
Approximation Hardness of the(1; 2)- Steiner Tree ProblemMathias Hauptmann�Abstra
tWe give a survey on the approximation hardness of the Steiner TreeProblem. While for the general metri
 
ase, Chlebik and Chlebikova[CC02℄ prove a lower bound of � 1:01, this result does not seem toapply to bounded metri
s. We show that 
ombining an L-redu
tionfrom the Bounded Degree Vertex Cover Problem to the (1,2)-SteinerTree Problem due to Bern and Plassmann [BP89℄ with approximationhardness results of Berman and Karpinski [BK03℄, one obtains the
urrently best known lower bound of � 1:0026 for the approximabilityof the (1,2)-Steiner Tree Problem.1 Introdu
tionGiven a graph G = (V;E), a 
ost fun
tion 
 : E ! R+ and a subset S � Vof the verti
es of G, a Steiner Tree T for S in G is a subtree of G that allverti
es from S. The elements of S are 
alled terminals. The Steiner TreeProblem (STP) is: Given G; 
 and S as above, �nd a Steiner Tree T for Sin G of minimum 
ost 
(T ) =Pe2E(T ) 
(e).The Steiner Tree Problem is equivalent to the Metri
 Steiner Tree Prob-lem: Given a �nite metri
 spa
e (V; d) and a set of terminals S � V , �nda tree T = (VT ; ET) with S � VT � V su
h as to minimize d(T ) :=Pe=fu;vg2E(T ) d(u; v).The Steiner Tree Problem is one of the fundamental and most importantnetwork design problems with appli
ations ranging from transportation net-works, energy supply and broad
ast problems to VLSI design and InternetRouting.In his seminal paper [Kar72℄, Ri
hard Karp has shown NP-Hardness ofthe Steiner Tree Problem. Hen
e there is little hope for polynomial timealgorithms solving the STP to optimality. One is therefore interested ineÆ
ient approximation algorithms.�Dept. of Computer S
ien
e, University of Bonn. Email:hauptman�
s.uni-bonn.de1



A simple Minimum Spanning Tree heuristi
 already gives a 2-approximation[TM80℄. Within the last two de
ades, substantial improvements upon thiswere made, yielding better and better approximation ratios for the SteinerTree Problem. We only mention some of the most important results. The�rst polynomial-time algorithm with approximation ratio stri
tly less then 2was proposed by Zelikovsky [Zel93℄, a
hieving an 11/6-approximation basedon a greedy approa
h. Berman and Ramaiyer [BR94℄ a
hieve an approx-imation of 169 � 1:78. Karpinski and Zelikovsky [KZ97a℄ 
ombine thesemethods with a sophisti
ated prepro
essing approa
h, obtaining an approx-imation ratio of� 1:644. By iterating the algorithm from [KZ97a℄, Hougardyand Pr�omel [HP99℄ obtain an approximation ratio of 1:598. The 
urrentlybest known Steiner Tree approximation algorithm is due to Robins and Ze-likovsky [RZ00℄ and a
hieves a ratio of 1 + ln(3)2 � 1:55.Several spe
ial 
ases of the Steiner Tree Problem have been 
onsideredin the literature. We only mention three of them. Arora [Aro98℄ gives apolynomial time approximation s
heme (PTAS) for geometri
 instan
es in�xed dimension. Karpinski and Zelikovsky [KZ97b℄ give a PTAS for the�-Dense Steiner Tree Problem. Their method was subsequently used by theauthor [Hau04, Hau07℄ to obtain polynomial time approximation s
hemesfor dense versions of the Pri
e Colle
ting Steiner Tree Problem, k-SteinerTree and Group Steiner Tree Problem.The (1,2)-Steiner Tree Problem is de�ned as the Steiner Tree Problem re-stri
ted to the 
ase of (1,2)-metri
s, i.e. metri
s of the form d : V ! f0; 1; 2g.This problem was �rst 
onsidered by Bern and Plassmann [BP89℄ whoproved MAX SNP-hardness and 
onstru
ted a 4=3-approximation algorithm.The 
urrently best-known polynomial-time approximation algorithm for the(1,2)-Steiner Tree Problem is due to Robins and Zelikovsky [RZ00℄ anda
hieves an approximation ratio of � 1:28.Approximation Hardness. The NP-hardness result for the Steiner TreeProblem by Karp [Kar72℄ was based on a polynomial-time redu
tion fromthe Satis�ability Problem (SAT) (
f. se
tion 2). This redu
tion also worksfor the (1; 2)-Steiner Tree Problem (Corollary 2.1). It turns out that Karp's
onstru
tion also gives an L-redu
tion from Max-B-O

-Max-3SAT to theSteiner Tree Problem and hen
e implies APX-hardness of the STP. HereMax-B-O

-Max-3SAT denotes the restri
ted version of Max-3SAT whereea
h variable o

urs at most B times in the formula.Bern and Plassmann [BP89℄ proved that for ea
h B, there is an L-redu
tion from Vertex Cover Problem in graphs of maximum degree B tothe (1,2)-Steiner Tree Problem.First expli
it lower bounds for the approximability of the STP 
ould be2



obtained by 
ombining these results with hardness results of Berman andKarpinski [BK98a, BK98b, BK03℄ (
f. se
tions 2 and 3).In 2001 Thimm [Thi01℄ announ
ed a hardness result for the Steiner TreeProblem whi
h was based on starting dire
tly from Hastad's result [Has97℄,yielding a lower bound of 1:00617. However, this result was subsequently
orre
ted and improved by Chlebik and Chlebikova [CC02℄. They provedthat the Steiner Tree Problem is NP-hard to approximate within 1:01063.The te
hniques of Chlebik and Chlebikova are based on gadget 
onstru
tionsinvolving edge-weighted graphs. Currently this approa
h does not seem tobe appli
able to the (1,2)-Steiner Tree Problem.In this paper we 
on
entrate on the (1,2)-Steiner Tree Problem whi
his de�ned as the Steiner Tree Problem restri
ted to metri
 spa
es with theonly distan
es being 0; 1 or 2, and whi
h will be denoted as (1; 2)-STP. Toour knowledge, the 
urrently best known lower bound for approximabilityof the (1; 2)-STP is 1:0026, by 
ombining the L-redu
tion from the BoundedDegree Vertex Cover Problem due to Bern and Plassman [BP89℄ with thehardness results from Berman and Karpinski [BK98b℄.The rest of the paper is organized as follows: In se
tion 2 we des
ribethe NP-hardness proof (in the exa
t setting) given by Karp [Kar72℄ and theextension of this result to an L-redu
tion from the Max-B-O

-Max-3SATto the (1,2)-Steiner Tree Problem. Combined with the hardness results ofBerman and Karpinski [BK98b, BK03℄ this gives a lower bound of � 1:0014for the approximability of the (1,2)-Steiner Tree Problem (Corollary 2.2).In se
tion 3 we des
ribe the Bern-Plassmann result [BP89℄ whi
h givesan L-redu
tion from the Bounded Degree Vertex Cover Problem to the (1,2)-STP. Combined with hardness results for the Bounded Degree vertex CoverProblem in [BK03℄, this gives a lower bound of � 1:0026.2 First Hardness Result:Redu
tion from Max-SATThe de
ision version of the Steiner Tree problem was already proved beingNP -
omplete by Karp [Kar72℄, using the following redu
tion from the Sat-is�ability Problem (SAT): Given a boolean formula in 
onjun
tive normalform ' = C1^ : : :^Cm with 
lauses C1; : : : ; Cm and variables x1; : : : ; xn, one
onstru
ts a graph G = G' = (V;E) and a terminal set S � V as follows:For ea
h 
lause Cj , S 
ontains a terminal tj , for ea
h variable xi there existsa three-vertex path Pi = vi;0 � vi � vi;1 with vi being a terminal as well,furthermore there is an additional vertex u. We 
onne
t all verti
es vi;0; vi;13



to u by one edge, furthermore we take all edges fvi;�; tjg su
h that literalx�i (� 2 f0; 1g) o

urs in 
lause Cj . The 
onstru
tion is shown in �gure 1,where terminals are drawn bla
k and other verti
es white.Figure 1:
Clauses

C_1           C_2     ...                               ... C_m

Variables

extra node

x_1 x_n
0 1 0 1 0 1If ' is satis�able, then there exists a Steiner Tree for S in G of length 2m,otherwise every Steiner Tree has length at least 2m + 2. This establishesNP-hardness of the STP. Furthermore, essentially the same 
onstru
tionworks for the (1; 2)-STP: In the above 
onstru
tion, let all verti
es being
onne
ted by an edge have length 1 and all other distan
es be 2. Hen
e weobtain:Corollary 2.1. The Steiner Tree Problem is NP-hard even for (1; 2)-metri
instan
es.This 
onstru
tion 
an also be used to obtain an L-redu
tion from theproblem Max-3-OCC-MAX-3SAT to the Steiner Tree problem, whi
h thengives an espli
it approximation lower bound.Theorem 2.1. The 
onstru
tion of Karp as des
ribed above yields an L-redu
tion Max-3-OCC-MAX-3SAT �L Steiner Tree Problemwith parameters � = 15 and � = 1.Proof: Consider an instan
e ' = C1 ^ : : : ^ Cm of Max-3-OCC-MAX-3SAT with 
lauses C1; : : : ; Cm and variables x1; : : : ; xn. Given an assign-ment � : fx1; ::; xng ! f0; 1g, let the tree T� in G' 
onsist of all edgesfu; vi;�(xi)g; fvi;�(xi); vig, for ea
h satis�ed 
lause Cj an edge 
onne
ting itto the vertex 
orresponding to a satisfying true literal and for ea
h unsatis-�ed 
lause a path of length 2 
onne
ting it to u. Then T� is a Steiner Tree4



for the terminal set S' = ft1; : : : ; tm; v1; : : : ; vng in the graph G' of 
ost
(T�) = 2n+ 2m� jfj 2 f1; : : : ; mg : �(Cj) = 1gj:On the other hand, let T be an arbitrary Steiner Tree for the terminal setS' in G. We 
all su
h tree a normal form tree if it satis�es the following
onditions:1. Ea
h 
lause vertex tj has degree 1.2. Ea
h variable vertex vi is 
onne
ted to exa
tly one of the verti
esvi;0; vi;1.3. If fvi; vi;jg is an edge of T , then fvi;j; ug is an edge of T as well.In polynomial time ea
h tree T 
an be transformed into a normal form treeT 0 su
h that 
(T 0) � 
(T ). Hen
e we may assume T to be in normal form.We will now 
onstru
t an assignment �T as follows:�T (xi) = 8<: 0 if only fvi; vi;0g is an edge of T1 if only fvi; vi;1g is an edge of T� if both fvi; vi;0g; fvi; vi;1g are edges of Twhere � 2 f0; 1g is su
h that x�i o

ures more often than x1��i in '. Ifwe start from MAX-SAT, we have m2 � opt � m. For Max-3-OCC-MAX-3SAT we obtain n=3 � m � n and therefore smt = 2n + 2m � opt(f) �8m� opt(f) � 16opt� opt = 15opt, whi
h establishes � = 15. For a 
lauseC, let �T (C) denote the truth value assigned to C by �T . We observe thatopt(f)� jfC 
lause:�T (C) = 1gj � m� �2(n+m)� 
(T )�= 
(T )� (2n+m) � 
(T )� opt(Gf ; Sf)whi
h dire
tly implies � = 1, thus 
ompleting the proof. 2This result will now be 
ombined with existing lower bound results for theapproximability of Max-3OCC-MAX-3SAT in order to derive espli
it lowerbounds for the Steiner Tree Problem.We 
onsider �rst the following hardness result for the problem Max-E3-Lin-2 obtained by Hastad [Has97℄. Max-E3-Lin-2 is the following problem:gven a system of linear equations modulo 2 with exa
tly 3 variables perequation, �nd an assignment su
h as to maximize the number of satis�edequations. 5



Theorem 2.2. (Hastad 1997 [Has97℄) For every � 2 (0; 1=4) and suÆ-
iently large integer k � k(�) the following problem is NP-hard: Given an in-stan
e of Max-E3-Lin-2 
onsisting of n equations with exa
tly 2k o

urren
esof ea
h variable, de
ide if at least (1� �)n or at most (1=2 + �)n equationsare satis�ed by the optimum assignment. Equivalently: For E3-Lin-2 with 2nequations and n variables it is NP-hard to de
ide if MaxLin(f) � (1 + �)nor MaxLin(f) � (2� �)n.Let BOCC-Ek-Lin-2 denote the spe
ial 
ase ofMax-E3-Lin-2 where ea
hequation 
ontains pre
isely k variables and ea
h variable o

urs at most Btimes. Berman and Karpinski obtained espli
it hardness results for theproblem 3OCC-E2-Lin-2:Theorem 2.3. (Berman, Karpinski 1998 [BK98b℄) It is NP-hard forinstan
es of 3OCC-E2-Lin2 with 336n equations to de
ide whether opt �(331 + �)n or opt � (332 + �)n.Berman and Karpinski further improved these bounds, obtaining thefollowing result.Theorem 2.4. (Berman, Karpinski 2003 [BK03℄) It is NP-hard toapproximate E3-OCC-E2-Lin-2 within 112111 � �.In order to 
ombine these results su
h as to a
hieve lower bounds for theSTP, we use a simple redu
tion from 3OCC-E2-Lin-2 to 12OCC-E2-SAT byrepla
ing ea
h linear equation x+y = 0=1 by a set of 4 
lauses. Starting fromthe �rst result of Berman and Karpinski [BK98b℄, it is NP-hard for 3OCC-E2-Lin2 instan
es with 336n equations and n variables to de
ide whetheropt � (331+�)n or opt � (332+�)n. This yields 672n 
lauses and n variablesin the asso
iated 12OCC-E2-SAT instan
e, and using the above redu
tionwe obtain an instan
e of the Steiner Tree Problem with 4n+672n�2 = 1348�nedges, (672+3) �n+1 = 675 �n+1 nodes and 673 �n+1 terminals, where the
ost of an optimum Steiner Tree is smt = 2n+(21+1) �m�MaxLin(f) =2n+ 3 � 336 � n�MaxLin(f) = 1010 � n�MaxLin(f). Here f denotes the3OCC-E2-Lin2 instan
e we start from.Therefore it is NP-hard for instan
es of the Steiner Tree Problem with1348 �n edges, 675 �n+ 1 nodes and 673 � n+ 1 terminals to de
ide whethersmt � 1010 �n� (332� �) �n = (678+ �) �n or smt � 1010n� (331+ �)n =(679 � �) � n. This gives the following hardness result for the Steiner TreeProblem.Corollary 2.2. It is NP-hard to approximate the Steiner Tree Problemwithin A:R:679678 � � � 1:0014 � �. The same hardness result holds for the(1,2)-Steiner Tree Problem. 6



3 Se
ond Hardness Result: Redu
tion fromBounded-Degree Vertex CoverIn this se
tion we 
onsider hardness results for the Steiner Tree Problem thatare based on redu
tions from the Bounded Degree Vertex Cover Problem.Given a graph G = (V;E), a vertex 
over of G is a subset C � V of verti
essu
h that ea
h edge e has at least one end-vertex in C (in whi
h 
ase C issaid to 
overs e). For a given nonnegative integer B, the B-VC is the VertexCover Problem restri
ted to graphs of maximum degree at most B.In 1989 Bern and Plassmann [BP89℄ 
onstru
ted an L-redu
tion from theBounded Degree Vertex Cover Problem to the (1; 2)-Steiner Tree Problem.We will 
ombine this redu
tion with espli
it lower bounds for the approx-imability of the B-VC due to Berman and Karpinski [BK98a, BK98b℄.Let us �rst state the result of Bern and Plassmann.Theorem 3.1. [BP89℄ For ea
h nonnegative integer B, there is an L-Redu
tion from the B-VC to the (1; 2)-Steiner Tree Problem with parameters� = B=2; � = 1.Proof: Given a graph G = (V;E) with vertex degree bounded by B, aninstan
e of the Steiner Tree Problem is 
onstru
ted 
onsisting of a graphH = (VH ; EH) and terminal set S � VH as follows: For ea
h edge e of Gwe introdu
e a vertex ve, furthermore for ea
h vertex u of G a vertex vu,hen
e VH = fveje 2 Eg [ fvuju 2 V g. For ea
h u 2 e 2 E we let fvu; veg bean edge of H , furthermore we add all the edges fvu; vwg for u; w 2 V . Theterminal set is de�ned as S := fveje 2 Eg.Let us analyze the 
onstru
tion: First, let U � V be a vertex 
over forthe graph G. We 
an 
onstru
t a Steiner Tree TU by taking fvuju 2 Ug asthe set of Steiner Points, 
onne
ting ea
h edge vertex ve to a node vu su
hthat u 2 U 
overs edge e and adding the edges of a spanning tree of lengthjU j� 1 for the set fvuju 2 Ug. The 
ost of the tree TU equals the number ofits edges, whi
h is jEj+ jU j� 1. Hen
e we obtain the following lower boundfor the 
ost of an optimum Steiner tree: smt(G0; E) = jEj + jVCj � 1.Furthermore, if T is an arbitrary Steiner Tree with jE(T )j � 1 edges, wemay assume that ea
h edge of G has degree 1 in T (if the degree is 2,the neighbors are u; v and e = fu; vg, so we 
an repla
e one of the edgesfe; ug; fe; vg by fu; vg). Then the Steiner nodes of T de�ne a 
over UT inG of size jUT j = smt(G0; E)� jEj � 1. If G has maximum degree �G = Bthen jEj � B=2 jV j, and the size of an optimum vertex 
over V Copt 
an bebounded as follows: jV Coptj � jEj � (B=2) � jV j. This implies opt(G0; E)�7



(B=2)�jV j+jVCoptj�1 � (B=2)�jV j+(B=2)�jV j�1 = B�jV j�1 � B�opt(G).Furthermore if T is a Steiner tree then ��jUT j � opt(G)�� = ��
(T )� jEj � 1�( smt � jEj � 1) = 
(T )� smt. Hen
e we obtain an L-redu
tion from theB-VC to the Steiner Tree Problem:B-VC �L STP with parameters � = B=2; � = 1. 2Berman and Karpinski [BK98a, BK98b℄ obtained the following hardnessresults for bounded-degree versions of the Vertex Cover Problem.Theorem 3.2. (Berman, Karpinski 1998 [BK98a, BK98b℄)The Vertex Cover Problem is NP-hard to approximate within 7978�� in graphsG with maximum degree�G = 4 and within 145144�� in graphs G with �G = 3.More pre
isely, they proved the following: For � 2 (0; 1=2) it is NP-hardto de
ide whether an instan
e of the problem 3MIS (Maximum IndependentSet in graphs with maximum degree 3) with 284 � n nodes has maximumindependent set of size below (139 + �) � n or above (140 � �) � n. Sin
eindependent sets are 
omplements of vertex 
overs, one obtains the followingequivalent formulation for the Vertex Cover Problem: It is NP-hard to de
idewhether an instan
e of the problem 3VC with 284n nodes has a MinimumVertex Cover of size below (144 + �)n or above (145� �)n.For graphs with maximum degree �G = 4 Berman and Karpinski obtainthe following result: For � 2 (0; 1=2) it is hard to de
ide whether an instan
eof 4MIS with 152n nodes has a maximum independent set of size below(73 + �)n or above (74� �)n. Equivalently it is hard to de
ide whether theminimum VC is of size below (78 + �)n or above (79� �)n.Combining these results with the Bern-Plassmann redu
tion, we obtainthe following: The Berman-Karpinski graph for 3MIS has at most 3 �284 �n=2 = 432 � n edges, therefore it is NP-hard to de
ide for the (1,2)-SteinerTree Problem whether smt � 432n + (144 + �)n � 1 = (576 + �)n � 1 orsmt � 432n+ (145� �)n� 1 = (577� �)n� 1. Therefore the (1,2)-SteinerTree Problem is NP-hard to approximate with approximation ratio 577=576� � � 1:0013� �.The graph for 4MIS has at most 4 � 152n=2 = 304n edges, therefore it isNP-hard to de
ide whether smt � 304 �n+(78+ �) �n� 1 = (382+ �) �n� 1or smt � 304 � n+ (79� �) � n � 1 = (383� �) � n � 1. Therefore the (1,2)-Steiner Tree Problem is NP-hard to approximate with approximation ratio383382 � � � 1:0026� �. 8
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