi
k stars STi, ea
h 
onsisting of a non-terminal and all its ter-minal neighbours. The �rst su
h star ST1 
ontains at least � � jSj terminals.If we remove ST1, the remaining instan
e is still �-dense. If we iterate thispro
ess, after i greedy pi
ks we have 
olle
ted stars ST1; : : : ; STi, and sizeof the remaining terminal set Si+1 is jSi+1j � (1� �)i � jSj. The greedy phaseends after the minimum number j of greedy pi
ks su
h that jSj j � 
3, where
3 is a 
onstant depending on Æ and yet to be spe
i�ed. Note that in this
ase, j = llog� jSj
2 � = log� 11���m. Hen
e the remaining instan
e 
ontainsonly O(log(jSj)) terminals and 
an be solved to optimality by the exa
talgorithm DW-kSteiner. In order to estimate the resulting approximationratio, we use the same kind of argument as in [KZ98℄. Let F � be an op-timum solution 
onsisting of 
onne
ted 
omponents F �1 ; : : : ; F �k . Let SSTidenote the terminal set of star STi. If we add edges of a tree Mi spanningSSTi to the graph G, we obtain a graph G0 su
h that the optimum solutionin G0 is not more expensive than in G. Furthermore, by adding all edgesof trees Mi and possibly removing edges of F nSiMi, we may assume thatF � 
ontains the trees Mi as subtrees. Let F denote the forest 
onstru
tedby the algorithm, let F0 denote an optimum forest 
onne
ting the stars STi.Hen
e the approximation ratio in this 
ase is bounded as follows:
(F )
(F �) � 
(F0) +Pi 
(STi)
(F0) +Pi(
(STi)� 1) � Pi jSijPi(jSij � 1) � maxi jSijSij � 1Hen
e if we 
hoose 
3 su
h that ��
3��
3�1 � 1 + Æ then due to the density
ondition we obtain approximation ratio 1+Æ. Hen
e we 
hoose 
3 = d1+Æ��Æ e.Case 3: 
2 � log(jSj)< k < jSj � 
1. In this 
ase, �-density implies existen
eof a star ST1 with 
enter v 2 V n S 
ontaining at least � � jSj terminals. Wetake a subgraph of this star 
olle
ting jSj�k+1 terminals. Sin
e a minimumspanning tree for jSj � k + 1 terminals gives a lower bound of jSj � k, theresulting approximation ratio in this 
ase is jSj�k+1jSj�k = 1 + 1jSj�k � 1 + 
�11 .Hen
e if for a given instan
e G = (V;E); S; k and given Æ > 0 we wantto guarantee approximation ratio at most 1+ Æ, it suÆ
es to 
hoose 
1 = 1Æ ,
2 = 1 and 
3 = d1+Æ��Æ e.We are now ready to formulate our algorithm.5



Algorithm Dense-kSTFInput: G = (V;E), S � V , k 2 f1; : : : ; jSjg; � > 0Output: (1 + �)-approx. k-Steiner Forest for S in GChoose 
1 = 1Æ , 
2 = 1 and 
3 = d1+Æ��Æ e.Case: k � jSj � 
1solve to optimality by brute for
eCase: k � 
2 � log jSjPhase 1: Greedy Pi
kswhile jSj > 
Æv :=argmaxfjNS(u)j; u 2 V n SgS := S nNS(v)STv := the star 
onsisting of v and NS(v)if jSj < 
Æ thenN 0 := the subset of NS(v) with jS [N 0j = 
ÆS := S [N 0STv := the star 
onsisting of v and NS(v) nN 0Phase 2: DW-kSteinerfor ea
h star STv 
olle
ted in Phase 1
ontra
t STv into svS := S [ fsvgsolve the remaining instan
e using DW-kSteiner, obtain F0return F0 [SPhase 1 STvCase: 
2 � log jSj < k < jSj � 
1Take Satisfying Star:
hoose v 2 V n S with jSvj � �jSjremove edges from STv to let STv having jSj � k + 1 terminalsreturn STvThis yields the following theorem.Theorem 2.1. For ea
h � > 0, the algorithm Dense-kSTF is a PTAS forthe �-Dense k-Steiner Forest Problem.3 The �-Dense k-Tree Cover ProblemWe 
onsider the following two versions of the �-Dense k-Tree Cover Problem.� Version 1: (Non-Disjoint Version)Given an instan
e G = (V;E); S � V; k 2 f1; : : : ; jSjg, 
onstru
t a setof at most k trees Ti in G (not ne
essarily vertex- or edge-disjoint)
overing the terminal set S su
h as to minimize maxi 
(Ti).6



� Version 2: (Disjoint Version)Given an instan
e G = (V;E); S � V; k 2 f1; : : : ; jSjg, 
onstru
t aforest F in G of at most k 
onne
ted 
omponents Fi 
overing S su
has to minimize maxi 
(Fi).3.1 Non-Disjoint VersionConsider an instan
e of the �-dense k-Tree Cover Problem (version 1) 
on-sisting of a graph G = (V;E), a terminal set S � V and an integerk 2 [1; jSj℄. First observe that a lower bound for the optimum solution 
ostis given by Umin := jSjk � 1. Let Æ > 0. In order to obtain approximationratio 1+ Æ we will a

ept trees of size (℄ edges) at most UÆ := (1+ Æ) �Umin.We pro
eed as follows: First we run a greedy phase in whi
h we 
olle
ta logarithmi
 number of stars STi (ea
h 
onsisting of a non-terminal 
enternode vi and a set of terminal leaves Si � S). The number of remainingterminals will be bounded by some 
onstant 
 = 
�;Æ. Afterwards we splitea
h star STi whi
h was 
onstru
ted in the greedy phase into d jSi jUÆ e stars of
ost at most UÆ. The remaining terminals will be de
lared as singleton treesof 
ost 0.Thus it remains to investigate for whi
h values of k this pro
edure endsup with a total number of at most k trees. Let us �rst give a pre
iseformulation of our algorithm.Algorithm Dense-k-Tree-CoverInput: G = (V;E); S � V; k 2 [1; jSj℄; Æ > 0Initialization:Sa
t := S; STARS := ;Phase 1: Greedy Pi
ksWhile jSa
tj � 
 dov := argmaxu2V jNSa
t(v)jSTv := star 
entered at v with leaves Sv := NSa
t(v)STARS := STARS [ fSTvgSa
t := Sa
t nNSa
t(v)Phase 2: Splitting PhaseFor ea
h STv 2 STARS doSplit STv into nv := d jSv jUÆ e trees Tv;1; : : : ; Tv;nv=? Return list of trees 
overing S, Ts denotes singleton tree with terminal s ?=Return SSTv2STARSfTv;1; : : : ; Tv;nvg [ Ss2Sa
tfTsg7



Analysis. It remains to give an estimate (upper bound) for the number oftrees 
onstru
ted by algorithmDense-k-Tree-Cover and then 
ompute forwhi
h values of k this is always bounded by k.Let Sia
t denote the set Sa
t after i iterations of the while-loop in thegreedy phase. Sin
e the instan
e is �-dense, jSia
tj � (1� �)ijSj. The greedyphase stops when jSa
tj � 
. Hen
e the number of iterations of the whileloop is at most log( jSj
 )= log( 11��). Let ST1; : : : ; STr be the stars 
onstru
tedin the greedy phase of algorithm Dense-k-Tree-Cover. Let STi = STvi withset of terminal leaves Si. Then the total number of trees 
onstru
ted byDense-k-Tree-Cover isPri=1d jSijUÆ e + 
 � Pri=1 jSi jUÆ + log 11�� (jSj) + 
� � jSj�
�(1+Æ)(jSj�k) + log 11�� (jSj)+
�k � � kThis term is � k if k 2 !(log(jSj))\ o(jSj).Hen
e the algorithm Dense-k-Tree-Cover 
onstru
ts a (1 + Æ)-approximatesolution if k is sub-linear and super-logarithmi
 in the number of terminals.Altogether we obtain the following result.Theorem 3.1. AlgorithmDense-k-Tree-Cover is a PTAS for the �-DenseNon-Disjoint k-Tree Cover Problem provided k 2 !(log(jSj))\ o(jSj).3.2 Disjoint VersionIn the disjoint 
ase (version 2) we 
an not simply perform greedy pi
ks asbefore and split stars into several di�erent trees. We pro
eed as follows.Again we take the lower bound Umin = jSjk � 1 for the 
ost of an optimumsolution. Then we iteratively 
olle
t stars STv 
entered at some non-terminalv with a set Sv of terminal leaves. However, in ea
h greedy step we 
olle
tonly (1 + Æ)Umin terminals from the 
urrent star. Sin
e for ea
h of theremaining terminals of the 
urrent star, number of non-terminal neighborsis redu
ed by 1, these partial greedy-pi
ks destroy the �-density property.We perform su
h greedy steps until the size of the 
urrent star STv dropsbelow (1+Æ)Umin or the number of 
olle
ted trees together with the numberof remainig terminals is � k. 8



Greedy-PhaseSa
t := S; V Sa
t := V; STARS := ;For (i := 1; i+ jSa
tj > k; i++)v := argmaxfjNSa
t(u)j; u 2 V n V gSTi := star 
entered at v with terminal neighbors of v as leavesAdd STi to STARSSa
t := Sa
t nNSa
t(u); V Sa
t := V Sa
t n fvgIn order to analyze this pro
edure, we introdu
e the following notations.� ti := jSia
tj denotes the number of remaining terminals after i iterationsin the greedy phase, where t0 = jSj,� �i > 0 is su
h that after i-th iteration the terminal set Sia
t satis�es�i-density 
ondition: 8s 2 Sia
t jNV nS(s)j � �i � jV Sia
tjThus in order to obtain an (1+ Æ)-approximate solution, it suÆ
es to guar-antee that for ea
h greedy iteration i 
onditions (1) and (2) hold.(1) i+ ti � k (2) �i � ti � (1 + Æ)UminIf ni := jV Sia
tj denotes the number of remaining non-terminals after thei-th iteration, then we obtain the following re
ursions.(a) ti = ti�1 � (1 + Æ)Umin = t0 � i � (1 + Æ)Umin with t0 = jSj(b) ni = ni�1 � 1 = n0 � i with n0 = jV n Sj(
) �i = �i�1ni�1 � 1ni�1 � 1 > �i�1 � 1ni�1 � 1 > �0 � iniThe �rst 
ondition gives us the following lower bound i0 on the number ofiterations: i+ t0 � i � (1 + Æ)Umin � k , i � t0�kUÆ�1 ) i = i0 = l t0�kUÆ�1m. Thislower bound i0 has to satisfy the se
ond 
ondition:UÆ � ��0 � in0�i� (t0 � i � UÆ)� ��0 � t0�kUÆ�1n0� t0�kUÆ�1� � �t0 � � t0�kUÆ�1� � UÆ�=  �0 � t0�kUÆ�1n0(UÆ�1)�t0+kUÆ�1 !� t0UÆ�t0�t0UÆ+k(1+Æ)( t0k �1)UÆ�1 �= ��0 � t0�kn0(UÆ�1)�t0+k�� (1+Æ)t0�t0�k(1+Æ)UÆ�1 �= ��0 � t0�kn0(UÆ�1)�t0+k�� Æt0�k(1+Æ)UÆ(UÆ�1) �UÆ9



This term is of order (�0�o(1))(!(1)�1)UÆ if we restri
t k to be in !(pt0)\o(t0) and n0 2 
(t0). Hen
e we obtain:Theorem 3.2. There is a PTAS for the spe
ial 
ase of the disjoint versionof the �-Dense k-Tree Cover Problem when k 2 !(pjSj)\o(jSj) and jV nSj 2
(jSj).4 Geometri
 k-Steiner Forest ProblemIn order to obtain a PTAS for the Geometri
 k-Steiner Forest Problem we
ombine methods from [A98℄ and [ARR98℄ with a sophisti
ated de�nitionof subproblems in the dynami
-programming s
heme. For the sake of 
om-pleteness, we �rst give a brief des
ription of the rounding and de
ompositionpro
edure from [ARR98℄. We will only des
ribe the two-dimensional 
asewith Lp-metri
 for a �xed p - all the methods des
ribed in this and the nextse
tion 
an be generalized to the d-dimensional 
ase where d is 
onstant.4.1 De
omposition and Perturbation(a) Compute a 2-approximate solution to the k-Steiner Forest Problem, letits length be D. Let OPT denote the optimum value, then D2 � OPT � D.(b) De
ompose the problem into problems with disjoint bounding boxes thelength of wi
h is at most polynomially longer than the length of a solution.For this purpose, we take a grid of granularity D
�p(jSj) for a polynomialp(�) yet to be spe
i�ed. Move ea
h point to its nearest grid point whi
h
hanges the optimum by at most jSj � D
�p(jSj) . Choose p(�) su
h that thislength in
rease be
omes small. Now the minimum nonzero distan
e be-tween terminals is at least D
�p(jSj) .Res
ale su
h that ea
h point 
oordinate is integer and the minimum intern-ode distan
e is 8. Let L denote the new integral bounding box length andD the res
aled 2-approximate upper bound.Case 1: D � L=n2. Then after perturbation and res
aling, the size ofquadtrees asso
iated to the bounding box of the instan
e will be polynomialin n su
h that the instan
e of the k-Steiner Forest Problem 
an be solvedusing shifted quadtrees and the dynami
 programming approa
h whi
h isdes
ribed in the next subse
tion.Case 2: D < L=n2. In this 
ase we use the methods of [ARR98℄ inorder to de
ompose the problem into pairwise disjoint subproblems thathave a suÆ
iently small bounding box length. It is shown in [ARR98℄ thatif a shift (a; b) 2 [0; L℄2 is taken uniformly at random, with probability at10



least 1 � 1
(logn) no edge of the optimum solution 
rosses the boundary ofany square in the shifted quadtree of size D � log(n). We build a binarytree whose leaves are the quadtree nodes of size D � log(n) in the shiftedquadtree Qa;b. For ea
h su
h node, using the algorithm des
ribed in the nextsubse
tion, we solve ea
h instan
e of the k-Steiner Tree Problem 
onsistingof the set of terminals that are inside q and value k0 2 f1; : : : ; kg. Then weuse a dynami
 programming approa
h to 
ombine these solutions bottom-upalong the binary tree (
f. [ARR98℄).4.2 Stru
ture Theorem and Dynami
 ProgrammingHen
e we may now assume that the instan
e 
onsists of a terminal set S � R2of 
ardinality jSj = n within a bounding box of length L and a numberk 2 f1; : : : ; ng, that all 
oordinates of terminals are integral, the minimuminter-terminal distan
e is at least 8 and su
h that L � n
 for some 
onstant
 > 1. We may furthermore assume that S � B := [0; L℄ � [0; L℄ Let Qdenote a quadtree for B, and let Qa;b the shifted quadtree with shift (a; b)On the boundary of ea
h square q in the quadtree we pla
e m por-tals equally-spa
ed. A Steiner forest is 
alled (m; r)-light if it 
rosses ea
hquadtree node at most r times, and ea
h 
rossing happens at a portal [A98℄.Theorem 4.1. (Stru
ture Theorem)[A98℄Let L denote the bounding box length of the instan
e. If shifts a; b are takenuniformly at random, then for m = 
 � log(L) and r = O(
), with probabil-ity at least : : : an optimum (m; r)-light solution with respe
t to the shiftedquadtree Q = Qa;b is an �1 + 1
 �-approximate solution to the k-Steiner ForestProblem.This theorem indeed holds for the k-Steiner Forest Problem: Given anoptimum solution F � one 
an transform it into a (m; r)-light forest F 0 (
f.[A98℄ , using the Pat
hing Lemma). We note that the number of 
omponentsdoes not in
rease by applying the Pat
hing Lemma.Subproblems. A subproblem 
onsists of a node q in the quadtree, a subset ofportals P of size at most r, a partition of P into nonempty subsets P1; : : :Pland a number k0 2 f1; : : : ; kg. A solution is a (m; r)-light forest F inside qthat 
ontains all the terminals in q and su
h that ea
h Pj is 
onne
ted bya di�erent tree in F and for ea
h 
onne
ted 
omponent Fi of F , either Fidoes not tou
h the boundary of q or its interse
tion with the boundary isone of the sets Pi. Furthermore, the number of 
onne
ted 
omponents of Fthat are 
ompletely inside q is equal to k0.11



Dynami
 Programming. Obviously, the k-Steiner Forest Problem is a spe
ial
ase of this subproblem with q = the root of the quadtree and P = ;; k0 = k.We are now ready to des
ribe how subproblems 
an be solved by dynami
programming. Given an instan
e q; P = P1 [ : : : [ Pl; k0 of the subproblemas de�ned above, if q is a leaf then it 
ontains only a 
onstant number ofterminals and the subproblem 
an be solved to optimality by brute-for
e.Otherwise, let q1; : : : q4 denote the 
hildren of q in the quadtreeQ. In order tosolve the instan
e q; P = P1 [ : : :[Pl; k0, the dynami
 programming s
hemetries out all 
ombinations of solutions of subproblem instan
es qi; P (i) =P (i)1 [: : :[P (i)ji ; k0i asso
iated to the 
hildren qi for whi
h the sets and paritionsof portals are 
onsistent and furthermore, k0 is equal to k01 + : : :+ k04+ thenumber of 
onne
ted 
omponents that 
ross the boundary of some of the qibut not the boundary of q. Note that this is 
ompletely determined and 
anbe 
he
ked based only on the subproblem instan
es (and not their solutions).The number of subproblem instan
es per quadtree node is at mostO(mr �r! � k). Hen
e the total dynami
 programming s
heme 
an be implementedto run in time O(n
� �mr � r! � k) = O(n
� � (logn)1=� � (1=�)!).Altogether, we have shown:Theorem 4.2. There is a PTAS for the Geometri
 k-Steiner Forest Prob-lem, more pre
isely: For ea
h d 2 N and p 2 N0, the k-Steiner Forest Prob-lem for terminal sets in Rd with the Lp-metri
 provides a polynomial-timeapproximation s
heme.5 The Geometri
 k-Tree Cover ProblemIn the geometri
 
ase, the k-Tree Cover Problem and the Disjoint k-TreeCover Problem 
an be handled in the same way. Given a 
olle
tion of treesthat are not pairwise vertex-disjoint, one 
an introdu
e a suÆ
iently �negrid and move overlapping trees slightly in order to make them disjoint.Hen
e in this se
tion we restri
t ourselves to 
onsider only the Geometri
k-Tree Cover Problem.Most of the methods des
ribed in the pre
eeding se
tion 
an also beapplied to the Geometri
 k-Tree Cover Problem. We use the (4 + �)-appoximation algorithm from [EGKRS04℄ in order to obtain a lower boundD su
h that D � OPT � (4+�) �D, where OPT denotes the 
ost of an opti-mum solution. Then the instan
e is de
omposed into instan
es of boundingbox length L � D � nO(1). (
f. se
tion 4). Well-Rounding and Stru
tureTheorem 
arry over to the Geometri
 k-Tree Cover Problem as well.12



The remaining task is to de�ne appropriate subproblems asso
iated tonodes q of a shifted quadtree and to 
onstru
t a dynami
 programmingalgorithm in order to solve these subproblems.Con
erning the 
onstru
tion of Subproblems, the following diÆ
ulty o
-
urs. When 
ombining solutions to subproblems asso
iated to boxes thatare neighbours in the quadtree Q, we have to 
ontrol the length in
rease,i.e. it possibly makes a 
ru
ial di�eren
e if we 
ombine two rather long treesor we 
ombine ea
h of them to shorter trees.We use methods from [ARR98℄ and [KR07℄ in order to handle this prob-lem. We assign guesses to the portals of a quadtree node. A guess is apredetermined upper bound (budget) for the length of the tree 
onne
ted toa portal p of a node q "on the other side of the boundary", namely the re-maining tree length whi
h we 
an assign to p within neighbouring quadtreenodes. By using geometri
 expansions we guarantee that in oder to get agood approximation, the number of di�erent guesses that have to be assignedto a portal is polynomially bounded.We are now ready to give the pre
ise de�nition of subproblems.Subproblem:Given: a node q in the shifted quadtree with O(m) portals on itsboundary, a subset P of at most r portals, a partition of P intononempty subsets P1; : : : ; Pr0 , a partition of the set f1; : : : ; r0g intononempty subsets Jl and for ea
h Jl of size � 2, for ea
h Pi; i 2 Jla portal pl;i 2 Pi su
h that alll these portals pl;i have the same guesswhi
h we denote as gl (interpretation: sets Pi; Pj with i; j 2 Jl forsome l, then these sets of portals belong to the same tree of the globalsolution, 
onne
ted via portals pl;i 2 Pi; pl;j 2 Pj) for ea
h of thoseportals p 2 P a guess gp of an approximate remaining length of a"Steiner Tree" behind that portal,gp 2 �(1 + f(�))i ���� 0 � i � 2 � log(L)log(1 + f(�))�hen
e the number of di�erent values to be 
onsidered is O(logL), and anumber k0 2 f0; : : :kg (guess for the number of 
onne
ted 
omponentsof F that are 
ompletely in the interior of q)Solution: A forest F in q 
olle
ting all terminals in q su
h that ea
h
omponent of F is either in the interior of q or there is some 1 � j � r0su
h that the interse
tion of the 
omponent with the set of portals isequal to Pj , and ea
h Pj is the set of portals of13



some 
omponent Fj of FObje
tive:minimize maxl 8<:Xj2Jl(
(Fj) + Xp2Pj gp) � [jJlj � 2℄ � (jJlj � 1) � gl9=;The number of subproblems per quadtree node with a set of O(m) portalson its boundary is O mO(r) � r! �� 2 � log(L)log(1 + f(�))�O(r)!whi
h is O((logn)O(1=�) �O(1� ) � (log(L))O(1=�)) provided m = O(log(n)) andr = O(1=�).Hen
e we obtain the following result.Theorem 5.1. For ea
h d 2 N and p 2 N0, the k-Tree Cover Problem re-stri
ted to terminal sets in Rd with the Lp-norm dp(x; y) = �Pdi=1 jxi � yijp�1=pprovides a polynomial-time approximation s
heme.6 RemarksWe think that the running time of our polynomial time approximations
hemes for the geometri
 instan
es (
f. Se
tion 4 and 5)
an be improvedby the te
hniques of Kolliopoulos and Rao ([KR07℄).Referen
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AppendixExa
t Algorithm for the k-Tree Cover ProblemIn se
tion 2.1 we presented an exa
t algorithm for the k-Steiner Forest Prob-lem with time 
omplexity polynomial in the number of verti
es and expo-nential in the number of terminals. A similar algorithm 
an also be obtainedfor the k-Tree Cover Problem.It suÆ
es to give an asso
iated re
ursive formula:p(U; k) = min;�U 0�Umaxfp(U 0; 1); p(U n U 0; k � 1)g:So by repla
ing the body of the last for-loop in algorithm k-St-DW by(3) set p(U; i) = min;�U 0�U^jU 0j�jSj�k+1 maxfp(U 0; 1); p(U n U 0; k � 1)gwe obtain an exa
t algorithm DW-kTCP for the k-Tree Cover Problem.Lemma 6.1. The time 
omplexity of algorithm DW-kNFP is O(3jSjjV j +2jSjjV j2 + jV j3 + (k � 1)3jSj).
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