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Abstract

We give a survey on the approximation hardness of the Steiner Tree
Problem. While for the general metric case, Chlebik and Chlebikova
[CC02] prove a lower bound of ~ 1.01, this result does not seem to
apply to bounded metrics. We show that combining an L-reduction
from the Bounded Degree Vertex Cover Problem to the (1,2)-Steiner
Tree Problem due to Bern and Plassmann [BP89] with approximation
hardness results of Berman and Karpinski [BK03], one obtains the
currently best known lower bound of a2 1.0026 for the approximability
of the (1,2)-Steiner Tree Problem.

1 Introduction

Given a graph G = (V, F), a cost function ¢: £ — R and a subset S C V
of the vertices of (G, a Steiner Tree T for S in G is a subtree of GG that all
vertices from S. The elements of S are called terminals. The Steiner Tree
Problem (STP) is: Given G, c and S as above, find a Steiner Tree T' for S
in G of minimum cost ¢(T) = > _.cpr) c(€).

The Steiner Tree Problem is equivalent to the Metric Steiner Tree Prob-
lem: Given a finite metric space (V,d) and a set of terminals S C V, find
a tree T = (Vp,Er) with S C Vp C V such as to minimize d(T') :=
D e {upwyen(r) At v).

The Steiner Tree Problem is one of the fundamental and most important
network design problems with applications ranging from transportation net-
works, energy supply and broadcast problems to VLSI design and Internet
Routing.

In his seminal paper [Kar72|, Richard Karp has shown NP-Hardness of
the Steiner Tree Problem. Hence there is little hope for polynomial time
algorithms solving the STP to optimality. One is therefore interested in
efficient approximation algorithms.
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A simple Minimum Spanning Tree heuristic already gives a 2-approximation

[TM80]. Within the last two decades, substantial improvements upon this
were made, yielding better and better approximation ratios for the Steiner
Tree Problem. We only mention some of the most important results. The
first polynomial-time algorithm with approximation ratio strictly less then 2
was proposed by Zelikovsky [Zel93], achieving an 11/6-approximation based
on a greedy approach. Berman and Ramaiyer [BR94] achieve an approx-
imation of 4 ~ 1.78. Karpinski and Zelikovsky [KZ97a| combine these
methods with a sophisticated preprocessing approach, obtaining an approx-
imation ratio of & 1.644. By iterating the algorithm from [KZ97a|, Hougardy
and Promel [HP99] obtain an approximation ratio of 1.598. The currently
best known Steiner Tree approximation algorithm is due to Robins and Ze-
likovsky [RZ00| and achieves a ratio of 1 + @ ~ 1.55.

Several special cases of the Steiner Tree Problem have been considered
in the literature. We only mention three of them. Arora [Aro98] gives a
polynomial time approximation scheme (PTAS) for geometric instances in
fixed dimension. Karpinski and Zelikovsky [KZ97b| give a PTAS for the
e-Dense Steiner Tree Problem. Their method was subsequently used by the
author [Hau04, Hau07] to obtain polynomial time approximation schemes
for dense versions of the Price Collecting Steiner Tree Problem, k-Steiner
Tree and Group Steiner Tree Problem.

The (1,2)-Steiner Tree Problem is defined as the Steiner Tree Problem re-
stricted to the case of (1,2)-metrics, i.e. metrics of the form d: V' — {0, 1, 2}.
This problem was first considered by Bern and Plassmann [BP89] who
proved MAX SNP-hardness and constructed a 4/3-approximation algorithm.
The currently best-known polynomial-time approximation algorithm for the
(1,2)-Steiner Tree Problem is due to Robins and Zelikovsky [RZ00] and
achieves an approximation ratio of ~ 1.28.

Approximation Hardness. The NP-hardness result for the Steiner Tree
Problem by Karp [Kar72| was based on a polynomial-time reduction from
the Satisfiability Problem (SAT) (cf. section 2). This reduction also works
for the (1, 2)-Steiner Tree Problem (Corollary 2.1). It turns out that Karp’s
construction also gives an L-reduction from Max-B-Occ-Max-3SAT to the
Steiner Tree Problem and hence implies APX-hardness of the STP. Here
Max-B-Occ-Max-3SAT denotes the restricted version of Max-3SAT where
each variable occurs at most B times in the formula.

Bern and Plassmann [BP89| proved that for each B, there is an L-
reduction from Vertex Cover Problem in graphs of maximum degree B to
the (1,2)-Steiner Tree Problem.

First explicit lower bounds for the approximability of the STP could be



obtained by combining these results with hardness results of Berman and
Karpinski [BK98a, BK98b, BK03| (cf. sections 2 and 3).

In 2001 Thimm |[ThiO1] announced a hardness result for the Steiner Tree
Problem which was based on starting directly from Hastad’s result [Has97],
yielding a lower bound of 1.00617. However, this result was subsequently
corrected and improved by Chlebik and Chlebikova [CC02|. They proved
that the Steiner Tree Problem is NP-hard to approximate within 1.01063.
The techniques of Chlebik and Chlebikova are based on gadget constructions
involving edge-weighted graphs. Currently this approach does not seem to
be applicable to the (1,2)-Steiner Tree Problem.

In this paper we concentrate on the (1,2)-Steiner Tree Problem which
is defined as the Steiner Tree Problem restricted to metric spaces with the
only distances being 0, 1 or 2, and which will be denoted as (1,2)-STP. To
our knowledge, the currently best known lower bound for approximability
of the (1,2)-STP is 1.0026, by combining the L-reduction from the Bounded
Degree Vertex Cover Problem due to Bern and Plassman [BP89] with the
hardness results from Berman and Karpinski [BK98b].

The rest of the paper is organized as follows: In section 2 we describe
the NP-hardness proof (in the exact setting) given by Karp [Kar72] and the
extension of this result to an L-reduction from the Max-B-Occ-Max-35AT
to the (1,2)-Steiner Tree Problem. Combined with the hardness results of
Berman and Karpinski [BK98b, BK03] this gives a lower bound of ~ 1.0014
for the approximability of the (1,2)-Steiner Tree Problem (Corollary 2.2).

In section 3 we describe the Bern-Plassmann result [BP89] which gives
an L-reduction from the Bounded Degree Vertex Cover Problem to the (1,2)-
STP. Combined with hardness results for the Bounded Degree vertex Cover
Problem in [BKO03|, this gives a lower bound of ~ 1.0026.

2 First Hardness Result:
Reduction from Max-SAT

The decision version of the Steiner Tree problem was already proved being
N P-complete by Karp [Kar72], using the following reduction from the Sat-
isfiability Problem (SAT): Given a boolean formula in conjunctive normal
form ¢ = C1A...ACy, with clauses 1, . .., (), and variables 1, ..., Z,, one
constructs a graph G = G, = (V, I/) and a terminal set S C V as follows:
For each clause C}, S contains a terminal ¢;, for each variable z; there exists
a three-vertex path P, = v;0 — v; — v;,1 with v; being a terminal as well,
furthermore there is an additional vertex w. We connect all vertices v; 0, v;1



to u by one edge, furthermore we take all edges {v;q,t;} such that literal
¢ (a € {0,1}) occurs in clause C;. The construction is shown in figure 1,
where terminals are drawn black and other vertices white.
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If ¢ is satisfiable, then there exists a Steiner Tree for S in G of length 2m,
otherwise every Steiner Tree has length at least 2m 4 2. This establishes
NP-hardness of the STP. Furthermore, essentially the same construction
works for the (1,2)-STP: In the above construction, let all vertices being
connected by an edge have length 1 and all other distances be 2. Hence we
obtain:

Corollary 2.1. The Steiner Tree Problem is NP-hard even for (1,2)-metric
instances.

This construction can also be used to obtain an L-reduction from the
problem Max-3-OCC-MAX-3SAT to the Steiner Tree problem, which then
gives an esplicit approximation lower bound.

Theorem 2.1. The construction of Karp as described above yields an L-
reduction

Max-3-OCC-MAX-3SAT <; Steiner Tree Problem

with parameters a = 15 and 3 = 1.

Proof: Consider an instance ¢ = Cy A ... A (), of Max-3-OCC-MAX-
3SAT with clauses C',...,C,, and variables x1,...,2,. Given an assign-
ment 3: {z1,..,2,} — {0,1}, let the tree T3 in G, consist of all edges
{4, Y5 8(2) }r {Vi,B(as), Vi), for each satisfied clause C; an edge connecting it
to the vertex corresponding to a satisfying true literal and for each unsatis-
fied clause a path of length 2 connecting it to u. Then Tj is a Steiner Tree



for the terminal set S, = {t1,...,¢m,v1,..., 0y} in the graph G, of cost
o(Tg) =2n +2m—|{j € {1,...,m} : B(C;) = 1}|.

On the other hand, let T be an arbitrary Steiner Tree for the terminal set
S, in G. We call such tree a normal form tree if it satisfies the following
conditions:

1. Each clause vertex t; has degree 1.

2. Bach variable vertex v; is connected to exactly one of the vertices
V4,05 Vi,1-

3. If {v;,v; ;} is an edge of T, then {v; ;, u} is an edge of T as well.

In polynomial time each tree T can be transformed into a normal form tree
T’ such that ¢(T") < ¢(T). Hence we may assume T to be in normal form.
We will now construct an assignment Br as follows:

0 if only {vi,vip} is an edge of T'
Br(zi) =< 1 if only {vi,v;1} is an edge of T'
a if both {v;,vio}, {vi,vi1} are edges of T'
where o € {0,1} is such that 2% occures more often than x;~* in ¢. If
we start from MAX-SAT, we have 7 < opt < m. For Max-3-OCC-MAX-
3SAT we obtain n/3 < m < n and therefore smt = 2n + 2m — opt(f) <
8m — opt(f) < 160pt — opt = 150pt, which establishes o = 15. For a clause
C, let Br(C) denote the truth value assigned to C by Gr. We observe that

[e%

opt(f) — {C clause:Br(C) =1} < m— (2(n+m) —c(T))
= o(T)—(2n+m) < c(T) — opt(Gy, Sy)

which directly implies 8 = 1, thus completing the proof. |
This result will now be combined with existing lower bound results for the
approximability of Max-30CC-MAX-3SAT in order to derive esplicit lower
bounds for the Steiner Tree Problem.

We consider first the following hardness result for the problem Max-FE3-
Lin-2 obtained by Hastad [Has97]. Max-E3-Lin-2 is the following problem:
gven a system of linear equations modulo 2 with exactly 3 variables per
equation, find an assignment such as to maximize the number of satisfied
equations.



Theorem 2.2. (Hastad 1997 [Has97]) For every ¢ € (0,1/4) and suffi-
ciently large integer k > k(¢) the following problem is NP-hard: Given an in-
stance of Max-E3-Lin-2 consisting of n equations with exactly 2k occurrences
of each variable, decide if at least (1 — €)n or at most (1/2 + €)n equations
are satisfied by the optimum assignment. FEquivalently: For E3-Lin-2 with 2n
equations and n variables it is NP-hard to decide if MaxLin(f) < (1 +€)n
or MaxLin(f) > (2 — ¢)n.

Let BOCC-FEk-Lin-2 denote the special case of Max-FE3-Lin-2 where each
equation contains precisely k variables and each variable occurs at most B
times. Berman and Karpinski obtained esplicit hardness results for the
problem 30CC-E2-Lin-2:

Theorem 2.3. (Berman, Karpinski 1998 [BK98b]) [t is NP-hard for
instances of 30CC-E2-Lin2 with 336n equations to decide whether opt <
(331 + €)n or opt > (332 + ¢)n.

Berman and Karpinski further improved these bounds, obtaining the
following result.

Theorem 2.4. (Berman, Karpinski 2003 [BKO03]) [t is NP-hard to

approzimate E3-OCC-E2-Lin-2 within % — €.

In order to combine these results such as to achieve lower bounds for the
STP, we use a simple reduction from 30CC-E2-Lin-2 to 120CC-E2-SAT by
replacing each linear equation x-+y = 0/1 by a set of 4 clauses. Starting from
the first result of Berman and Karpinski [BK98b], it is NP-hard for 30CC-
E2-Lin2 instances with 336n equations and n variables to decide whether
opt < (331+¢)n or opt > (332+¢)n. This yields 672n clauses and n variables
in the associated 120CC-E2-SAT instance, and using the above reduction
we obtain an instance of the Steiner Tree Problem with 4n+672n-2 = 1348-n
edges, (672+3)-n+1=675-n+1 nodes and 673-n+ 1 terminals, where the
cost of an optimum Steiner Tree is smt — 2n + (2' 4+ 1) -m — MazLin(f) —
2n+3-336-n — MaxLin(f) = 1010 - n — MaxLin(f). Here f denotes the
30CC-E2-Lin2 instance we start from.

Therefore it is NP-hard for instances of the Steiner Tree Problem with
1348 - n edges, 675- 1+ 1 nodes and 673 - n + 1 terminals to decide whether

smt < 1010-17—(332—¢)-n = (678+¢)-n or smt > 1010n— (331+¢)n =
(679 — ¢) - n. This gives the following hardness result for the Steiner Tree
Problem.

Corollary 2.2. It is NP-hard to approrimate the Steiner Tree Problem

within A.R.% — ¢ & 1.0014 — ¢. The same hardness result holds for the

(1,2)-Steiner Tree Problem.



3 Second Hardness Result: Reduction from
Bounded-Degree Vertex Cover

In this section we consider hardness results for the Steiner Tree Problem that
are based on reductions from the Bounded Degree Vertex Cover Problem.
Given a graph G = (V, E), a vertex cover of G is a subset C' C V of vertices
such that each edge e has at least one end-vertex in C' (in which case C is
said to covers e). For a given nonnegative integer B, the B-VC'is the Vertex
Cover Problem restricted to graphs of maximum degree at most B.

In 1989 Bern and Plassmann [BP89| constructed an L-reduction from the
Bounded Degree Vertex Cover Problem to the (1,2)-Steiner Tree Problem.
We will combine this reduction with esplicit lower bounds for the approx-
imability of the B-VC due to Berman and Karpinski [BK98a, BK98b)|.

Let us first state the result of Bern and Plassmann.

Theorem 3.1. [BP89] For each nonnegative integer B, there is an L-
Reduction from the B-VC to the (1, 2)-Steiner Tree Problem with parameters
a=B/2,5=1.

Proof: Given a graph G = (V, F) with vertex degree bounded by B, an
instance of the Steiner Tree Problem is constructed consisting of a graph
H = (Vg, Fy) and terminal set S C Vp as follows: For each edge e of G
we introduce a vertex v., furthermore for each vertex u of G a vertex wv,,
hence Vi = {vele € E}U{vy|u € V}. For each u € e € F we let {vy, ve} be
an edge of H, furthermore we add all the edges {vy, vy} for u,w € V. The
terminal set is defined as S := {v.|e € F}.

Let us analyze the construction: First, let /' C V be a vertex cover for
the graph GG. We can construct a Steiner Tree Ty by taking {v,|u € U} as
the set of Steiner Points, connecting each edge vertex v. to a node v, such
that © € U covers edge e and adding the edges of a spanning tree of length
|U| —1 for the set {vy|u € U}. The cost of the tree Ty equals the number of
its edges, which is |E| + |U| — 1. Hence we obtain the following lower bound
for the cost of an optimum Steiner tree: smt(G',FE) = |F| + |[VC]| — 1.
Furthermore, if T' is an arbitrary Steiner Tree with |E(T)| — 1 edges, we
may assume that each edge of G has degree 1 in T (if the degree is 2,
the neighbors are u,v and e = {u, v}, so we can replace one of the edges
{e,u},{e,v} by {u,v}). Then the Steiner nodes of T define a cover Ur in
G of size |Ur| = smt(G', E) — |E| — 1. If G has maximum degree Ag = B
then || < B/2[V|, and the size of an optimum vertex cover VCjpt can be
bounded as follows: [VCopi| < |E| < (B/2)-|V]. This implies opt(G’, F) <



(B/2)|VI+[VCopi| =1 < (B/2)-|V[+(B/2)-|[V|-1 = B:-|V|-1 < B-opt(G).
Furthermore if T is a Steiner tree then ||Ur| — opt(G)| = |e(T) — |E] — 1 —
(smt — |E| — 1) = ¢(T) — smt. Hence we obtain an L-reduction from the
B-VC to the Steiner Tree Problem:

B-VC <, STP with parameters a = B/2, 5 = 1.

O
Berman and Karpinski [BK98a, BK98b| obtained the following hardness
results for bounded-degree versions of the Vertex Cover Problem.

Theorem 3.2. (Berman, Karpinski 1998 [BK98a, BK98b])
The Vertex Cover Problem is NP-hard to approximate within % —e¢ in graphs
G with maximum degree A = 4 and within %—e in graphs G with A = 3.

More precisely, they proved the following: For ¢ € (0, 1/2) it is NP-hard
to decide whether an instance of the problem 3MIS (Maximum Independent
Set in graphs with maximum degree 3) with 284 - n nodes has maximum
independent set of size below (139 + €) - n or above (140 — ¢€) - n. Since
independent sets are complements of vertex covers, one obtains the following
equivalent formulation for the Vertex Cover Problem: It is NP-hard to decide
whether an instance of the problem 3V C with 284n nodes has a Minimum
Vertex Cover of size below (144 + €)n or above (145 — e)n.

For graphs with maximum degree As = 4 Berman and Karpinski obtain
the following result: For ¢ € (0,1/2) it is hard to decide whether an instance
of 4MIS with 152n nodes has a maximum independent set of size below
(73 + ¢)n or above (74 — €)n. Equivalently it is hard to decide whether the
minimum VC is of size below (78 + ¢)n or above (79 — ¢)n.

Combining these results with the Bern-Plassmann reduction, we obtain
the following: The Berman-Karpinski graph for 3MIS has at most 3-284-n/
2 = 432 - n edges, therefore it is NP-hard to decide for the (1,2)-Steiner
Tree Problem whether smt < 432n + (144 + e)n — 1 = (576 + ¢)n — 1 or

smt > 432n + (145 — e)n — 1 = (577 — ¢)n — 1. Therefore the (1,2)-Steiner
Tree Problem is NP-hard to approximate with approximation ratio 577/
576 — e ~ 1.0013 — e.

The graph for 4MIS has at most 4 - 152n/2 = 304n edges, therefore it is
NP-hard to decide whether smt < 304-n+ (78 +¢)-n—1=(382+¢)-n—1
or smt>304-n+(79—¢)-n—1=(383 —¢) -n — 1. Therefore the (1,2)-
Steiner Tree Problem is NP-hard to approximate with approximation ratio

383 — ¢~ 1.0026 — c.



Corollary 3.1. [t is NP-hard to approximate the (1,2)-Steiner Tree Prob-
lem within A.R. 383 — ¢ ~ 1.0026 — €.
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