Finding one of many Disjoint Perfect Matchings
in a Bipartite Graph

Martin Lohnertz

Institute for Computer Science V University of Bonn

Abstract. We demonstrate how to find a perfect matching in a bipartite
graph containing \/no® disjoint perfect matchings in time O(v/nm/c).

1 Introduction

1.1 Overview

The problem of finding a perfect (or a maximum) matching in a bipartite graph
is one of the best known “classical” problems in graph theory. We identify a new
special case of this problem which can be solved faster than the general case.
Similar to the fact that it is easier to find a needle in a haystack containing many
needles we show that a perfect matching can be found faster if there are many
disjoint perfect matchings in the graph.

Several algorithms have been developed for the general bipartite perfect match-
ing problem. The best known ones are the algorithm of Hopcraft and Karp [6]
which has a complexity of O(y/nm) and the much more involved algorithm of

Feder and Motwani [5] with complexity O(\/ﬁm%).

For the regular case there exist faster algorithms: The algorithm of Cole and
Hopcroft [1] with complexity O(m 4 nlog®n) and the algorithm of Cole, Ost
and Schirra [2] with complexity O(m).

The central idea of our method is to find a regular subgraph of a general graph
in order to apply the latter methods to this subgraph.

The main result of this paper is

Theorem 1. Let G be a bipartite graph with 2n vertices and m edges containing

V/no? pairwise disjoint perfect matchings. Then there is an algorithm that finds
\/ﬁm)
—)-

a single perfect matching in time O(

As 0 may depend on n e.g. in graphs containing kn disjoint perfect matchings
for a constant k a perfect matching can be found in time O(/nm).

The algorithm consists of the following steps which will be explained in more
detail in the following sections:

transform the graph into a network

find a large flow in this network

construct an almost regular subgraph from the edges carrying flow

embed this graph in a slightly larger regular graph by adding some vertices
and edges

find a matching in this regular graph

remove matching edges not belonging to the original graph

embed the found matching into the original graph

augment the matching to a perfect matching

Ll e e

®© N ot

We will describe steps 1 to 3 in section 2 and steps 4 to 8 in section 3.

1.2 Notation

A graph G = (V, E) consists of a set of vertices V and a set of edges E C V' x V.
An edge {a, b} is said to be incident to the vertices a and b. a and b are adjacent

if there is an edge {a, b}. The degree of a vertex deg(a) is the number of incident
edges. A subgraph H of G is a graph H = (V' E') with V' C V and E' C E.
The degree of v in H, degr (v) is the number of edges incident to v contained in
H.

Two edges eq, es are said to be independent, if e; Ne; =). A matching
in G is a set M of independent edges and a maximum matching is a matching
M with |M| > |M'| for all matchings M' in G.

A graph is said to be bipartite if V can be split in two disjoint sets V = AUB

and all edges contain vertices from both sets, i.e. E C A x B.
A graph is regular if all vertices have the same degree. We will only consider
bipartite graphs with |A| = |B| and will denote |A| by n, implicating that the
number of vertices is actually 2n but this constant factor will not influence the
asymptotic complexity. As usually we denote the number of edges by m.

2 Finding an Almost Regular Subgraph

Definition 1. An almost (n,o)-regular subgraph of a bipartite graph G = (V, E)
is a subgraph H with degp(v) < /no® Yo € V and Y, .\ (v/no® — degr (v)) <
2no?

The critical property of an almost (n,o)-regular graph is the relation between
maximum degree and the number of edges missing to make the graph regular.
We will model this by a flow in a network in which almost the same large flow
passes through each vertex.

2.1 Transformation to a Unit Capacity Network

Let G = (AUB,E), |A| = |B| = n, V. = AU B be a bipartite graph with
Vv/no? disjoint perfect matchings. Our transformation is similar to the well known
“direct” transformation of the matching problem into a flow problem [7]. The
only difference will be a change in some edge capacities. Note that in our network
we will assume the edges to be directed, i.e. an edge (a,b) has a “tail” (a) and a
“head” (b) and we assume that flow flows from the tail to the head. A network is
a directed graph with two special vertices, a source s and a sink ¢, together with
a function ¢ : E — IR. The underlying intuition is than one wants to send flow
from s to ¢t without sending more than c¢(e) flow across an edge e. A network is
an unit capacity network if ¢(e) = 1 for all edges.

A network NV with capacities is created from G by directing all edges from
A to B, adding a source node s and a sink node ¢ and edges (s,a) for all a € A
and (b,t) for all b € B. For each edge e € G we set the capacity c(e) to 1 and
to ¢ := /no? for all new edges. The maximum flow through this network will
have size ny/no?® as each set of edges forming a matching will allow to transfer
n units of flow.
To transform this network to a unit capacity network we replace each edge
with capacity ¢ by ¢ parallel edges, each with capacity 1. Note that 2nc < 2m,

as there have to be at least cn edges in G that form the matchings. Therefore
m+2nc € O(m) and we will continue to speak of m indifferent whether meaning
m or m + 2nc. Each set of parallel edges will be called a “multi-edge”. The other
edges will be called “simple” edges.

2.2 Finding a Large Flow

We start with a short repetition of blocking flow algorithms. A flow in our unit
capacity network is a function f : E — {0,1} which associates a flow value
with each directed edge. A flow f must fulfill the flow conservation constraints
Yuyer f(ws0) =32 wer f((v,w)) Yo € V\{s,t}. Our aim is to find a flow
for which }-; \ep f((5,0)) = 2y 1yep f((u, 1)) is large.

For the unit capacity case we can define the so called residual network Ny =
(V, Ey) the following way: The vertices are the same as in N and for (u,v) € E
we have (u,v) € E; iff f((u,v)) =0 and (v,u) € E; iff f((u,v)) = 1. A directed
path from s to ¢ in the residual network corresponds to one possible augmentation
of the current flow by sending one more unit of flow along this path.

Hopcroft and Karp [6] have observed, that one should augment along shortest
paths in this network. This was modified by Dinic [3] to the “method of blocking
flows”.

By labeling the vertices of Ny by their distance from s in Ny, which can
by done by breath-first-search in O(m), one can identify these shortest paths.
The algorithm of Dinic [3] uses these in a different way. The labels partition
the graph in several levels. Every edge in the residual network starting at level
I must lead to a level < [+ 1 by construction. As every augmenting path of
shortest length must cross each level exactly once one can reduce the graph to
those edges leading to subsequent levels. One then calculates a maximal set of
paths in this reduced graph (a blocking flow) and augments along them. As each
subsequent augmenting path must still pass all levels and take at least one edge
not leading to a subsequent level, the distance between s and ¢ increases with
each iteration of the whole procedure.

The above description contains an additional insight: As each augmenting
path has to cross an edge leading from level i to level i + 1 for all i, these edges
form a directed cut in the residual network, i.e. a set of edges intersecting each
directed path from s to ¢ in Ny. For each ¢ the capacity of the level i to level
i+ 1 cut is an upper bound for the additional flow which still can be pushed
from s to t. As noted by Even and Tarjan [4] the blocking flow method of Dinic
also works for multi-graphs and has a complexity of O(m) per phase as each
edge will be traversed at most twice.

2.3 Existence of a Small Cut

Even and Tarjan [4] observed that one can find a flow and a cut in the correspond-
ing residual network of capacity (%)2 in a simple unit-edge-capacity network in

O(dm) steps. We extend their argument to networks which have multi-edges
incident to the source or the sink by observing that the cut constructed by
their method does not contain any multi-edges. The network constructed in the
previous section has this property.

After 2+44/n /o phases of Dinic’s algorithm® the s — distance will be greater
or equal 2+ 4y/n/o. Let Ny be the residual network. s defines level 0 and ¢ will
be at a level larger or equal 2 + 4y/n/o. So there are 4,/n/o subsequent levels
not containing s or ¢. Assume they are partitioned in 21/n /o pairs of subsequent
levels (Fig. 1).

Proposition 1. There is one pair containing at most o+/n vertices.

Proof: Assume every pair contains more than oy/n vertices. Then there are
more than ov/n 2v/n/o = 2n vertices in the graph. Contradiction.

Especially each of the two levels will have at most o+/n vertices. Let these levels
be li and li+1

Proposition 2. All edges leading from level l; to level l;11 are single edges

Proof: Neither s nor ¢ belong to I; or l;, while all multi-edges are incident to
sort.

Proposition 3. The edges directed from l; to l;11 form a directed s —t cut in
the residual network Ny with capacity no?.

Proof: There are at most /no x \/no edges leading from [; to l;11 and each of
these edges has unit capacity. So the capacity of the set of these edges is at most

no?.

cut

1
& /v

lo I

i+1
Fig. 1. Residual network with cut. Thick arcs represent multi-edges

L If the algorithm of Dinic stops before, we immediately continue with the next step
of our algorithm.

Proposition 4. The edges carrying flow in Ny which are not connected to s or
t form an almost (n,o)-reqular subgraph H of G

Proof: The capacity of the \/no? edges entering a vertex v € A is 1, so for each
vertex we have > cp f((s,v)) < v/no3. Due to the flow conservation con-
straints we have },) cp f((0,0)) = 225 ,yep f((s,v)). As each flow carrying
edge leaving v carries exactly one unit of flow this also equals }>, 1 cp f(y.5)=1 1
which equals the degree of v in the subgraph created by these edges.

On the other hand the total flow f; is at least n\/no® — no?, as there could
be a flow of ny/no? through the edges of the disjoint perfect matchings and the
current flow can at most be augmented by no? units of flow. The flow leaving s
(resp. entering t) is ¢y and as each unit of flow crosses exactly one edge from A
to B there must be the same number of edges leaving the vertices of A implying

nvnod —no® < f, = Z Z 1= Z degrr(v)

ve A (v,b)EE, f((v,b))=1 vEA

The same argument applies to the vertices in B by exchanging incoming and
outgoing edges in the proof. Therefore Y . degr(v) > 2ny/no® — 2no? &
S vea(W/0? — degu(v)) < 2n0%.

Using that 2 + 44/n/o phases of the blocking flow algorithm can be performed
in O(y/nm/o) we get

Lemma 1. An almost (n,o)-regular subgraph can be found in a bipartite graph
containing o®\/n disjoint perfect matchings in O(y/nm/a).

3 Regularization and Construction of the Matching

Let H be the almost (n,o)-regular subgraph constructed in the section 2. Let
d := 2no°\/n — Y, .y deg(v) be the missing vertex-degree. We now want to
change H into a v/no® regular multigraph. We do this by adding some additional
vertices. Each of these can be incident to o/n additional edges. The other ends
of these edges can be connected to the “original” vertices, increasing their degree.
The sum of the increases required is d. So we need at most « := [#] <

3?\"/% +1= %ﬁ + 1 additional vertices. We insert [a/2] vertices to A and the
same number of vertices to B. Let A” C A and B"” C B denote the sets of
additional vertices. We connect vertices from A\A"” with degree smaller than
Vv/no? with multi-edges to the first vertex from B’ until it has reached that
degree and then continue to do so with the other vertices from B” until all
vertices of A\ A" have degree \/no®. We do the same for B and A”. Due to the
number of additional vertices chosen in the end there will be at most one vertex
in A” and one vertex in B” having a degree smaller than y/no?. But as all other
vertices have degree y/no® and the sum of degrees in A must equal the sum of
degrees in B these two will have the same degree v and are connected to each
other by y/no® — v multi-edges.

3.1 Finding a Matching in the Regular Supergraph

Every regular bipartite graph contains a perfect matching. It can be found in
time O(m) using the algorithm of Cole, Ost and Schirra [2] or the algorithm
of Cole and Hopcroft [1] (as the additional summand of the complexity of this
algorithm is dominated by m for the graphs considered here). In fact it suffices
to apply the first part of these algorithms which is identical and reduces the
number of edges in the graph to O(nlogn). One can use any efficient matching
algorithm to find a matching in this reduced graph as the complexity of this
is dominated by the complexity of the other steps of our algorithm. We will
give a short sketch of this first part in order to explain why this also works for
multigraphs.

The algorithm is based on the fact that a r-regular bipartite multigraph
G = (AUB, E) always contains a perfect matching, and the underlying simple
graph, i.e. the graph created by replacing multi-edges by simple edges, contains
a perfect matching, too. This can be seen by an application of the pigeonhole
principle: Let X be a subset of A then r|X| edges are incident to X and at
least | X| vertices in B are needed to form the other ends of these edges. So the
number of vertices adjacent to X denoted by |I'(X)] is at least as large as | X]|.
This is the Hall condition [7] guaranteeing the existence of a perfect matching
covering |A|.
The idea of the algorithm of Cole and Hopcroft therefore is to modify the r-
regular graph in a way that keeps it r-regular while making the underlying
simple graph smaller. The base operation is to take any even length cycle in the
graph and to replace each second edge with two edges and to delete every first
edge, keeping the degree constant while deleting half the edges of that cycle. This
is done for all cycles in a maximal cycle partition, then repeated for all cycles in
a maximum cycle partition of the underlying simple graph of the double edges
inserting quadruple edges and so on. As every maximum cycle partition has at
least m — (n — 1) edges and this procedure is applied at most logr times the
underlying simple graph will have O(nlogr) edges in the end. In each step the
number of edges under consideration is halved, and each iteration takes O(m)

steps. Therefore the total complexity of this is O(3 18" 'm) = O(m).

So all we have to show is than one can find a maximum cycle partition in a
multigraph in O(m), as [1] only apply this to simple graphs. In fact one can
apply their method without modification. This simplest method to see this is to
replace each edge by a path of length 2 (two edges and a vertex incident to both)
transforming the graph into a simple graph with 2m edges. A cycle partition of
this graph will correspond to a cycle partition of the original graph and can be
found in O(2m) = O(m) by depth-first-search (DFS) as described by Cole and
Hopcroft [1].

3.2 Embedding the Matching into the Original Graph

At most 2y/n/o + 1 edges of the matching found in the previous section can be
incident to the additional vertices. When removing them one deletes at most

the same number of matching edges, resulting in a matching with at least n —
2y/n/o—1 edges. These edges all belong to the original graph and therefore form
a matching of the same size in G. Now we have to enlarge this matching by at
most O(v/n/o).

It is known from the theorem of Berge [7] , that if a matching is non-maximal
there is a so called “augmenting alternating” path, i.e. a path starting in a ver-
tex not covered by the matching, then using alternatively matching and non-
matching edges and ending in a different vertex not incident to a matching edge.
Inserting all non-matched edges of this path into the matching and removing the
matching edges contained in the path from the matching gives a new matching
which is larger than the original. This can be repeated until a maximum match-
ing, in our case a perfect matching, has been constructed. An augmenting path
can be found in a bipartite graph by slightly modified DFS (see e.g. [6]) in time
O(m). So by doing O(y/n/c) searches for an alternating path each of complexity
O(m) the found matching can be changed into a perfect matching in G in time

O(ynm/a).

4 Remarks

1. We give a short remark on the “optimal” case. How large can ¢ as a function
of n be 7 A bipartite graph with 2n vertices can contain at most n disjoint
perfect matchings. So in the best case o can be of size ky/n for some constant
k < 1. This yields 0 = V/k¢n, which results in an O(y/nm/¢/n) = O(/nm)
algorithm.

2. If one does not know o beforehand a ¢’ with 20 < ¢’ can be found by binary

n
for o as the minimum degree of each vertex is larger than the number of disjoint

perfect matchings in the graph. Then the algorithm described above is run with
this parameter until the final flow has been constructed. If the graph induced
by the flow carrying edges is almost (n,o)-regular we perform the other steps
of the algorithm and are done. Otherwise ¢’ is set to ¢'/2 and the procedure
is repeated. Each of the intermediate executions of the algorithm has a lower
complexity than the last iteration, as ¢’ is decreasing monotonously. There can
be at most log &/n < logn iterations.

3. Throughout this paper we have used y/no and \/no? like integral numbers for
simplicity. In fact these have to be rounded - depending on the context - to the
nearest, greater or smaller integral number. This does not affect the correctness
of the proofs.

search. The search starts with o’ := ¢/ %d@@)_ This value is an upper bound

References

[1] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. Siam J. Comput., 11,
1982.

[2] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E log D)
time. Technical Report TR1999-792, New York University, 21, 1999.

[3] E. A.: Dinic. Algorithm for solution of a problem of maximum flow. Soviet Math-
ematics Doklady, 11, 1970.

[4] S. Even and R.E. Tarjan. Network flow and testing graph connectivity. Siam J.
Comput., 4, 1975.

[6] Tomds Feder and Rajeev Motwani. Clique partitions, graph compression and
speeding-up algorithms. In STOC proceedings, pages 123-133, 1991.

[6] J. E. Hopcroft and R. M. Karp. A n®? algorithm for maximum matching in
bipartite graphs. Siam J. Comput., 2, 1973.

[7] Lészlé6 Lovasz and Michael D. Plummer. Matching Theory. Akadémiai Kiadd,
North-Holland Publishing, 1986.

