
Tensor Decomposition and Approximation

Schemes for Constraint Satisfaction Problems ∗

W. Fernandez de la Vega † Ravi Kannan ‡

Marek Karpinski § Santosh Vempala ¶

Abstract

The only general class of MAX-rCSP problems for which Polyno-
mial Time Approximation Schemes (PTAS) are known are the dense

problems. In this paper, we give PTAS’s for a much larger class of
weighted MAX-rCSP problems which includes as special cases the

dense problems and, for r = 2, all metric instances (where the weights
satisfy the triangle inequality) and quasimetric instances; for r > 2,

our class includes a generalization of metrics. Our algorithms are
based on low-rank approximations with two novel features: (1) a
method of approximating a tensor by the sum of a small number of

“rank-1” tensors, akin to the traditional Singular Value Decomposi-
tion (this might be of independent interest) and (2) a natural and sim-

ple way of scaling the weights. Besides MAX-rCSP problems, we also
give PTAS’s for problems with a constant number of global constraints

such as maximum weighted graph bisection and some generalizations.

∗To appear in Proc. 37th ACM STOC (2005).
†LRI, Université Paris-Sud, Orsay, Paris. Supported in part by PROCOPE Project

and by IST Grant 1496 (RAND-APX). Email lalo@lri.lri.fr
‡Computer Science, Yale, New Haven, CT 06520. Supported in part by NSF Grant

CCR-9820850. Email kannan@cs.yale.edu
§Dept. of Computer Science, University of Bonn. Supported in part by DFG

Grants, Max-Planck Research Prize, and by IST Grant 14036 (RAND-APX). Email
marek@cs.uni-bonn.de

¶Mathematics, MIT, Cambridge, MA 02139. Supported by NSF award CCR-0307536
and a Sloan foundation fellowship. Email vempala@math.mit.edu

1

1 Introduction

The singular value decomposition is a useful tool in the design of efficient
algorithms for a variety of problems (e.g., [FKV04, Mc01]). In this paper,
motivated by boolean constraint satisfaction problems (CSP’s) with r vari-
ables per constraint, we propose an extension of low-rank approximation
to tensors, i.e., r-dimensional real arrays. We give an efficient algorithm
for finding such an approximation and apply it to weighted MAX-rCSP,
i.e., the problem of finding a boolean assignment that maximizes the to-
tal weight of satisfied constraints. As a consequence, for any MAX-rCSP
that satisfies a certain density condition, we obtain a polynomial-time ap-
proximation scheme. In the past, there has been much progress on special
cases; in particular, there are polynomial-time approximation schemes for
dense unweighted problems [AKK95, F96, FK96, GGR96, FK00, AFKK02],
and several cases of MAX-2CSP with metric weights including maxcut and
partitioning [FK98, I99, FKKR03, FKK04]. We will show that our density
condition captures all known special cases for which PTAS’s exist as well as
the metric MAX-2CSP (for which no PTAS was known before) and some
natural generalizations.

A MAX-rCSP problem can be formulated as a problem of maximizing a
homogeneous degree r polynomial in the variables x1, x2, . . . xn, (1−x1), (1−
x2), . . . (1 − xn) (see e.g. [AFKK02].) Let

S = {y = (x1, . . . xn, (1 − x1), . . . (1 − xn)) : xi ∈ {0, 1}}

be the solution set. Then the problem is

Maxy∈S

2n
∑

i1,i2,...ir=1

Ai1,i2,...iryi1yi2 . . . yir .

where A is a given nonnegative symmetric r-dimensional array i.e.,

Ai1,i2,...ir = Aiσ(1),iσ(2),...iσ(r)

for any permutation σ. The entries of the r-dimensional array A can be
viewed as the weights of an r-uniform hypergraph on 2n vertices. Through-
out, we assume that r is fixed.

Our main tool to solve this problem is a generalization of low-rank
matrix approximation. A rank-1 tensor is the outer product of r vectors

2

x(1), . . . x(r−1), x(r), given by the r-dimensional array whose (i1, . . . ir)’th en-

try is x
(1)
i1

x
(2)
i2

, . . . x
(r)
ir

; it is denoted x(1) ⊗ x(2) ⊗ . . . x(r). We will show the
following:

1. For any r-dimensional array A, there exists a good approximation by
the sum of a small number of rank-1 tensors.

2. We can algorithmically find such an approximation.

In the case of matrices, traditional Linear Algebra algorithms find good
approximations. Indeed, we can find the best approximations under both the
Frobenius and L2 norms using the Singular Value Decomposition. Unfortu-
nately, there is no such theory (or algorithm) for r-dimensional arrays when
r ≥ 2. Here, we will develop sampling-based algorithms for finding low-rank
approximations which serve our purpose. These claims are formalized in the
next lemma and theorem (see Section 3 for the definition of the generalized
norms).

Lemma 1. For any tensor A, and any ǫ > 0, there exist k ≤ 1/ǫ2 rank-1

tensors, B1, B2, . . .Bk such that

||A − (B1 + B2 + . . .Bk)||2 ≤ ǫ||A||F .

Theorem 2. For any tensor A, and any ǫ > 0, we can find k rank-1 ten-

sors B1, B2, . . .Bk, where k ≤ 4/ǫ2, in time (n/ǫ)O(1/ǫ4) such that with high

probability at least 3/4 we have

||A − (B1 + B2 + . . .Bk)||2 ≤ ǫ||A||F .

The proofs and the algorithm for low-rank tensor approximation are given
in Section 3. For r = 2, the running time is a fixed polynomial in n and
exponential only in ǫ.

Next, we give a density condition so that if a MAX-rCSP viewed as a
weighted r-uniform hypergraph satisfies this condition, then there is a PTAS
for the problem. This condition provides a unified framework for a large class
of weighted MAX-rCSP’s.

Define the node weights D1, . . . , Dn of A and their average as

Di =
∑

i2,i3,...ir∈V

Ai1,i2,...i D̄ =
1

2n

n
∑

i=1

Di.

Note that when r = 2 and A is the adjacency matrix of a graph, the Di are
the degrees of the vertices and D̄ is the average degree.

3

Definition 1. The core-strength of a weighted r-uniform hypergraph given

by an r-dimensional tensor A is

(

2n
∑

i=1

Di

)r−2
∑

i1,i2,...,ir

A2
i1,...,ir

∏r
j=1(Dij + D̄)

We say that a class of weighted hypergraphs (MAX-rCSP’s) is core-dense

if the core-strength is O(1) (i.e., independent of A, n).
To motivate the definition, first suppose the class consists of unweighted

hypergraphs. Then if a hypergraph in the class has E as the edge set with
m edges, the condition says that

mr−2
∑

(i1,...,ir)∈E

1
∏r

j=1(Dij + D̄)
= O(1). (1)

Note that here the Di’s are the degrees of the hypergraph vertices in the usual
sense of the number of edges incident to the vertex. It is easy to see this
condition is satisfied for dense hypergraphs, i.e., for r− uniform hypergraphs
with Ω(nr) edges, because in this case, D̄ ∈ Ω(nr−1).

The condition can be specialized to the case r = 2, where it says that

∑

i,j

A2
ij

(Di + D̄)(Dj + D̄)
= O(1). (2)

We will show that all metrics satisfy this condition. Also, so do quasimetrics.
These are weights that satisfy the triangle inequality up to a constant factor
(e.g., powers of a metric) and arise in clustering applications [FKKR03, SS73,
FK00]. So, as a special case of our main result, we get PTAS’s for metrics
and quasimetrics. (While PTAS’s were known for the dense case, they were
not known previously for the metric case.) Our main algorithmic result is
the following.

Theorem 3. There is a PTAS for any core-dense weighted MAX-rCSP.

The algorithm and proof are given in Section 4. We will also show (in
Section 5) that a generalization of the notion of metric for higher r also
satisfies our core-dense condition.

4

Theorem 4. Suppose for a MAX-rCSP, the tensor A satisfies the following

local density condition:

∀ i1, . . . , ir, Ai1,...,ir ≤
c

nr−1

r
∑

j=1

Dij

where c is a constant. Then there is a PTAS for the MAX-rCSP defined by

A.

The condition in the theorem says that no entry of A is “wild” in that it is
at most a constant times the average entry in the r “planes” passing through
the entry. The reason for calling such tensors “metric tensors” will become
clear when we show in Section 5 that for r = 2, metrics do indeed satisfy
this condition. When the matrix A is the adjacency matrix of a graph, then
the condition says that for any edge, one of its end points must have degree
Ω(n). This is like the “everywhere” dense condition in [AKK95]. Theorem 4
has the following corollary for “quasi-metrics”, where the triangle inequality
is only satisfied within constant factors - Aik ≤ c(Aij + Ajk).

Corollary 5. There exists a PTAS for metric and quasimetric instances of

MAX-CSP.

2 The 2-dimensional case

In this section, we prove Theorem 3 in the case r = 2. This case already
contains the idea of scaling which we will use for the case of higher r. But,
as mentioned earlier, this case does not need special algorithms for finding
low-rank approximations - they are already available from Linear Algebra.

Recall that we want to find

Maxy∈SAijyiyj = yTAy,

where S = {y = (x1, x2, . . . xn, (1 − x1), (1 − x2), . . . (1 − xn)), xi ∈ {0, 1}}
is the solution set. We will describe in this section an algorithm to solve
this problem to within additive error O(ǫnD̄), under the assumption that
that the core-strength of A is at most a constant c. The algorithm will run
in time polynomial in n for each fixed ǫ > 0. Note that Maxy∈SyTAy ≥
E(yTAy) = 1

2
nD̄, where E denotes expectation over uniform random choice

of x ∈ {0, 1}n. Thus, this will prove Theorem (3) for this case (of r = 2).

5

The algorithm first scales the matrix A to get a matrix B given by :

B = D−1AD−1

where, D is the diagonal matrix with Dii =
√

Di + D̄. The scaling
Bij =

Aij√
Di

√
Dj

is very natural and has been used in other contexts (for

example when A is the transition matrix of a Markov Chain). This scaling
unfortunately scales up “small degree” nodes too much for our purpose and
so we use the modified scaling given here; we will see that while the addition
of D̄ does not increase the error in our approximation algorithms, it helps
by modulating the scaling up of low degree nodes. Clearly,

Claim 1. ||B||2F is the core-strength of the matrix A.

By carrying out the standard Singular Value Decomposition (SVD) of the
matrix B, we can find in polynomial-time, for any ǫ > 0, a matrix B̂ of rank
l ≤ 4/ǫ2 such that

||B − B̂||2 ≤
ǫ

2
||B||F .

In fact, as shown in [FKV04], such a matrix B̂ can be computed in linear in
n time with ǫ twice as large. We now let

Â = DB̂D.

Note that the rank of Â equals the rank of B̂. We then solve the following
problem approximately to within additive error O(ǫnD̄).

max
y∈S

yT Ây (3)

We will show how to do this approximate optimization presently. First,
we analyze the error caused by replacing A by Â :

Maxy∈S|yT(A − Â)y| = Maxy∈S|yTD(B − B̂)Dy|
≤ Maxy∈S|Dy|2||B − B̂||2
≤ ǫ

∑

i

(Di + D̄)||B||F

≤ 4ǫnD̄(core-strength of A)1/2,

6

the last because of Claim 1 and the fact that
∑

i Di = 2nD̄.
Now for solving the non-linear optimization problem (3), we proceed as

follows : suppose the SVD of B̂ expressed B̂ as UΣV , where the U is a
2n × l matrix with orthonormal columns, Σ is a l × l diagonal matrix with
the singular values of B̂ and V is a l × 2n matrix with orthonormal rows.
Now we write

yT Ây = (yTDU)Σ(V Dy) = uT Σv

where, uT = yTDU and v = V Dy

are two l− vectors. This implies that there are really only 2l “variables” -
ui, vi in the problem (and not the n variables - y1, y2, . . . yn). This is the idea
we will exploit. Note that for y ∈ S, we have (since U, V have orthonormal
columns, rows reaspectively)

|u|2 ≤ |yTD|2 ≤
∑

i

(Di + D̄) ≤ 4nD̄.

Similarly, |v|2 ≤ 4nD̄. So letting

α =
√

nD̄,

we see that the the vectors u, v live in the rectangle

R = {(u, v) : −2α ≤ ui, vj ≤ +2α}.

Also, the gradient of the function uTΣv with respect to u is Σv and with
respect to v is uTΣ; in either case, the length of the gradient vector is at
most 2ασ1(B̂) ≤ 2α

√
c. We now divide up R into small cubes; each small

cube will have side
η =

ǫα

20
√

l
,

and so there will be ǫ−O(l) small cubes. The function uTΣv does not vary by
more than ǫnD̄

√
c/10 over any small cube. Thus we can solve (3) by just

enumerating all the small cubes in R and for each determining whether it is
feasible (i.e., whether there exists a 0-1 vector x such that for some (u, v) in
this small cube, we have uT = yT Du, v = V Dy, for y = (x, 1 − x).)

For each small cube C in R, this is easily formulated as an integer program
in the n 0,1 variables x1, x2, . . . xn with 4l constraints (arising from the upper

7

and lower bounds on the coordinates of u, v which ensure that (u, v) is in the
small cube.)

For a technical reason, we have to define a Di to be “exceptional” if
Di ≥ ǫ6nD̄/106; also call an i exceptional if either Di or Di+n is exceptional.
Clearly, the number of exceptional Di is at most 2 × 106/ǫ6 and we can
easily identify them. We enumerate all possible sets of 2O(1/ǫ6) 0,1 values of
the exceptional xi and for each of these set of values, we have an Integer
Program again, but now only on the non-exceptional variables.

We consider the Linear Programming (LP) relaxation of each of these
Integer Programs obtained by relaxing xi ∈ {0, 1} to 0 ≤ xi ≤ 1. If one of
these LP’s has a feasible solution, then, it has a basic feasible solution with
at most 4l fractional variables, Rounding all these fractional variables to 0
changes Dy by a vector of length at most

√

4lǫ6nD̄/106 ≤ η.

Thus, the rounded integer vector y gives us a (u, v) in the small cube C en-
larged (about its center) by a factor of 2 (which we call 2C). Conversely, if
none of these LP’s has a feasible solution, then clearly neither do the corre-
sponding Integer Programs and so the small cube C is infeasible. Thus, for
each small cube C , we find (i) either C is infeasible or (ii) 2C is feasible. Note
that uT Σv varies by at most ǫnD̄/5 over 2C . So, it is clear that returning the
maximum value of uTΣv over all centers of small cubes for which (ii) holds
suffices. This is what the algorithm does.

Remark We could have carried this out with any “scaling’. The current
choice turns out to be useful for the two important special cases here. Note
that we are able to add the D̄ almost “for free” since we have

∑

i Di + D̄ ≤
2
∑

Di.

2.1 Maximum Weighted Bisection and other problems

The maximum weighted bisection problem in an undirected graph is to split
the vertices into equal parts so as to maximize the total weight of edges from
one part to the other. We will show that this problem has a PTAS for the
case of core-dense weights. In fact, we will show something more general :
consider a family of problems of the form :

Maxy∈SyTAy subject to Cx ≤ d xi ∈ {0, 1},

8

where
(i) the number of constraints in Cx ≤ d is O(1),
(ii) for every solution of Cx ≤ d ; 0 ≤ xi ≤ 1, we can round only

the fractional valued variables to integer values to get a solution to Cx ≤
d , xi{0, 1} and

(iii) the family has a core-dense weights matrix (A).
Our result is that any such family admits a PTAS. The argument proceeds

the same way as when there are no “side-constraints” Cx ≤ d. But we note
that using (i), there are still only O(l) fractional variables in a basic feasible
solution of every LP. By (ii), we can round them to produce an integral
solution with the same error bounds (within constant factors) as we get for
the problem with no side-constraints.

Note that for the maximum weighted bisection problem, Cx ≤ d has just
two constraints -

∑

i xi ≤ n/2 and
∑

i xi ≥ n/2 and (ii) is easily seen to be
valid. Indeed, more generally, we may also have node weights and require
that we split into two parts of equal node weight, as long as (ii) is valid.
More generally, we can also require some O(1) subsets of vertices must all be
bisected etc.

3 Fast tensor approximation via sampling

Corresponding to A, there is an r-linear form which for a set of r vectors
x(1), x(2), . . . x(r−1), x(r), is defined as

A(x(1), x(2), . . . x(r)) =
∑

i1,i2,...ir

Ai1,i2,...ir−1,irx
(1)
i1

x
(2)
i2

, . . . x
(r)
ir

.

We will use the following two norms of r-dimensional arrays corresponding
to the Frobenius norm and L2 norm for matrices.

||A||F =
(

∑

A2
i1,i2,...ir

)
1
2

||A||2 = max
x(1),x(2),...x(r)

A(x(1), x(2), . . . x(r−1), x(r))

|x(1)||x(2)|

We begin with a proof of Lemma 1 about the existence of a low-rank
tensor decomposition.

9

Proof. If ||A||2 ≤ ǫ||A||F , then we are done. If not, there are vectors
x(1), x(2), . . . , x(r), all of length 1 such that

A(x(1), x(2), . . . , x(r)) ≥ ǫ||A||F .

Now consider the r−dimensional array

B = A − (A(x(1), x(2), . . . , x(r)))x(1) ⊗ x(2) ⊗ . . . x(r).

It is easy to see that

||B||2F = ||A||2F − (A(x, y, z, . . .)2).

We can repeat on B and clearly this process will only go on for at most 1/ǫ2

steps.

From the proof of Lemma 1, it suffices to find x(1), x(2), . . . , x(r) all of
length 1, maximizing A(x(1), x(2), . . . , x(r)) to within additive error ǫ||A||F/2.
We will give an algorithm to solve this problem. We need a bit more notation.
For any r− 1 vectors x(1), x(2), . . . x(r−1), we define A(x(1), x(2), . . . x(r−1), ·) as
the vector whose i’th component is

∑

i1,i2,...ir−1

Ai1,i2,...ir−1,ix
(1)
i1

x
(2)
i2

, . . . x
(r−1)
ir−1

.

10

Tensor decomposition

Set η = ǫ2/100r
√

n and s = 105r/ǫ2.

1. Pick s random (r−1)-tuples (i1, i2, . . . ir−1) with probabilities proportional
to the sum of squared entries on the line defined by it:

p(i1, i2, . . . ir−1) =

∑

i A
2
i1,i2,...ir−1,i

||A||2F
.

Let I be the set of s r − 1 tuples picked.

2. For each i1, i2, . . . ir−1 ∈ I , enumerate all possible values of

z
(1)
i1

, z
(2)
i2

, . . . z
(r−1)
ir−1

whose coordinates are in the set

J = {−1,−1 + η,−1 + 2η, . . . 0, . . . 1 − η, 1}s(r−1).

(a) For each set of ẑ(t), for each i ∈ Vr , compute

yi =
∑

(i1,...ir−1)∈I

A(i1, . . . ir−1, i)ẑ
(1)
i1

. . . ẑ
(r−1)
ir−1

.

and normalize the resulting vector y to be a unit vector (a candidate
for z(r)).

(b) Consider the (r − 1)-dimensional array A(y) defined by

(A(y))i1,i2,...ir−1 =
∑

i

Ai1,i2,i3...ir−1,i yi

and apply the algorithm recursively to find the optimum

A(y)(x(1), x(2), . . . x(r−1))

with |x(1)| = . . . |x(r−1)| = 1 to within additive error ǫ||A(y)||F/2.
(Note that ||A(y)||F ≤ ||A||F by Cauchy-Schwartz).

3. Output the set of vectors that given the maximum among all these candi-
dates.

11

Here is the idea behind the algorithm. Suppose z(1), z(2), . . . z(r) are the
(unknown) unit vectors that maximize A(x(1), x(2), . . .). Since

A(z(1), . . . z(r−1), z(r)) = z(r) · A(z(1), . . . z(r−1), ·),
we have

z(r) =
A(z(1), z(2), . . . z(r−1), ·)
|A(z(1), z(2), . . . z(r−1), ·)| .

Thus, if we had z(1), z(2), . . . z(r−1), then we could find z(r). In fact, we can
estimate the components of z(r) if we had sufficiently many random terms in
the sum A(z(1), . . . z(r−1), ·). It turns out that we need only s = O(1/ǫ2) terms
for a good estimate. Now we do not need to know the z(1), z(2), . . . , z(r−1)

completely; only s(r − 1) of their coordinates in total are needed for the
estimate. We enumerate all possibilities for the values of these coordinates
(in steps of a certain size) and one of the sets of coordinates we enumerate will
correspond to the optimal z(1), z(2), . . . z(r−1), whence we get the an estimate
of z(r). For each candidate z(r), we can reduce the problem to maximizing
an (r − 1)-dimensional tensor and we solve this recursively.

We will now analyze the algorithm and consequently prove Theorem 2.
We begin by showing the discretization does not cause any signicant loss.

Lemma 6. Let z(1), z(2), . . . z(r−1) be the optimal unit vectors. Suppose

w(1), w(2), . . . w(r−1) are obtained from the z(t) ’s by rounding each coordinate

down to the nearest integer multiple of η. Then,

∣

∣A(z(1), . . . z(r−1), ·) −A(w(1), . . . w(r−1), ·)
∣

∣ ≤ ǫ2

100
||A||F .

Proof. We may write
∣

∣A(z(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), . . . w(r−1), ·)
∣

∣

≤
∣

∣A(z(1), z(2), . . . z(r−1), ·) − A(w(1), z(2), . . . z(r−1), ·)
∣

∣ +
∣

∣A(w(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), z(3), . . . z(r−1), ·)
∣

∣ . . .

A typical term above is

|A(w(1), . . . w(t), z(t+1), . . . z(r−1), ·)
−A(w(1), . . . w(t), w(t+1), z(t+2), . . . z(r−1), ·)|
≤
∣

∣B(z(t+1) − w(t+1))
∣

∣

≤ ||B||2|z(t+1) −w(t+1)|
≤ ||B||Fη

√
n ≤ ||A||Fη

√
n.

12

Here, B is the matrix defined as the matrix whose ij’th entry is
∑

j1,...jt,jt+2...jr−1

Aj1,...jt,i,jt+2,...jr−1,jw
(1)
j1

. . . w
(t)
jt

z
(t+2)
jt+2

. . . z
(r−1)
jr−1

The claim follows.

Next, we analyze the error incurred by sampling.
Consider an (r − 1)-tuple (i1, i2, . . . ir−1) ∈ I and define the random vari-

ables variables Xi for i by

Xi =
Ai1,i2,...ir−1,iw

(1)
11

w
(2)
i2

. . . w
(r−1)
ir−1

p(i1, i2, . . . ir−1)
.

It follows that
E(Xi) = A(w(1), w(2) . . . w(r−1), ·)i.

We estimate the variance:

∑

i

Var(Xi) ≤
∑

i

∑

i1,i2,...

A2
i1,i2,...ir−1,i(w

(1)
i1

. . . w
(r−1)
ir−1

)2

p(i1, i2, . . .)

≤
∑

i1,i2,...

(z
(1)
i1

. . . z
(r−1)
ir−1

)2

p(i1, i2, . . .)

∑

i

A2
i1,i2,...ir−1,i

≤ ||A||2F .

Consider the yi computed by the algorithm when all ẑ
(t)
it

are set to w
(t)
it

. This
will clearly happen sometime during the enumeration. This yi is just the sum
of s i.i.d. copies of Xi, one for each element of I . Thus, we have that

E(y) = sA(w(1), w(2) . . . w(r−1), ·)

and
Var(y) = E(|y −E(y)|2) ≤ s||A||2F .

We will sketch the rest of the argument. Define

ζ = A(z(1), z(2), . . . z(r−1), ·) and ∆ = y − sζ.

From the above, it follows that with probability at least 1− (1/10r), we have

|∆| ≤ 10r
√

s||A||F .

13

Using this,

∣

∣

∣

∣

y

|y| −
ζ

|ζ|

∣

∣

∣

∣

=
|(y|ζ| − ζ|y|)|

|y||ζ|

=
1

|y||ζ| |(∆ + sζ)|ζ| − ζ(|y| − s|ζ| + s|ζ|)|

≤ 2|∆|
(s|y|) ≤ ǫ

50
,

assuming |y| ≥ ǫ||A||F/100. If this assumption does not hold, we know
that the |ζ| ≤ ǫ||A||F/20 and in this case, the all-zero tensor is a good
approximation to the optimum. From this, it can be shown that

||A(
y

|y|) −A(
ζ

|ζ|)||F ≤ ǫ

10
||A||F .

Thus, for any r − 1 unit length vectors a(1), a(2), . . . a(r−1), we have

∣

∣

∣

∣

A(a(1), . . . a(r−1),
y

|y|) − A(a(1), . . . a(r−1),
ζ

|ζ|)
∣

∣

∣

∣

≤ ǫ

10
||A||F .

This implies that the optimal set of vectors for A(y/|y|) are nearly optimal
for A(ζ/|ζ|). Since z(r) = ζ/|ζ|, the optimal vectors for the latter problem
are z(1), . . . , z(r−1).

The running time of algorithm is dominated by the number of candidates
we enumerate, and is

poly(n)

(

1

η

)s2r

=
(n

ǫ

)O(1/ǫ4)

.

4 Approximation schemes for core-dense

MAX-rCSP’s

In this section, we give a PTAS for core-dense weighted MAX-rCSP’s proving
Theorem 3. For this, we now only need to describe the scaling (which is a
direct generalization of the case r = 2) and how to optimize in the case where
the coefficient tensor is the sum of a small number of rank-1 tensors. First
we describe the scaling.

14

We wish to solve the problem

max
y∈S

A(y, y, . . . , y).

The algorithm first scales the entries of A to get an r-dimensional tensor B,
as follows :

Bi1,...,ir =
Ai1,...,ir
∏r

j=1 αij

where α = (α1, . . . , αn) ∈ R
n is defined by αj =

√

D̄ + Dj .
Note that again for any y ∈ S, using the substitution, zj = yjαj, we get

A(y, . . . , y) = B(z, . . . , z).

Then, applying the sampling algorithm from Section 3 to get a tensor B̂ of
rank at most k satisfying

||B − B̂||2 ≤
ǫ

2
||B||F .

We then solve the following problem approximately to within additive error
ǫ|α|r||B||F/2.

max
z:yj∈S1

B̂(z, z, . . . , z).

The error of approximating B by B̂ is bounded by

max
z∈S1

|(B − B̂)(z, . . . , z)|

≤ max
z:|z|≤|α|}

|(B − B̂)(z, . . . , z)|

≤ |α|r||B − B̂||2
≤ ǫ|α|r||B||F

≤ ǫ(
n
∑

i=1

(D̄ + Di))
r/2

(

∑

i1,...,ir

A2
i1,...,ir

∏r
j=1 Dij

)1/2

≤ ǫ2r/2c(
n
∑

i=1

Di)

where c is the bound on the core-strength, noting that
∑

i(D̄+Di) = 2
∑

i Di.

15

4.1 Optimizing constant-rank tensors

From the above, it now suffices to deal with the case of a tensor A of constant
rank. Let us see that this can be done very similarly as in the 2-dimensional
case.

Let A be a tensor of dimension r and rank ℓ, say:

A =
∑

1≤j≤ℓ

A(j)

with
A(j) = ajx

(j,1) ⊗ x(j,2)...⊗ x(j,r)

where the x(j,i) ∈ R2n are length one vectors and moreover we have that
||A(j))||F ≤ ||A||F and ℓ = O(ǫ−2). We want to maximize approximately
A(y), i.e., we want to maximize approximately the sum

∑ℓ
j=1 A(j)(y) where

A(j)(y) = aj

r
∏

k=1

(

x(j,k) · y
)

over the set of vectors y satisfying yi ∈ {0, αi}, yn+i = αi − yi, 1 ≤ i ≤ n
where α is a given n-dimensional vector. Let us define the vectors z(j,k) by

z
(j,k)
i = αix

(j,k)
i z

(j,k)
n+i = αix

(j,k)
n+i

for 1 ≤ i ≤ n. If we define the tensor Â by

Â =
ℓ
∑

j=1

Â(j)

with
Â(j) = ajz

(j,1) ⊗ z(j,2)...⊗ z(j,r), j = 1, 2, ..., ℓ,

then we can equivalently maximize approximately

Â(y) =
ℓ
∑

j=1

aj

r
∏

k=1

(

z(j,k) · y
)

(4)

for y now in S.
Thus, similarly as in the 2-dimensional case, Â(y) depends really only on

the ℓr variables uj,i, say, where uj,i = z(j,i) · y, j = 1, 2, ..., ℓ, i = 1, 2, ..., r, and

16

the values of each of these products are confined to the interval [−2|α|, +2|α|].
Then, exactly similarly as in the 2-dimensional case, we can get, in poly-
nomial time, approximate values within ǫ|α|r for each of the optimal uj,i =
z(j,i)·y. (Actually, we enumerate a certain set of values of the vector uj,i ∈ Rrℓ

which need contain this nearly optimal value.) Inserting then these values in
(4) gives an approximation of max Â(y) with additive error O (ǫ|α|r||A||F).

5 Metric tensors

Lemma 7. Let A be an r-dimensional tensor satisfying the following local

density condition:

∀ i1, . . . , ir ∈ V, Ai1,...,ir ≤
c

rnr−1

r
∑

j=1

Dij

where c is a constant. Then A is a core-dense hypergraph with core-strength

c.

Proof. We need to bound the core-strength of A. To this end,

∑

i1,i2,...,ir∈V

A2
i1,...,ir

∏r
j=1(Dij + D̄)

≤ c

rnr−1

∑

i1,i2,...,ir∈V

Ai1,...,ir

∑r
j=1 Dij

∏r
j=1(Dij + D̄)

≤ c

rnr−1

∑

i1,i2,...,ir∈V

Ai1,...,ir

r
∑

j=1

1
∏

k∈{1,...,r}\j(Dik + D̄)

≤ c

rnr−1

(

∑

i1,i2,...,ir∈E

Ai1,...,ir

)

r

D̄r−1

=
c

(
∑n

i=1 Di)r−2
.

Thus, the core-strength is at most

(
n
∑

i=1

Di)
r−2

∑

i1,i2,...,ir∈E

A2
i1,...,ir

Πr
j=1(Dij + D̄)

≤ c.

17

Theorem 4 follows directly from Lemma 7 and Theorem 3. We next prove
Corollary 5 for metrics.

Proof. (of Corollary 5) For r = 2, the condition of Theorem 4 says that for
any i, j ∈ V ,

Ai,j ≤
c

2n
(Di + Dj).

We will verify that this holds for a metric MAX-2CSP with c = 2. When the
entries of A form a metric, for any i, j, k, we have

Ai,j ≤ Ai,k + Ak,j

and so

Ai,j ≤ 1

n

(

n
∑

k=1

Ai,k +
n
∑

k=1

Aj,k

)

=
1

n
(Di + Dj).

We are going to extend now the notion of a metric. A nonnegative real
function d defined on M×M is called quasimetric (cf. [MS79], [S03]; [MP00])
if d(x, y) = 0 whenx = y, d(x, y) = d(y, x) and d(x, z) ≤ C(d(x, y)+ d(y, z)),
the last for some positive real number C , and all x, y, z ∈ M . Thus if it
holds with C = 1, then d is a metric on M . The proof of Corollary 5 easily
extends to quasimetrics. An interesting property of a quasimetric d(x, y) is
that d(x, y)a is also a quasimetric for every positive real number a (cf.[MS79]).
Thus this notion encompasses a large number of interesting distance func-
tions which are not metrics, like the squares of Euclidean distances used in
clustering applications.

5.1 Core-dense graphs

We now confine attention to the case of graphs. As we saw already, dense
graphs are core-dense graphs, but the converse is not in general true. One
simple example is a graph consisting of a dense graph on Ω(n3/4) vertices,
up to O(n) edges in the subraph defined by the rest of the vertices and up
to O(n5/4) edges from high-degree vertices of the dense subgraph to the rest.
We show below that as in this example, in fact there are always “large” dense
subgraphs in a core-dense graph.

18

Theorem 8. A core-dense graph with m edges contains a dense induced

subgraph with θ(
√

m) vertices.

Proof. Since G is core-dense, we have

∑

i,j∈E

1

(di + d̄)(dj + d̄)
≤ c

for some c.
We assume that m < n2/16c; otherwise, G itself is a dense graph.
We partition the vertices of the graph into 3 subsets R, S, T according to

their degrees:

R = {i ∈ V : di ≥ 8
√

m}

S = {i ∈ V :

√
m

64c
≤ di < 8

√
m}

T = {i ∈ V : di <

√
m

64c
}

We will prove that |S| ≥ √
m/8. Suppose not for a contradiction.

Using the density condition, the number of edges in the subgraph induced
by T is at most

c

(√
m

64c
+

m

n

)2

<
m

16
.

Similarly, the number of edges between S and T is at most

c(8
√

m +
m

n
)(

√
m

64c
+

m

n
) <

m

8
.

Next, the number of vertices in R is at most 2m/8
√

m =
√

m/4. Thus the
total number of edges in the graph induced by R is at most m/32. Also, the
number of edges between R and S is at most

|S|
√

m

4
<

m

32
.

Addding up these bounds, the total number of edges in G not in the subgraph
induced by S is at most m/2. Therefore, the number of vertices in S is at
least

m

8
√

m
=

√
m

8

19

which contradicts our assumption.
Thus G contains an induced subgraph with

√
m/8 vertices and minimum

degree
√

m/64c.

References

[AFKK02] N. Alon, W. Fernandez de la Vega, R. Kannan and M. Karpinski,
Random Sampling and MAX-CSP Problems, Proc. 34th ACM STOC
(2002), pp. 232-239.

[AKK95] S. Arora, D. Karger and M. Karpinski, Polynomial Time Approx-

imation Schemes for Dense Instances of NP-Hard Problems, Proc.
27th STOC (1995), pp. 284-293; J. Computer and System Sciences
58 (1999), pp. 193-210.

[F96] W. Fernandez de la Vega, MAX-CUT has a Randomized Approxima-

tion Scheme in Dense Graphs, Random Structures and Algorithms
8 (1996), pp. 187-198.

[FK00] W. Fernandez de la Vega and M. Karpinski, Polynomial time approx-

imation of dense weighted instances of MAX-CUT, Random Struc-
tures and Algorithms 16 (2000), pp. 314-332.

[FK98] W. Fernandez de la Vega and C. Kenyon, A randomized approxima-

tion scheme for metric MAX-CUT, Proc. 39th IEEE FOCS (1998),
pp. 468-471, final version in J. Computer and System Sciences 63
(2001), pp. 531-541.

[FKKR03] W. Fernandez de la Vega, M. Karpinski, C. Kenyon and Y. Ra-
bani, Approximation schemes for clustering problems, Proc. 35th
ACM STOC (2003), pp. 50-58.

[FKK04] W. Fernandez de la Vega, M. Karpinski and C. Kenyon, Approx-

imation Schemes for Metric Bisection and Partitioning, Proc. 15th
ACM-SIAM SODA (2004), pp. 499-508.

[FK96] A. M. Frieze and R. Kannan, The Regularity Lemma and Approxi-

mation Schemes for Dense Problems, Proc. 37th IEEE FOCS (1996),
pp. 12-20.

20

[FK97] A. M. Frieze and R. Kannan, Quick Approximation to Matrices and

Applications, Combinatorica 19 (2) (1999), pp. 175-120.

[FKV04] A. M. Frieze, R. Kannan and S. Vempala, Fast Monte-Carlo Algo-

rithms for Finding Low-Rank Approximations, J. of the ACM 51(6)
(2004), pp. 1025-1041.

[GGR96] O. Goldreich, S. Goldwasser and D. Ron, Property Testing and its

Connection to Learning and Approximation, Proc. 37th IEEE FOCS
(1996), pp. 339-348; J. ACM 45 (1998), pp. 653-750.

[I99] P. Indyk, A Sublinear Time Approximation Scheme for Clustering in

Metric Spaces, Proc. 40th IEEE FOCS (1999), pp. 154-159.

[MS79] R. Macias and C. Segovia, Lipschitz functions on spaces of homoge-

nous type, Advances in Mathematics 33 (1979), pp. 257-270.

[Mc01] F. McSherry, Spectral Partitioning of Random Graphs, FOCS 2001,
pp.529-537

[MP00] R. R. Mettu and C. G. Plaxton, The Online Median Problem, Proc.
41st IEEE FOCS (2000), pp. 339-348.

[S03] S. Semmes, A brief introduction to Gromov’s notion of hyperbolic

groups, Mathematics, arXiv: math CA/021341 (2003), pp. 1-10.

[SS73] P. H. Sneath and R. R. Sokal, Numerical Taxonomy, Freeman, Lon-
don, 1973.

21

