A Work-Efficient Algorithm for
Constructing Huffman Codes

Marek Karpinski* Lawrence Larmoref Yakov Nekrich?*

Abstract

We present an algorithm for parallel construction of Huffman codes
n O(\/Lz_? log p) time with p processors, improving the previous result of

Levcopoulos and Przytycka.

Keywords: Computational Complexity, Parallel Algorithms, Huffman Codes

*Dept. of Computer Science, University of Bonn. Work partially supported by a DFG
grant , DIMACS, and IST grant 14036 (RAND-APX). Email marek@cs.uni-bonn.de.

'School of Computer Science, University of Nevada Las Vegas.
Email larmore@earl.cs.unlv.edu

Dept. of Computer Science, University of Bonn. Work partially supported by IST
grant 14036 (RAND-APX). Email yasha@cs.uni-bonn.de.

1 Introduction

A Huffman code for an alphabet aqy, as, ..., a, with weights wy, wo, ..., w, is
a prefix code that minimizes weighted codeword length, defined as "/, w;l;,
where [; is the length of the i*® codeword.

The best known parallel algorithm [LP95] for this problem that uses n
processors is due to Larmore and Przytycka and runs in O(y/nlogn) time.
Their algorithm is based on reducing the problem of constructing a Huff-
man code to the concave least weight subsequence problem. Levcopoulos
and Przytycka [LevPrz95] have presented an algorithm for the efficient con-
struction of Huffman trees with the sublinear number of processors. Their

algorithm runs in O(ﬁ(log2 p+log(n—+/plogp))) with p processors.
plog(p

However, we observe that the algorithm of [LevPrz95] contains a technical
flaw since construction of left-justified trees is not combined with the greedy
Huffman algorithm in appropriate way.

In this paper we further improve the result of Levcopoulos and Przytycka
and describe an algorithm that works in O(Lp log p) time with p processors.
Our algorithm uses a combination of ideas inspired by several prior ap-
proaches to the problem. In particular, we combine the methods used for
the construction of almost-optimal Huffman codes (see [KP96] ,[BKNO02]),
the greedy paradigm of Huffman’s algorithm [H51], and the CLWS approach
from [LP95].

2 Algorithm Description

The technique for the construction of approximate Huffman codes in parallel
given in [KP96, BKN02] is to divide elements a; into classes W, j =m, ..., 1
such that W; = {w;|1/27 < w; < 1/29='}. This ensures that the sum of the
weights of any two elements of a given class is greater than the weight of
any other element of that same class. Basically, Huffman’s algorithm can
be reformulated as follows. Let W}, be the class which contains the smallest
element, and initialize W} to be empty. For each j, in descending order,
consecutive pairs of elements of the merged list Wj + W; are combined and
stored as a list Wj_l, then Wj_l and W;_; are merged. It follows that
elements from the same class can be processed in parallel. See [KP96] for a
detailed description of this algorithm that also considers the case of an odd
number of elements in Wj + W;. A limitation of this approach is that the
number of parallel steps is proportional to the number of different classes
Ww;.

In this paper we will show how we can reduce the number of steps for

the classes of small size. A binary tree T is called left-justified if the height
of every leaf of the left subtree of T is greater than or equal to the height of
the right subtree of T, and if every proper subtree of T is left-justified. The
following theorem was proven in [LP95].

Theorem 1 A left-justified Huffman tree T for elements ay,aq, ..., a, can
be constructed in O(,/plogp) time with p processors.

In general, a tree constructed by Huffman’s original algorithm is not
left-justified. We call a tree constructed by Huffman’s algorithm a greedy
Huffman tree.

To combine the algorithm of [LP95] with the approach of [KP96] and
[BKNO02] we need the following theorem

Theorem 2 A greedy Huffman tree T for elements ay,asq,...,a, can be
constructed in O(y/plogp) time with p processors.

We begin by describing Huffman’s algorithm by formulating of a lemma.

Let by, ...b,_1 be the internal nodes of the greedy Huffman tree, and let
v; be the weight of b;, defined to be the sum of the weights of the leaves of
the subtree rooted at b;. We index the internal nodes in the order in which
Huffman’s algorithm produces them; thus vy <wy < ...0,_1.

Let F, be the greedy Huffman forest of r roots, i.e., the forest obtained
after n—r steps of Huffman’s algorithm. Note that F}, is the forest consisting
of n singleton nodes, while F} is greedy Huffman tree. The leaves of each F,
are the original items. Huffman’s algorithm constructs I,_; by combining
the two least weight trees of F,_; 1 into a single tree, creating the new root
b;.

We will use the following tie-breaking rule. We assign a t-value to every
node in a Huffman tree. The t-value of the leaf a; will be 2¢, and the t-value
of an internal node will be the sum of t-values of its children. Thus all nodes
have distinct t-values. In case two nodes have the same weight, the one with
the smaller t-value will be taken to be the smaller one.

This method reduces the problem with ties to the problem with no ties,
by simply changing the weight of the a; to w; + €2°, where ¢ is some very
small positive constant.

This tie-breaking scheme can be implemented at a cost of O(1) per com-
parison, as follows. For each node, keep track of the index of the largest
leaf in the subtree rooted at that node, and call that the dominant t-value
of that node. If it becomes necessary to compare the t-values of two nodes,
simply compare their dominant t-values. Since the subtrees are disjoint,
they will have distinct dominant t-values.

Lemma 1
1. F, consists of the singleton trees {a;}.

2. For j > 1, one of the roots of F,_; is b;. Furthermore, F,,_; —b; =
Fo_j4+1, and the children of b; are the roots of the two smallest weight
trees in F,_j1q.

3. If k<l < jand by is a root of F,_;, then by is a root of I,_;.

4. F,_; has leaves ay, .. .a,, internal nodes by, ...b;, and roots b;yy,...b;,
a25—i41y---Ap, for some 1 < j.

5. Let B,,_; be the set of children of non-leaf roots of I',_;. Then the
sum of the weights of any two elements of B,_; is greater than the
weight of any other element of B, _;.

Proof:

Part 1 and Part 2 are the well-known observations which justify Huff-
man’s algorithm. Part 3 is proved by contradiction, as follows. If
k < { < j,and by is a root of F,_; and b is not, then Fj,_; could be im-
proved by exchanging by and by, since vy < vg. Part 4 follows from Part 1,
Part 2, Part 3, and a simple computation. Part 5 is proved by contradiction
in the same manner as Part 3; if it were false, the smallest non-leaf root of
F,_; could be exchanged with the largest member of B,,_;, improving F,_;.
O

We now summarize the reduction given in [LP95]. For 0 < m < n, let
Sm = > iy w;, the sum of the weights of the first m symbols. Let GG be the
weighted directed acyclic graph whose nodes are the integers 0,1,...n — 1,
and whose edges are the pairs (¢, j) such that ¢ < j and 25 — i < n, where
the edge (7,) has weight Sy;_;. Define backy = 0, and for any 0 < j < n,
let back; be defined to be the next-to-the-last node in the minimum weight
path from 0 to j. Let f; be the total weight of that minimum weight path.
More formally, fo = 0 and, for j > 0, f; = min;«; {fi + S2j—; : ¢ < j}, and
back; is that choice of ¢ for which the minimum value of f; is achieved.

We will use the following lemmas from [L.P95].

Lemma 2 The graph G has the concave Monge property.

Lemma 3 We can find minimum weight paths from 0 to 7 for 1 < 3 <n
in O(y/n) time with n processors.

Algorithm CLWS described in the paper [LP] finds minimum weight
paths for all j. According to theorem 2.7 of [LP] it works in O(nlogn/m +
n?/mp+ nmlogn/p) time with p processors for any 0 < m < n. By setting
p=n and m = \/n we get the result of the Lemma.

Lemma 4
1. The weighted path length of I),_; is equal to f;.
2. For0<j<m, f; — fi=1 =v;.
3. If back; =1, then the roots of I,_; are biy1,...bj,a2;_i41,...0y.
4. For 0 < j <mn, back;_y < back; < back;_y +2. Let v = back;_;. Then

(a) If back; =i then the two children of b; are az;_;—1 and ag;_;.
(b) If back; = i+ 1 then the two children of b; are b4y and ag;—;_4.
(¢) If back; = i + 2 then the two children of b; are bi1y and b;1s.

Proof:

We first prove Part 1 by strong induction. For j = 0 it is trivial, so
assume j > 0. Part 3 of Lemma 1 allows us to choose ¢« < j such that by is
a root of I,_; if and only if ¢« < k < j. F,_; is then obtained from F,_;
by deleting the roots by, for ¢« < & < j. Since F},_; must have n — j roots,
of which 7 — ¢ are the by, it must have n — 25 + ¢ roots which are original
items. It follows from Part 5 of Lemma 1 that removal of by for ¢ < k£ < j
causes all leaves which are not roots of F,,_; to move up one level in the tree.
Hence the weighted path length is decreased by the sum of the weights of
those leaves, which is Sy;_;, which is also the weight of the edge (¢, j) in G.
By the inductive hypothesis, the weighted path length of F; is f;, thus the
weighted path length of I} is f; + So;-: > f;.

To prove that f; is also an upper bound for the weighted path length of
F;, let @ = back;. We consider two cases. If + = 0, then f; = Sy;_;, which
is the weighted path length of the forest obtained by combining ay,...a;
in pairs, resulting in a forest with n — j roots and weighted path length f;.
Now suppose ¢ > 0. By the inductive hypothesis, the weighted path length
of F; is f;. Let m = back;. We know that 2¢ — m < 2j — ¢, since otherwise
a smaller weight path from 0 to j could be obtained by replacing the edges
(m, 1) and (¢,7) by the edges (m,i— 1) and (¢ — 1, 7). The forest obtained
from F; by combining the roots b,, +1,...b;, ag;—p+1,...a2;—; in pairs then
has n — j roots and weighted path length f;.

Part 2 follows from Part 1 and Part 2 of Lemma 1, since the difference
between the weighted path lengths of F},_; and Fj,_;;; is the weight of the
subtree rooted at b;.

Part 3 follows from the above discussion and from Part 4 of Lemma 1.

We now prove Part 4. The two children of b; are the two roots of F;_; of
smallest weight, which must be in the set {b;41, biyo, @2j—i—1,a2;—;}. There
are three possibilities, giving us the three cases.

This completes the proof of Lemma 4. O

Theorem 2 follows from Lemma 3 and Part 4 of Lemma 4.

Now we finish the description of our algorithm. Suppose that classes
Wiy Wi—1, ..., Wipq are already processed. If the number of elements in
W; exceeds p, we construct W;_; as described above. If |W;| < p then classes
Wi, W,_1,..., W, such that |W2|—|—|W2_1|—|— . —|—|Wl| < pand |W2|—|—|W2_1|—|—
...+ |Wi| > p are considered. Using theorem 2 we can construct a greedy
Huffman tree 7’ for elements of classes W;, W;_1,..., W,.

We consider the sets N of all nodes S in 77, such that the weight of at
least one son of S is in [2/72, 21_1). It is easy to see that the set NV can be
used instead of the set Wj_; from the previous algorithm.

There are at most n/p large classes with more than p elements. Therefore
there are at most n/p groups of small classes. The total time to process all
groups of small classes can therefore be limited by O((n/\/p)logn). The
time necessary to process a large class is O(loglog p-|W;|/p) Hence the total
time for processing all large classes is less than O(n/ploglog p).

Therefore the running time of the modified algorithm is O((n/,/p) log p).

3 Open Problems

It is an open problem whether there exists an O((n/,/p)) p-processor algo-
rithm for Huffman coding. Such an algorithm can perhaps be constructed
with a faster CLWS algorithm for a Monge graph with limited edge lengths.

Another open problem is the construction of faster parallel algorithms
based on the CLWS approach, that would use the special properties of Monge
graphs corresponding to Huffman codes (for instance, the fact that there are
only a linear number of distinct weights on the edges.)

References

[BKN02] Berman, P., Karpinski, M., Nekrich, Y., Approzimating Huffman
Codes in Parallel, Proc. 29th ICALP, LNCS vol. 2380, Springer,
2002, pp. 845-855.

[H51] Huffman, D. A., A method for construction of minimum redundancy
codes, Proc. IRE,40 (1951), pp. 1098-1101.

[KP96] Kirkpatrick, D., Przytycka, T., Parallel Construction of Binary
Trees with Near Optimal Weighted Path Length, Algorithmica 15(2)
(1996), pp. 172-192.

[LP95] Larmore, L., Przytycka, T., Constructing Huffman trees in parallel,
SIAM Journal on Computing 24(6) (1995), pp. 1163-1169.

[LevPrz95] Levcopoulos, Ch., Przytycka, T. A work-time trade-off in par-
allel computation of Huffman trees and concave least weight subse-
quence problem , Parallel Processing Letters, 4(1-2) (1994), pp.
37-43

VL] van Leeuwen, J., On the Construction of Huffman Trees, Proc. 3rd
ICALP, Edinburgh University Press, 1976, pp. 382-410.

