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hingsin a Bipartite GraphMartin L�ohnertzInstitute for Computer S
ien
e V University of BonnAbstra
t. We demonstrate how to �nd a perfe
t mat
hing in a bipartitegraph 
ontaining pn�3 disjoint perfe
t mat
hings in time O(pnm=�).



21 Introdu
tion1.1 OverviewThe problem of �nding a perfe
t (or a maximum) mat
hing in a bipartite graphis one of the best known \
lassi
al" problems in graph theory. We identify a newspe
ial 
ase of this problem whi
h 
an be solved faster than the general 
ase.Similar to the fa
t that it is easier to �nd a needle in a haysta
k 
ontaining manyneedles we show that a perfe
t mat
hing 
an be found faster if there are manydisjoint perfe
t mat
hings in the graph.Several algorithms have been developed for the general bipartite perfe
t mat
h-ing problem. The best known ones are the algorithm of Hop
raft and Karp [6℄whi
h has a 
omplexity of O(pnm) and the mu
h more involved algorithm ofFeder and Motwani [5℄ with 
omplexity O(pnm log 2n2=mlogn ).For the regular 
ase there exist faster algorithms: The algorithm of Cole andHop
roft [1℄ with 
omplexity O(m + n log3 n) and the algorithm of Cole, Ostand S
hirra [2℄ with 
omplexity O(m).The 
entral idea of our method is to �nd a regular subgraph of a general graphin order to apply the latter methods to this subgraph.The main result of this paper isTheorem 1. Let G be a bipartite graph with 2n verti
es and m edges 
ontainingpn�3 pairwise disjoint perfe
t mat
hings. Then there is an algorithm that �ndsa single perfe
t mat
hing in time O(pnm� ).As � may depend on n e.g. in graphs 
ontaining kn disjoint perfe
t mat
hingsfor a 
onstant k a perfe
t mat
hing 
an be found in time O( 3pnm).The algorithm 
onsists of the following steps whi
h will be explained in moredetail in the following se
tions:1. transform the graph into a network2. �nd a large 
ow in this network3. 
onstru
t an almost regular subgraph from the edges 
arrying 
ow4. embed this graph in a slightly larger regular graph by adding some verti
esand edges5. �nd a mat
hing in this regular graph6. remove mat
hing edges not belonging to the original graph7. embed the found mat
hing into the original graph8. augment the mat
hing to a perfe
t mat
hingWe will des
ribe steps 1 to 3 in se
tion 2 and steps 4 to 8 in se
tion 3.1.2 NotationA graph G = (V;E) 
onsists of a set of verti
es V and a set of edges E � V �V .An edge fa; bg is said to be in
ident to the verti
es a and b. a and b are adja
ent



3if there is an edge fa; bg. The degree of a vertex deg(a) is the number of in
identedges. A subgraph H of G is a graph H = (V 0; E0) with V 0 � V and E0 � E.The degree of v in H , degH(v) is the number of edges in
ident to v 
ontained inH . Two edges e1; e2 are said to be independent, if e1 \ e2 = ;. A mat
hingin G is a set M of independent edges and a maximum mat
hing is a mat
hingM with jM j � jM 0j for all mat
hings M 0 in G.A graph is said to be bipartite if V 
an be split in two disjoint sets V = A _[Band all edges 
ontain verti
es from both sets, i.e. E � A�B.A graph is regular if all verti
es have the same degree. We will only 
onsiderbipartite graphs with jAj = jBj and will denote jAj by n, impli
ating that thenumber of verti
es is a
tually 2n but this 
onstant fa
tor will not in
uen
e theasymptoti
 
omplexity. As usually we denote the number of edges by m.2 Finding an Almost Regular SubgraphDe�nition 1. An almost (n; �)-regular subgraph of a bipartite graph G = (V;E)is a subgraph H with degH(v) � pn�3 8v 2 V and Pv2V (pn�3 � degH(v)) �2n�2The 
riti
al property of an almost (n; �)-regular graph is the relation betweenmaximum degree and the number of edges missing to make the graph regular.We will model this by a 
ow in a network in whi
h almost the same large 
owpasses through ea
h vertex.2.1 Transformation to a Unit Capa
ity NetworkLet G = (A _[B;E), jAj = jBj = n, V = A [ B be a bipartite graph withpn�3 disjoint perfe
t mat
hings. Our transformation is similar to the well known\dire
t" transformation of the mat
hing problem into a 
ow problem [7℄. Theonly di�eren
e will be a 
hange in some edge 
apa
ities. Note that in our networkwe will assume the edges to be dire
ted, i.e. an edge (a; b) has a \tail" (a) and a\head" (b) and we assume that 
ow 
ows from the tail to the head. A network isa dire
ted graph with two spe
ial verti
es, a sour
e s and a sink t, together witha fun
tion 
 : E ! IR. The underlying intuition is than one wants to send 
owfrom s to t without sending more than 
(e) 
ow a
ross an edge e. A network isan unit 
apa
ity network if 
(e) = 1 for all edges.A network N with 
apa
ities is 
reated from G by dire
ting all edges fromA to B, adding a sour
e node s and a sink node t and edges (s; a) for all a 2 Aand (b; t) for all b 2 B. For ea
h edge e 2 G we set the 
apa
ity 
(e) to 1 andto 
 := pn�3 for all new edges. The maximum 
ow through this network willhave size npn�3 as ea
h set of edges forming a mat
hing will allow to transfern units of 
ow.To transform this network to a unit 
apa
ity network we repla
e ea
h edgewith 
apa
ity 
 by 
 parallel edges, ea
h with 
apa
ity 1. Note that 2n
 < 2m,



4as there have to be at least 
n edges in G that form the mat
hings. Thereforem+2n
 2 O(m) and we will 
ontinue to speak of m indi�erent whether meaningm or m+2n
. Ea
h set of parallel edges will be 
alled a \multi-edge". The otheredges will be 
alled \simple" edges.2.2 Finding a Large FlowWe start with a short repetition of blo
king 
ow algorithms. A 
ow in our unit
apa
ity network is a fun
tion f : E ! f0; 1g whi
h asso
iates a 
ow valuewith ea
h dire
ted edge. A 
ow f must ful�ll the 
ow 
onservation 
onstraintsP(u;v)2E f((u; v)) =P(v;w)2E f((v; w)) 8v 2 V nfs; tg. Our aim is to �nd a 
owfor whi
h P(s;v)2E f((s; v)) =P(u;t)2E f((u; t)) is large.For the unit 
apa
ity 
ase we 
an de�ne the so 
alled residual network Nf =(V;Ef ) the following way: The verti
es are the same as in N and for (u; v) 2 Ewe have (u; v) 2 Ef i� f((u; v)) = 0 and (v; u) 2 Ef i� f((u; v)) = 1. A dire
tedpath from s to t in the residual network 
orresponds to one possible augmentationof the 
urrent 
ow by sending one more unit of 
ow along this path.Hop
roft and Karp [6℄ have observed, that one should augment along shortestpaths in this network. This was modi�ed by Dini
 [3℄ to the \method of blo
king
ows".By labeling the verti
es of Nf by their distan
e from s in Nf , whi
h 
anby done by breath-�rst-sear
h in O(m), one 
an identify these shortest paths.The algorithm of Dini
 [3℄ uses these in a di�erent way. The labels partitionthe graph in several levels. Every edge in the residual network starting at levell must lead to a level � l + 1 by 
onstru
tion. As every augmenting path ofshortest length must 
ross ea
h level exa
tly on
e one 
an redu
e the graph tothose edges leading to subsequent levels. One then 
al
ulates a maximal set ofpaths in this redu
ed graph (a blo
king 
ow) and augments along them. As ea
hsubsequent augmenting path must still pass all levels and take at least one edgenot leading to a subsequent level, the distan
e between s and t in
reases withea
h iteration of the whole pro
edure.The above des
ription 
ontains an additional insight: As ea
h augmentingpath has to 
ross an edge leading from level i to level i+ 1 for all i, these edgesform a dire
ted 
ut in the residual network, i.e. a set of edges interse
ting ea
hdire
ted path from s to t in Nf . For ea
h i the 
apa
ity of the level i to leveli + 1 
ut is an upper bound for the additional 
ow whi
h still 
an be pushedfrom s to t. As noted by Even and Tarjan [4℄ the blo
king 
ow method of Dini
also works for multi-graphs and has a 
omplexity of O(m) per phase as ea
hedge will be traversed at most twi
e.2.3 Existen
e of a Small CutEven and Tarjan [4℄ observed that one 
an �nd a 
ow and a 
ut in the 
orrespond-ing residual network of 
apa
ity �nd �2 in a simple unit-edge-
apa
ity network in



5O(dm) steps. We extend their argument to networks whi
h have multi-edgesin
ident to the sour
e or the sink by observing that the 
ut 
onstru
ted bytheir method does not 
ontain any multi-edges. The network 
onstru
ted in theprevious se
tion has this property.After 2+4pn=� phases of Dini
's algorithm1 the s�t distan
e will be greateror equal 2+ 4pn=�. Let Nf be the residual network. s de�nes level 0 and t willbe at a level larger or equal 2 + 4pn=�. So there are 4pn=� subsequent levelsnot 
ontaining s or t. Assume they are partitioned in 2pn=� pairs of subsequentlevels (Fig. 1).Proposition 1. There is one pair 
ontaining at most �pn verti
es.Proof: Assume every pair 
ontains more than �pn verti
es. Then there aremore than �pn 2pn=� = 2n verti
es in the graph. Contradi
tion.Espe
ially ea
h of the two levels will have at most �pn verti
es. Let these levelsbe li and li+1Proposition 2. All edges leading from level li to level li+1 are single edgesProof: Neither s nor t belong to li or li+1 while all multi-edges are in
ident tos or t.Proposition 3. The edges dire
ted from li to li+1 form a dire
ted s � t 
ut inthe residual network Nf with 
apa
ity n�2.Proof: There are at most pn� � pn� edges leading from li to li+1 and ea
h ofthese edges has unit 
apa
ity. So the 
apa
ity of the set of these edges is at mostn�2.
s t

...

li li+1

cut

l0Fig. 1. Residual network with 
ut. Thi
k ar
s represent multi-edges1 If the algorithm of Dini
 stops before, we immediately 
ontinue with the next stepof our algorithm.



6Proposition 4. The edges 
arrying 
ow in Nf whi
h are not 
onne
ted to s ort form an almost (n; �)-regular subgraph H of GProof: The 
apa
ity of the pn�3 edges entering a vertex v 2 A is 1, so for ea
hvertex we have P(s;v)2E f((s; v)) � pn�3. Due to the 
ow 
onservation 
on-straints we have P(v;b)2E f((v; b)) = P(s;v)2E f((s; v)). As ea
h 
ow 
arryingedge leaving v 
arries exa
tly one unit of 
ow this also equalsP(v;b)2E;f(v;b)=1 1whi
h equals the degree of v in the subgraph 
reated by these edges.On the other hand the total 
ow ft is at least npn�3 � n�2, as there 
ouldbe a 
ow of npn�3 through the edges of the disjoint perfe
t mat
hings and the
urrent 
ow 
an at most be augmented by n�2 units of 
ow. The 
ow leaving s(resp. entering t) is tf and as ea
h unit of 
ow 
rosses exa
tly one edge from Ato B there must be the same number of edges leaving the verti
es of A implyingnpn�3 � n�2 � ft =Xv2A X(v;b)2E;f((v;b))=1 1 =Xv2A degH(v)The same argument applies to the verti
es in B by ex
hanging in
oming andoutgoing edges in the proof. Therefore Pv2G degH(v) � 2npn�3 � 2n�2 ,Pv2G(pn�3 � degH(v)) � 2n�2.Using that 2 + 4pn=� phases of the blo
king 
ow algorithm 
an be performedin O(pnm=�) we getLemma 1. An almost (n; �)-regular subgraph 
an be found in a bipartite graph
ontaining �3pn disjoint perfe
t mat
hings in O(pnm=�).3 Regularization and Constru
tion of the Mat
hingLet H be the almost (n; �)-regular subgraph 
onstru
ted in the se
tion 2. Letd := 2n�3pn �Pv2H deg(v) be the missing vertex-degree. We now want to
hangeH into a pn�3 regular multigraph. We do this by adding some additionalverti
es. Ea
h of these 
an be in
ident to �3pn additional edges. The other endsof these edges 
an be 
onne
ted to the \original" verti
es, in
reasing their degree.The sum of the in
reases required is d. So we need at most � := d d�3pne �2n�2�3pn + 1 = 2pn� + 1 additional verti
es. We insert d�=2e verti
es to A and thesame number of verti
es to B. Let A00 � A and B00 � B denote the sets ofadditional verti
es. We 
onne
t verti
es from AnA00 with degree smaller thanpn�3 with multi-edges to the �rst vertex from B00 until it has rea
hed thatdegree and then 
ontinue to do so with the other verti
es from B00 until allverti
es of AnA00 have degree pn�3. We do the same for B and A00. Due to thenumber of additional verti
es 
hosen in the end there will be at most one vertexin A00 and one vertex in B00 having a degree smaller than pn�3. But as all otherverti
es have degree pn�3 and the sum of degrees in A must equal the sum ofdegrees in B these two will have the same degree 
 and are 
onne
ted to ea
hother by pn�3 � 
 multi-edges.



73.1 Finding a Mat
hing in the Regular SupergraphEvery regular bipartite graph 
ontains a perfe
t mat
hing. It 
an be found intime O(m) using the algorithm of Cole, Ost and S
hirra [2℄ or the algorithmof Cole and Hop
roft [1℄ (as the additional summand of the 
omplexity of thisalgorithm is dominated by m for the graphs 
onsidered here). In fa
t it suÆ
esto apply the �rst part of these algorithms whi
h is identi
al and redu
es thenumber of edges in the graph to O(n logn). One 
an use any eÆ
ient mat
hingalgorithm to �nd a mat
hing in this redu
ed graph as the 
omplexity of thisis dominated by the 
omplexity of the other steps of our algorithm. We willgive a short sket
h of this �rst part in order to explain why this also works formultigraphs.The algorithm is based on the fa
t that a r-regular bipartite multigraphG = (A _[B;E) always 
ontains a perfe
t mat
hing, and the underlying simplegraph, i.e. the graph 
reated by repla
ing multi-edges by simple edges, 
ontainsa perfe
t mat
hing, too. This 
an be seen by an appli
ation of the pigeonholeprin
iple: Let X be a subset of A then rjX j edges are in
ident to X and atleast jX j verti
es in B are needed to form the other ends of these edges. So thenumber of verti
es adja
ent to X denoted by j� (X)j is at least as large as jX j.This is the Hall 
ondition [7℄ guaranteeing the existen
e of a perfe
t mat
hing
overing jAj.The idea of the algorithm of Cole and Hop
roft therefore is to modify the r-regular graph in a way that keeps it r-regular while making the underlyingsimple graph smaller. The base operation is to take any even length 
y
le in thegraph and to repla
e ea
h se
ond edge with two edges and to delete every �rstedge, keeping the degree 
onstant while deleting half the edges of that 
y
le. Thisis done for all 
y
les in a maximal 
y
le partition, then repeated for all 
y
les ina maximum 
y
le partition of the underlying simple graph of the double edgesinserting quadruple edges and so on. As every maximum 
y
le partition has atleast m � (n � 1) edges and this pro
edure is applied at most log r times theunderlying simple graph will have O(n log r) edges in the end. In ea
h step thenumber of edges under 
onsideration is halved, and ea
h iteration takes O(m)steps. Therefore the total 
omplexity of this is O(Plog ri=0 12 im) = O(m).So all we have to show is than one 
an �nd a maximum 
y
le partition in amultigraph in O(m), as [1℄ only apply this to simple graphs. In fa
t one 
anapply their method without modi�
ation. This simplest method to see this is torepla
e ea
h edge by a path of length 2 (two edges and a vertex in
ident to both)transforming the graph into a simple graph with 2m edges. A 
y
le partition ofthis graph will 
orrespond to a 
y
le partition of the original graph and 
an befound in O(2m) = O(m) by depth-�rst-sear
h (DFS) as des
ribed by Cole andHop
roft [1℄.3.2 Embedding the Mat
hing into the Original GraphAt most 2pn=� + 1 edges of the mat
hing found in the previous se
tion 
an bein
ident to the additional verti
es. When removing them one deletes at most



8the same number of mat
hing edges, resulting in a mat
hing with at least n �2pn=��1 edges. These edges all belong to the original graph and therefore forma mat
hing of the same size in G. Now we have to enlarge this mat
hing by atmost O(pn=�).It is known from the theorem of Berge [7℄ , that if a mat
hing is non-maximalthere is a so 
alled \augmenting alternating" path, i.e. a path starting in a ver-tex not 
overed by the mat
hing, then using alternatively mat
hing and non-mat
hing edges and ending in a di�erent vertex not in
ident to a mat
hing edge.Inserting all non-mat
hed edges of this path into the mat
hing and removing themat
hing edges 
ontained in the path from the mat
hing gives a new mat
hingwhi
h is larger than the original. This 
an be repeated until a maximum mat
h-ing, in our 
ase a perfe
t mat
hing, has been 
onstru
ted. An augmenting path
an be found in a bipartite graph by slightly modi�ed DFS (see e.g. [6℄) in timeO(m). So by doing O(pn=�) sear
hes for an alternating path ea
h of 
omplexityO(m) the found mat
hing 
an be 
hanged into a perfe
t mat
hing in G in timeO(pnm=�).4 Remarks1. We give a short remark on the \optimal" 
ase. How large 
an � as a fun
tionof n be ? A bipartite graph with 2n verti
es 
an 
ontain at most n disjointperfe
t mat
hings. So in the best 
ase �3 
an be of size kpn for some 
onstantk � 1. This yields � = 3pk 6pn, whi
h results in an O(pnm= 6pn) = O( 3pnm)algorithm.2. If one does not know � beforehand a �0 with 12� � �0 
an be found by binarysear
h. The sear
h starts with �0 := 3qminv2G deg(v)pn . This value is an upper boundfor � as the minimum degree of ea
h vertex is larger than the number of disjointperfe
t mat
hings in the graph. Then the algorithm des
ribed above is run withthis parameter until the �nal 
ow has been 
onstru
ted. If the graph indu
edby the 
ow 
arrying edges is almost (n; �)-regular we perform the other stepsof the algorithm and are done. Otherwise �0 is set to �0=2 and the pro
edureis repeated. Ea
h of the intermediate exe
utions of the algorithm has a lower
omplexity than the last iteration, as �0 is de
reasing monotonously. There 
anbe at most log 3pn � logn iterations.3. Throughout this paper we have used pn� and pn�3 like integral numbers forsimpli
ity. In fa
t these have to be rounded - depending on the 
ontext - to thenearest greater or smaller integral number. This does not a�e
t the 
orre
tnessof the proofs.Referen
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