Polynomial Time Approximation Schemes
for Dense and Geometric k-Restricted
Forest Problems

Mathias Hauptmann*® Soren Kiihl*
Richard Schmied? Claus Viehmann®
Abstract

The k-Steiner Forest Problem asks for a minimum cost forest F' for
a given terminal set S such that F' consists of at most & connected
components. We construct polynomial time approximation schemes
for dense and geometric versions of the k-Steiner Forest Problem and
the k-Tree Cover Problem.

1 Introduction

The k-Steiner Forest Problem asks for a minimum-cost forest I that con-
nects (covers) a given set of terminals S in a metric space (V, ¢) such that F’
consists of at most k connected components. This problem was defined by R.
Ravi who observed that the primal-dual approach yields a 2-approximation
algorithm for this problem ([R94]). In 2003, Even et al. considered the
k-Tree Cover Problem where a set of terminals is to be covered by at most
k not necessarily disjoint trees such as to minimize the maximum tree-cost
([EGKRS04]). They obtain a (4 + ¢)-approximation scheme for the general
metric case of this problem.

In this paper we construct polynomial time approximation schemes for
two special cases of these problems, namely e-dense instances and geometric
instances in constant dimension. Furthermore we extend these results to
the variant of the k-Tree Cover Problem where the trees have to be pairwise
node-disjoint (Disjoint k-Tree Cover Problem).

*Dept. of Computer Science, University of Bonn. Email:hauptman@cs.uni-bonn.de

"Dept. of Computer Science, University of Bonn. Work supported by Hausdorff PhD
grant. Email:schmied@cs.uni-bonn.de

{Dept. of Computer Science, University of Bonn. Email:kuehl@cs.uni-bonn.de

SDept. of Computer Science, University of Bonn. Work partially supported by Bonn
International Graduate School in Mathematics. Email:viehmann@cs.uni-bonn.de

Our approximation schemes for the geometric instances are based on an
adaption of techniques from [A98] combined with a sophisticated choice of
subproblems which are then solved in a dynamic programming approach.
First, the instance is decomposed into disjoint subproblems to which the
perturbation techniques from [A98] and [ARR98] become applicable.

The e-Dense Steiner Tree Problem was defined by Karpinski and Ze-
likovsky ([KZ98]) who showed that for every fixed ¢, there exists a polyno-
mial time approximation scheme for this problem with density parameter e.
An instance of the Steiner Tree Problem is called e-Dense if the underlying
metric space is induced by a graph G' = (V, F) (with all edges of weight 1),
such that each terminal has at least € - [V \ S| neighbours in V' \ 5.

In [HO7], the results of Karpinski and Zelikovsky were extended to give
an efficient polynomial time approximation scheme (i.e. the running time is
f(1/€)-p(n) where p(n) is a polynomial of fixed degree not depending on ¢).
Furthermore, the density notion was relaxed, and polytime approximation
schemes were also constructed for several other Steiner problems including
Group Steiner Tree and Price Collecting Steiner Tree (cf. [H04a], [H04b],
[HO7]). Our approximation schemes for the e-dense version of the k-Steiner
Forest, k-Tree Cover and Disjoint k-Tree Cover Problem combine the meth-
ods from [KZ98] and [HO7] with a careful case analysis depending on the
parameter k. Qur results are listed in the table below.

Problem General e-Dense Geometric

Definitions Case Case Case

k-Steiner Forest A.R. 2 [R94] PTAS PTAS

k-Tree Cover A.R. 4 [EGKRS04] PTAS for PTAS
kew(log|S|) No(]S])

disjoint PTAS for

k-Tree Cover ! kew(y/]S) no(]S]) PTAS

Table 1: Overview of our results.

The rest of the paper is organized as follows: In Section 2 we construct
a ptas for the e-Dense k-Steiner Forest Problem. Section 3 deals with the e
Dense k-Tree Cover Problem. In section 4 a polynomial-time approximation
scheme for geometric instances of the k-Steiner Forest Problem is given.
Finally, Section 5 describes the polynomial time approximation schemes for
the k-Tree Cover and the disjoint k-Tree Cover Problem.

2 A PTAS for the e-Dense Case

Consider an instance of the e-Dense k-Steiner Forest Problem consisting
of graph G = (V, F), terminal set S C V and an integer number k €
{1,...,|9]}. For a given node v € V and a subset of vertices U C V|, let
N7 (v) denote the set of neighbours of v in U. By definition of e-density, for
each terminal s € S we have |[Ny\g(s)| > €[V \ S|. Hence there exists at
least one node v € V '\ S with |[Ng(v)| > €-|5].

The approximation schemes for the e-Dense Steiner Problems constructed
in [KZ98] and [HO7] are based on repeatedly picking and contracting such
stars that contain at least a constant fraction of the current terminal set.
This greedy phase ends up with a residual instance of sufficiently small size
such that it can be solved to optimality using an exact algorithm for the
Steiner Tree Problem.

It turns out [HO7] that in order to preserve density in the greedy phase,
these greedy picks have to be made pairwise disjoint. This gives a residual
instance of logarithmic size (number of terminals) which can be solved to
optimality using the Dreyfus-Wagner algorithm ([DWT71]).

In this section we will construct a ptas for the e-Dense k-Steiner Forest
Problem. This is based on a careful case analysis depending on k: If k£ =
n—O(1) then we can solve the problem to optimality. If & = O(log(n)) then
we can justify sufficiently many greedy picks such that the residual instance
is of logarithmic size and can be solved to optimality. For this purpose
we construct an exact algorithm k-St-DW for the k-Steiner Forest Problem
which runs in time polynomial in the number of non-terminals and linearly-
exponential in the number of terminals. In the remaining case we will argue
that a set of greedily picked stars will already give a good approximation.

The section is organized as follows. In subsection 2.1 we describe the
exact algorithm for the k-Steiner Forest Problem which we denote as k-St-
DW. In subsection 2.2 we describe the greedy phase of our algorithm where
we consider various distinct cases concerning the value of k.

2.1 An Exact Algorithm

Let St-DW denote the Dreyfus-Wagner algorithm [DWT71]. Given an in-
stance G = (V,), S C V of the Steiner Tree Problem in graphs, Dreyfus-
Wagner algorithm computes a minimum-length Steiner tree T' = St-DW (S, &)
for terminal set S in G. Based on this algorithm we will now construct an
exact algorithm k-St-DW for the k-Steiner Forest Problem. Algorithm k-

St-DW is best described in terms of the following recursion formula:

kE-St-DW (S, k) = @glgilgs(k_St_DW(Sl’ 1) + k-St-DW(S\ 5", k — 1))
Note that k-St-DW(S’, 1) = St-DW(S). However, if one would implement
the algorithm in this way, the running time would be of order
OST- (BIV| + 2 V2 4 V) + (k - 1)315).

Instead we implement the algorithm k-St-DW by combining the recur-
sion formulas of k-St-DW and St-DW in order to build up just one single
dynamic programming table. The algorithm is given below.

Algorithm k-St-DW

Input: G=(V,E),c:E =Ry, SCV, ke{l,...,|9}

Output: minimal cost ¢(7') for a forest 7= (V', 1)
with S C V’, F/ C F consisting of at most k trees.

Compute dist(g (v, y) for all 2,y € V
Set p({z,y}, 1) := dist(qg,y for all 2,y € V
Fori:=2to |S|-k+1
For all U C S with |[U] =7 and all 2 € V\U
set g(U Uz}, o) i= mingncrr (p(U" U {z}, 1)+ p((U\ U7) U {a}, 1)
For all U C S with |[U] =4 and all 2 € V\ U
set p(U U{x},1) := min{minyer (p(U, 1) + dist(q (2, y)),
min,ey\v (¢(U U {y}, y) + dist (g o (x,y))}
Fori=2to k
For all U C S with U #£
set p(U, 1) = mingcprcv, juj<is|-k1 (U, 1) + p(U\U', i = 1))
Return p(S, k)

Lemma 2.1. The running time of algorithm k-St-DW is
OBPIVI+ 28V 12+ V]2 + (k — 1)3191).

2.2 The Greedy Contraction Phase

Assume that there are no edges connecting two terminals, since otherwise,
if there are g such edges with g > 0, then we collect min{g, |S| — k} of
these edges and consider the remaining instance with |S| — min{g, |S| — k}
terminals and the same value k.

Case 1: k > |S| — ¢ for a constant ¢ (the choice of ¢ will depend on the
approximation parameter §). In this case we solve the problem to optimality
by a brute-force approach: We enumerate all subsets of terminals of size up

to 2-¢ and for each of them compute an optimum Steiner forest with at most
¢ components. The best of all these solutions together with the remaining
terminals as one-element components is an optimum solution for the k-
Steiner Forest Problem. This brute-force algorithm can be implemented to
have time complexity O(]S]% - |[V]?¢+3).

Case 2: k is sufficiently small, namely k < ¢y -log(]S]). Then we can
iteratively pick stars ST;, each consisting of a non-terminal and all its ter-
minal neighbours. The first such star ST contains at least € - |S| terminals.
If we remove ST7, the remaining instance is still e-dense. If we iterate this
process, after ¢ greedy picks we have collected stars STy, ..., ST;, and size
of the remaining terminal set S;; is |S;y1| < (1 —€)-|S|. The greedy phase
ends after the minimum number j of greedy picks such that |[.S;] < c3, where
c3 is a constant depending on § and yet to be specified. Note that in this
case, j = [log (%) / log (ﬁ)—‘ Hence the remaining instance contains
only O(log(]S|)) terminals and can be solved to optimality by the exact
algorithm DW-kSteiner. In order to estimate the resulting approximation
ratio, we use the same kind of argument as in [KZ98]. Let ™ be an op-
timum solution consisting of connected components Iy, ..., Y. Let Sgor,
denote the terminal set of star ST;. If we add edges of a tree M; spanning
Sst, to the graph (G, we obtain a graph G’ such that the optimum solution
in ' is not more expensive than in . Furthermore, by adding all edges
of trees M; and possibly removing edges of F'\ | J; M;, we may assume that
F™ contains the trees M; as subtrees. Let F denote the forest constructed
by the algorithm, let Fy denote an optimum forest connecting the stars S7T;.
Hence the approximation ratio in this case is bounded as follows:

o(F) _ _elF)+XeST) XSl S
o(F) = elFo) + Sile(ST) - 1)~ (8- 1) = "S-

Hence if we choose c3 such that —Z%7 < 1+ 6 then due to the density
condition we obtain approximation ratio 146. Hence we choose ¢3 = [%]
Case 3: ¢ -log(|S]) < k < |S| = ¢1. In this case, e-density implies existence
of a star STy with center v € V'\ S containing at least ¢ - |.S| terminals. We
take a subgraph of this star collecting |S|—k+1 terminals. Since a minimum
spanning tree for |S| — k + 1 terminals gives a lower bound of |S| — k, the

. < |S|—k+1 1 -1
resulting approximation ratio in this case is IS—k — 14 EER <1l4e.

Hence if for a given instance G’ = (V, F), S,k and given § > 0 we want
to guarantee approximation ratio at most 144, it suffices to choose ¢ = %,
cs=1and ¢35 = [%]

We are now ready to formulate our algorithm.

Algorithm Dense-kSTF
Input: G=(V,E),SCV, ke{l,...,|9},e>0
Output: (14 €)-approx. k-Steiner Forest for S in GG
Choose ¢; = %, co=1and ¢35 = [%]
Case: k> |5 — 1

solve to optimality by brute force
Case: k < ¢ -log|S|

Phase 1: Greedy Picks

while |S| > ¢5
v :=argmax{|Ng(u)|;u € V\ S}
S =5\ Ns(v)

ST, := the star consisting of v and Ng(v)
if |.S] < ¢5 then
N’ := the subset of Ng(v) with |[SUN'| =¢;
S:=SUN’
ST, := the star consisting of v and Ng(v)\ N’
Phase 2: DW-/Steiner
for each star ST, collected in Phase 1
contract ST, into s,
S:=S5U{s,}
solve the remaining instance using DW-kSteiner, obtain Fy
return Fo U Uppace 1 ST
Case: ¢ -log|S| < k < |S|— ¢
Take Satisfying Star:
choose v € V'\ S with |9,] > €|95]
remove edges from ST, to let ST, having |S| — k + 1 terminals
return ST,

This yields the following theorem.

Theorem 2.1. For each € > 0, the algorithm Dense-kSTF is a PTAS for
the e-Dense k-Steiner Forest Problem.

3 The e-Dense k-Tree Cover Problem

We consider the following two versions of the e-Dense k-Tree Cover Problem.

e Version 1: (Non-Disjoint Version)
Given an instance G = (V, F),SC V. k€ {1,...,]S|}, construct a set
of at most k trees 1; in G (not necessarily vertex- or edge-disjoint)
covering the terminal set S such as to minimize max; ¢(77).

e Version 2: (Disjoint Version)
Given an instance G = (V, F),S C V,k € {1,...,]S]}, construct a
forest F'in G of at most k connected components F; covering S such
as to minimize max; c(F7}).

3.1 Non-Disjoint Version

Consider an instance of the e-dense k-Tree Cover Problem (version 1) con-
sisting of a graph G = (V,F), a terminal set S C V and an integer
k € [1,]S]]. First observe that a lower bound for the optimum solution cost
is given by Upin = % — 1. Let 6 > 0. In order to obtain approximation
ratio 1 + ¢ we will accept trees of size (f edges) at most Us := (14 6) - Upin.

We proceed as follows: First we run a greedy phase in which we collect
a logarithmic number of stars ST} (each consisting of a non-terminal center
node v; and a set of terminal leaves S; C S). The number of remaining
terminals will be bounded by some constant ¢ = ¢. 5. Afterwards we split

each star ST; which was constructed in the greedy phase into ['5’

é'] stars of
cost at most Us. The remaining terminals will be declared as singleton trees
of cost 0.

Thus it remains to investigate for which values of k this procedure ends
up with a total number of at most k trees. Let us first give a precise
formulation of our algorithm.

Algorithm Dense-k-Tree-Cover
Input: G =(V,E),SCV, ke[l,]S]],éd>0

Initialization:
Sact := 85, STARS :=1
Phase 1: Greedy Picks
While |5, > ¢ do
v = argmax, ey |Ns, . (0)]
ST, = star centered at v with leaves S, := Ng__, (v)
STARS := STARSU{ST,}
Sact = Sact \ NSact (U)
Phase 2: Splitting Phase
For each ST, € STARS do
|5 |

Split ST, into n, = [Té] trees Ty 1, ...y Ty

/* Return list of trees covering S, Ty denotes singleton tree with terminal s %/
Return LJST7J€STA]%{T7J717 N S Usesm{Ts}

Analysis. It remains to give an estimate (upper bound) for the number of
trees constructed by algorithm Dense-k-Tree-Cover and then compute for
which values of k this is always bounded by &.

Let Si. denote the set S,. after i iterations of the while-loop in the
greedy phase. Since the instance is e-dense, |St_,| < (1 — €)i|S|. The greedy
phase stops when |Sg.¢| < ¢. Hence the number of iterations of the while
loop is at most log(@)/ log(1-). Let ST, ..., ST, be the stars constructed
in the greedy phase of algorithm Dense-k-Tree-Cover. Let ST; = ST, with
set of terminal leaves S;. Then the total number of trees constructed by
Dense-k-Tree-Cover is

r Sy
S TR e

IA

Sy 4 log 1 (1S]) + e
|S|_Ce 10g11T€(|S|)+C€
o s 5 + R -k

This term is < k if k£ € w(log(|S])) N o(]S]).

Hence the algorithm Dense-k-Tree-Cover constructs a (1 + J)-approximate
solution if k is sub-linear and super-logarithmic in the number of terminals.
Altogether we obtain the following result.

IA

Theorem 3.1. Algorithm Dense-k-Tree-Cover is a PTAS for the e-Dense
Non-Disjoint k-Tree Cover Problem provided k € w(log(|S])) No(]S]).

3.2 Disjoint Version

In the disjoint case (version 2) we can not simply perform greedy picks as
before and split stars into several different trees. We proceed as follows.
Again we take the lower bound U,,;, = % — 1 for the cost of an optimum
solution. Then we iteratively collect stars ST, centered at some non-terminal
v with a set S, of terminal leaves. However, in each greedy step we collect
only (1 + 8)Upi, terminals from the current star. Since for each of the
remaining terminals of the current star, number of non-terminal neighbors
is reduced by 1, these partial greedy-picks destroy the e-density property.

We perform such greedy steps until the size of the current star ST, drops
below (1+08)U,,i,, or the number of collected trees together with the number
of remainig terminals is < k.

Greedy-Phase
Seet i =8, VSuet :=V, STARS :=10
For (i :=1; i+ |Sact| > k3 i 4+ +)
v = argmax{[Ng_ (|, v €V \V}
ST; := star centered at v with terminal neighbors of v as leaves
Add ST; to STARS
Sact = Sact \ NSact(u)7 VSact = VSact \ {U}

In order to analyze this procedure, we introduce the following notations.

e t; :=|S! | denotes the number of remaining terminals after i iterations
in the greedy phase, where ty = |.5],

e ¢; > 0 is such that after i-th iteration the terminal set S, satisfies
¢;-density condition: Vs € S, [Ny\s(s)| > € - [V Syl

Thus in order to obtain an (14 §)-approximate solution, it suffices to guar-
antee that for each greedy iteration ¢ conditions (1) and (2) hold.

(1) 1+t <k (2) € t; > (1—|—(§)Umm
If n; := |VS.,| denotes the number of remaining non-terminals after the
i-th iteration, then we obtain the following recursions.

(b) ni=mni_1 —1=ng—iwith ng=[V\5|
€_1mi—1 — 1 1 i

) g=———— > €1 — ——— > € — —
() e ni_1 — 1 it ni_1 — 1 0 n;

The first condition gives us the following lower bound ¢y on the number of

iterations: i+1to — i+ (14+0)Unin < k i > 1= = i = ig = | =k . This

lower bound %y has to satisfy the second condition:

U5 S € — nol—i) (to—i'Ug)
tg—k
U§—1 . _ to—k .
S no_;]oé-_’;) (to (Ué—l) US)

to—k
T, toUs—to—toUs+k(14+8)(12—1)
tot+k Us—1

(
(s
:
(60 to—k) ((1+5)t0[;;3;k(1+5)

= (60 no(U(;tEl_)k—to-I-k) (535?5((;1;(;)) Us

9

Ts—1

This term is of order (eg—o(1))(w(1) — 1)Us if we restrict k to be in w(y/fp)N
o(to) and ny € Q(ty). Hence we obtain:

Theorem 3.2. There is a PTAS for the special case of the disjoint version
of the e-Dense k-Tree Cover Problem when k € w(/|S|)No(|S]) and |V\S| €
Q(l51)-

4 Geometric k-Steiner Forest Problem

In order to obtain a PTAS for the Geometric k-Steiner Forest Problem we
combine methods from [A98] and [ARR98] with a sophisticated definition
of subproblems in the dynamic-programming scheme. For the sake of com-
pleteness, we first give a brief description of the rounding and decomposition
procedure from [ARR98]. We will only describe the two-dimensional case
with L,-metric for a fixed p - all the methods described in this and the next
section can be generalized to the d-dimensional case where d is constant.

4.1 Decomposition and Perturbation

(a) Compute a 2-approximate solution to the k-Steiner Forest Problem, let
its length be D. Let OPT denote the optimum value, then % < OPT < D.
(b) Decompose the problem into problems with disjoint bounding boxes the
length of wich is at most polynomially longer than the length of a solution.

For this purpose, we take a grid of granularity ﬁ for a polynomial
p(+) vet to be specified. Move each point to its nearest grid point which

changes the optimum by at most |S] - %. Choose p(-) such that this

length increase becomes small. Now the minimum nonzero distance be-
tween terminals is at least %.

Rescale such that each point coordinate is integer and the minimum intern-
ode distance is 8. Let L denote the new integral bounding box length and
D the rescaled 2-approximate upper bound.

Case 1: D > L/n% Then after perturbation and rescaling, the size of
quadtrees associated to the bounding box of the instance will be polynomial
in n» such that the instance of the k-Steiner Forest Problem can be solved
using shifted quadtrees and the dynamic programming approach which is
described in the next subsection.

Case 2: D < L/n? In this case we use the methods of [ARR9S] in
order to decompose the problem into pairwise disjoint subproblems that
have a sufficiently small bounding box length. It is shown in [ARR9S8] that
if a shift (a,b) € [0, L]? is taken uniformly at random, with probability at

10

least 1 — m no edge of the optimum solution crosses the boundary of
any square in the shifted quadtree of size D -log(n). We build a binary
tree whose leaves are the quadtree nodes of size D - log(n) in the shifted
quadtree ()4 5. For each such node, using the algorithm described in the next
subsection, we solve each instance of the k-Steiner Tree Problem consisting
of the set of terminals that are inside ¢ and value k' € {1,...,k}. Then we
use a dynamic programming approach to combine these solutions bottom-up

along the binary tree (cf. [ARR98]).

4.2 Structure Theorem and Dynamic Programming

Hence we may now assume that the instance consists of a terminal set S C R?
of cardinality |S| = n within a bounding box of length L and a number
ke {1,...,n}, that all coordinates of terminals are integral, the minimum
inter-terminal distance is at least 8 and such that L < n° for some constant
¢ > 1. We may furthermore assume that S C B := [0,L] x [0, L] Let Q
denote a quadtree for B, and let @), the shifted quadtree with shift (a,b)

On the boundary of each square ¢ in the quadtree we place m por-
tals equally-spaced. A Steiner forest is called (m,r)-light if it crosses each
quadtree node at most r times, and each crossing happens at a portal [A98].

Theorem 4.1. (Structure Theorem)[A98]

Let L denote the bounding box length of the instance. If shifts a,b are taken
uniformly at random, then for m = c-log(L) and r = O(c), with probabil-
ity at least ... an optimum (m,r)-light solution with respect to the shifted
quadtree () = Qqp 15 an (1 + %)-approximate solution to the k-Steiner Forest
Problem.

This theorem indeed holds for the k-Steiner Forest Problem: Given an
optimum solution F™* one can transform it into a (m, r)-light forest F’ (cf.
[A98] , using the Patching Lemma). We note that the number of components
does not increase by applying the Patching Lemma.

Subproblems. A subproblem consists of a node ¢ in the quadtree, a subset of
portals P of size at most r, a partition of P into nonempty subsets P;,...F,
and a number k¥ € {1,...,k}. A solution is a (m,r)-light forest F inside ¢
that contains all the terminals in ¢ and such that each P; is connected by
a different tree in F’ and for each connected component F; of F, either F;
does not touch the boundary of ¢ or its intersection with the boundary is
one of the sets F,. Furthermore, the number of connected components of F
that are completely inside ¢ is equal to k.

11

Dynamic Programming. Obviously, the k-Steiner Forest Problem is a special
case of this subproblem with ¢ = the root of the quadtree and P = (, k' = k.
We are now ready to describe how subproblems can be solved by dynamic
programming. Given an instance ¢, P = Py U...U P}, k' of the subproblem
as defined above, if ¢ is a leaf then it contains only a constant number of
terminals and the subproblem can be solved to optimality by brute-force.
Otherwise, let qq, . . . g4 denote the children of ¢ in the quadtree). In order to
solve the instance ¢, P = Py U...U P, k', the dynamic programming scheme
tries out all combinations of solutions of subproblem instances g, PO =
PI(Z)U. . .LJ]Dj(:)7 k! associated to the children ¢; for which the sets and paritions
of portals are consistent and furthermore, &’ is equal to &} + ...+ kj+ the
number of connected components that cross the boundary of some of the ¢;
but not the boundary of ¢g. Note that this is completely determined and can
be checked based only on the subproblem instances (and not their solutions).

The number of subproblem instances per quadtree node is at most O (m” -
r!- k). Hence the total dynamic programming scheme can be implemented
to run in time O(n - m” - r!- k) = O(n% - (logn)'/* - (1/e)!).

Altogether, we have shown:

Theorem 4.2. There is a PTAS for the Geometric k-Steiner Forest Prob-
lem, more precisely: For each d € N and p € Ny, the k-Steiner Forest Prob-
lem for terminal sets in R® with the L,-metric provides a polynomial-time
approzimation scheme.

5 The Geometric k-Tree Cover Problem

In the geometric case, the k-Tree Cover Problem and the Disjoint k-Tree
Cover Problem can be handled in the same way. Given a collection of trees
that are not pairwise vertex-disjoint, one can introduce a sufficiently fine
grid and move overlapping trees slightly in order to make them disjoint.
Hence in this section we restrict ourselves to consider only the Geometric
k-Tree Cover Problem.

Most of the methods described in the preceeding section can also be
applied to the Geometric k-Tree Cover Problem. We use the (4 4 ¢)-
appoximation algorithm from [EGKRS04] in order to obtain a lower bound
D such that D < OPT < (44¢€)-D, where OPT denotes the cost of an opti-
mum solution. Then the instance is decomposed into instances of bounding
box length L < D -n°M. (cf. section 4). Well-Rounding and Structure
Theorem carry over to the Geometric k-Tree Cover Problem as well.

12

The remaining task is to define appropriate subproblems associated to
nodes ¢ of a shifted quadtree and to construct a dynamic programming
algorithm in order to solve these subproblems.

Concerning the construction of Subproblems, the following difficulty oc-
curs. When combining solutions to subproblems associated to boxes that
are neighbours in the quadtree (), we have to control the length increase,
i.e. it possibly makes a crucial difference if we combine two rather long trees
or we combine each of them to shorter trees.

We use methods from [ARR98] and [KR07] in order to handle this prob-
lem. We assign guesses to the portals of a quadtree node. A guess is a
predetermined upper bound (budget) for the length of the tree connected to
a portal p of a node ¢ ”on the other side of the boundary”, namely the re-
maining tree length which we can assign to p within neighbouring quadtree
nodes. By using geometric expansions we guarantee that in oder to get a
good approximation, the number of different guesses that have to be assigned
to a portal is polynomially bounded.

We are now ready to give the precise definition of subproblems.

Subproblem:

Given: a node ¢ in the shifted quadtree with O(m) portals on its
boundary, a subset P of at most r portals, a partition of P into
nonempty subsets Py, ..., P, a partition of the set {1,...,r'} into
nonempty subsets J; and for each J; of size > 2, for each P, € J
a portal p;; € P; such that alll these portals p;; have the same guess
which we denote as g¢; (interpretation: sets P;, P; with ¢,j € J; for
some [, then these sets of portals belong to the same tree of the global
solution, connected via portals p;; € P, p;; € P;) for each of those
portals p € P a guess g, of an approximate remaining length of a
?Steiner Tree” behind that portal,

0<i< 2-log(L) }

9p € {(1 + f(e)

= log(1+ f(e)
hence the number of different values to be considered is O(log L), and a
number &’ € {0, ...k} (guess for the number of connected components

of F' that are completely in the interior of ¢)

Solution: A forest F'in ¢ collecting all terminals in ¢ such that each
component of I is either in the interior of ¢ or there is some 1 < 7 < r/
such that the intersection of the component with the set of portals is
equal to P;, and each P; is the set of portals of

13

some component F; of I

Objective:

minimize max Z(C(FJ) + Z g9p) — Nl >2]-(| 0= 1)@
Jedi pEF;

The number of subproblems per quadtree node with a set of O(m) portals

on its boundary is
O [moe) 1. (M)O(”
log(1+ f(€))

which is O((logn)?(/9 - O(2) - (log(L))O(l/E)) provided m = O(log(n)) and
r=0(1/¢).
Hence we obtain the following result.

Theorem 5.1. For each d € N and p € Ny, the k-Tree Cover Problem re-
1/p
stricted to terminal sets in R? with the L,-norm d,(z,y) = (Ele |z, — yi|p)

provides a polynomial-time approximation scheme.

6 Remarks

We think that the running time of our polynomial time approximation
schemes for the geometric instances (cf. Section 4 and 5)can be improved
by the techniques of Kolliopoulos and Rao ([KRO07]).

References

[A9R] S. Arora, Polynomial Time Approximation Schemes for Fuclidean
TSP and Other Geometric Problems, J. of the ACM 45, pp. 753-782,
1998.

[ARR98] S. Arora, P. Raghavan and S. Rao, Approzimation Schemes for
Fuclidean k-Medians and Related Problems, Proc. 30th STOC 1998,
pp. 106-113.

[DWT1] S. Dreyfus and R. Wagner, The Steiner Problem in Graphs, Net-
works 1, pp. 195-207, 1971.

14

[EGKRS04] G. Even, N. Garg, J. Kénemann, R. Ravi and A. Sinha, Min-

Maz Tree Covers of Graphs, Oper. Res. Lett. 32, pp. 309-315, 2004;
preliminary version in Proc. APPROX 2003 with the title Covering
Graphs using Trees and Stars, pp. 24-35.

[FKWO07] B. Fuchs, W. Kern and X. Wang, Speeding up the Dreyfus- Wagner

Algorithm for Minimum Steiner Trees, Math. Meth. of Operations
Research 66, pp. 117-125, 2007.

[GW95] M. Goemans and D. Williamson, A General Approximation Tech-

[H04a]

[H04b]

[HOT]

[KZ98]

[KR95]

[KROT7]

[R94]

[RZ00]

nique for Constrained Forest Problems, SIAM J. Comput. 24, pp.
296-317, 1995.

M. Hauptmann, Approzimation Complexity of Optimiza-
tion Problems: Structural Foundations and Steiner Tree
Problems, PhD-Thesis, University of Bonn, 2004, URL:
http://hss.ulb.uni-bonn.de/diss online/math nat fak/2004
/hauptmann mathias/0380.pdf.

M. Hauptmann, PTAS for Dense Steiner Tree Problems, Oberwol-
fach Reports, No0.28/2004, pp. 42-45, 2004.

M. Hauptmann, On the Approximability of Dense Steiner Tree Prob-
lems, in Proc. 10th ICTCS, p. 15-26, 2007.

M. Karpinski and A. Zelikovsky, Approzimating Dense Cases of Couv-
ering Problems, DIMACS series in Disc. Math. and Theor. Comp.
Sci. 40, pp. 169-178, 1998.

P. Klein and R. Ravi, A Nearly Best-Possible Approximation Algo-
rithm for Node-Weighted Steiner Trees, J. Algorithms 19, pp. 104-
115, 1995.

S. Kolliopoulos and S. Rao, A Nearly Linear-time Approximation
Scheme for the Fuclidean k-Median Problem, SIAM J. Computing
37, pp. 7H7-782, 2007.

R. Ravi, em A Primal-Dual Approximation Algorithm for the
Steiner Forest Problem, Inf. Process. Lett. 50, pp. 185-190, 1994.

G. Robins and A. Zelikovsky, Improved Steiner Tree Approximation
in Graphs, Proc. 11th SODA 2000, pp. 770-779.

15

Appendix

Exact Algorithm for the k-Tree Cover Problem
In section 2.1 we presented an exact algorithm for the k-Steiner Forest Prob-
lem with time complexity polynomial in the number of vertices and expo-
nential in the number of terminals. A similar algorithm can also be obtained
for the k-Tree Cover Problem.

It suffices to give an associated recursive formula:

p(U.k) = min max{p(U", 1), p(U\ U,k —1)}.
pcU'cU

So by replacing the body of the last for-loop in algorithm k-St-DW by

(3) set p(U, 1) = mingcurcuajv|<|s|-k+1 max{p(U’, 1), p(U\ U, k = 1)}
we obtain an exact algorithm DW-KTCP for the k-Tree Cover Problem.

Lemma 6.1. The time complezity of algorithm DW-ENFP is O(3!5|V| +
25V 12 VP + (k= 1)315]).

16

