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probability) an approximation to the optimum of the whole system up to an additive
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independent in the exponent on the dimension 7. The above method gives a completely
uniform sampling technique for all the MAX-rCSP problems,; and improves the best
known sample bounds for the low dimensional problems, like MAX-CUT.

The method of solution depends on a new result on the cut norm of random subarrays,
and a new sampling technique for high dimensional linear programs. This method could
be also of independent interest.
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1 Introduction

Suppose r is a fixed integer. In the MAX-rSAT problem, we are given a Conjunctive Normal
Form Boolean formula on n variables, with each clause being the OR of precisely r literals.
The objective is to maximize the number of clauses satisfied by an assignment to the n
variables. The exact problem is NP-hard for r > 2. This paper has two main results - the
first concerns general r, and the second the special case of »r = 2. The first result is that
for any € > 0, there is a positive integer ¢ € O(log(1/¢)/e'?) such that if we pick at random
a subset of ¢ variables (among the n) and solve the “induced” problem on the ¢ variables
(maximize the number of clauses satisfied among those containing only those variables and
their negations), then the answer multiplied by n"/¢" is, with high probability, within an
additive factor en” of the optimal answer for the n variable problem. The ¢ needed here
will be called the “(vertex) sample complexity” of the problem for obvious reasons.

In fact, we show the same result for all MAX-rCSP problems. (MAX-rCSP problems, also
called MAX-rFUNCTION-SAT, are equivalent to MAX-SNP [3]). We note that while,
normally, sampling is used to estimate certain specific quantities, here the result actually
says that the sample estimates an optimal solution value well. We do not know of any such
optimizing results in statistics prior to this work.

The MAX-rSAT and other MAX-rCSP problems all admit fixed factor relative approxima-
tion algorithms which run in polynomial time. For some MAX-SNP problems, there have
been major breakthroughs in achieving better factors using semi-definite programming and
other techniques [9]. More relevant to our paper is the line of work started with the paper
of Arora, Karger and Karpinski [3] which introduced the technique of smooth programs,
and designed the first polynomial time algorithms for solving MAX-SNP problems (of arity
r) to within additive error guarantee en”, for each fixed ¢ > 0. Frieze and Kannan [7]
proved an efficient version of Szémeredi’s Regularity Lemma and used it to get a uniform
framework to solve all MAX-SNP and some other problems in polynomial time with the
same additive error. In [8], they introduced a new way of approximating matrices and more
generally r-dimensional arrays, called the “cut-decomposition” and using those, proved a
result somewhat similar to the main result here (for each fixed r), but with two impor-
tant differences - (i) the sample complexity was exponential in 1/€ and (ii) their result did
not relate the optimal solution value of the whole problem to the optimal solution of the
random sub-problems in their original setting; instead it related it to a complicated com-
putational quantity associated with the random sub-problem. We will make central use of
cut-decompositions in this paper.

For the special case of r = 2, Goldreich, Goldwasser and Ron [10] designed algorithms,
where the sample complexity was polynomial in 1/€; indeed, by exploiting the special
structure of individual problems like the MAX-CUT problem they improved the polynomial
dependence. Their results relate the optimal solution value of the whole problem to a
complicated function of the random sub-problems like [7] (see also [7], [5] and [2] for higher
dimensional cases, or for cases in which our only objective is to decide if we can satisfy
almost all constraints). Thus they differ from our new uniform method.



Our second main result is a reduction of the sample complexity for all MAX-2CSP prob-
lems to O(1/€*). We must remark here that both our main results are derived by general
arguments about approximating multi- (and 2-) dimensional arrays by some simple arrays
and then using Linear Programming arguments. Unlike previous papers, we do not use
problem-specific arguments which dwelve into the special structure of individual problems.
The MAX-CUT problem (a special MAX-2CSP problem) has received much attention in
this context. Indeed, independently of the papers so far cited, Fernandez de la Vega [6]
developed a different algorithm for this problem which within polynomial time, produced a
solution with additive error en?. [10] used the special structure of the problem to derive an
algorithm with the best up to now sample complexity O(1/€®) (in the sense of (ii) above).
Our improved sample complexity argument uses a tightened cut-decomposition argument
as well as a better Linear Programming argument.

The global view of our method is the following. We represent MAX-rCSP problems by
r-dimensional arrays. In the first stage we use the main result of Section 3 on cut norm of
random subarrrays to transfer a cut decomposition of the whole array to a random sample.
We use then a cut decomposition of a sample to approximate the value of the objective
function. Then, in the second stage, we use linear programs to relate it to the value of the
objective function on the whole array by using the main result of Section 4.

For arbitrary dimension r, the sample size for the first stage is O (}6), whereas the sample

1
size for the second stage is O (105(26))'

We notice, that in order to approximate any problem from MAX-rCSP, it is enough to
give a good absolute approximation to the optimum of an induced random subsystem. As
a consequence, our sample bound above gives, by a direct application of an approximation

method of [3], the running times 20<6L2) for approximating all MAX-rCSP problems. This

improves on the best known up to date bound of the form 20<62T1—2) for the problems of
dimension r ([8]).

The paper is organized as follows. Section 2 proves the existence of a Cut decomposition for
arrays of dimension r > 2. This is shown to be essentially optimal in Section 5. Section 3
gives the basic result on the Cut decomposition induced on a random sub-array. In Section
4 we derive an upper bound for the sample size using Linear Programming. In Section 5,
we prove a lower bound for the number of Cut arrays in a Cut decomposition. In Section 6,
we give an improvement on sample size for all MAX-2CSP problems, including MAX-CUT,
improving over the best known upper bounds for these problems. Further we prove also a
lower bound on the sample complexity of MAX-CUT.

1.1 Notation

We consider r—dimensional arrays, where r > 2. [The r = 2 case gives us matrices.]
If Vi,Va,...V, are (not necessarily distinct) finite sets, an r—dimensional array A on
Vi, Vo, ... Viis afunction A : VixVox...V, — R. Foreach 11 € Vi,i5 € V5, .. .1, € V., we



call A(iy,1ig,...7,) an entry of A. We let || A|| be the square root of the sum of squares of all
the entries. [This is sometimes called the Frobenius norm, hence the subscript F'.] For any
Sl g Vl, SQ g V2 .. .Sr g Vr we let A(Sl, 527 .. S,,) = Z(il,iQ,...ir)EslXSQX...ST A(il, iz, .. Zr)

and then define another norm ||A||¢ (called the cut norm) :

At = max A(S1,S2,...5,)
S51CV1,5,CV,,...5-CV,

and [|A]|c = max(At, (—A)™).
The cut norm was defined and studied by [8].

For any S1,S2,...5,, and real value d we define the Cut Array C' = CUT(S1,S2,...5,;d)
by
d if (il,ig,...ir) €51 X 57...5,,

0 otherwise.

Clir, iz, .. .0,) = {
The real number d is called the coefficient of the cut array.

We use one other piece of notation : for any () C V5 X V3...V,, we define
PQ)={zeVi:A(z,Q) =
> A(z,ig,i3,...1,) > 0}.

(Z,ig,’i3,...ir):(ig,ig,...ir)EQ
Note that P is with reference to an array A. It will be clear from context which array P is
in reference to.

1.2 Main Results

We formulate now the main results of the paper. We denote by MAX-rCSP the class of all r-
ary (r-dimensional) Mazimum Constraint Satisfaction Problems (i.e. the problems defined
by the collections of r-ary boolean functions f : {0,1}" — {0, 1} for r given variables out
of the set of n variables with the objective to construct an assignment s € {0, 1}" which
maximizes the number of satisfied constraints, cf., e.g., [12]). Given a problem P from
MAX-rCSP for a given dimension r > 2, we call a (randomized) algorithm A an (absolute)
en”- approximation algorithm for P, if for any instance I of P with n variables, the value
c(A(I)) produced by A on [ satisfies, with high probability, |[OPT (1) — ¢(A(I))| < en”,
where OPT (1) is the value of the optimum. The sample complezity of an r-dimensional
en” -approzimation algorithm (defined for all ¢ > 0 ) is the number of variables (nodes) in
a random sample required by the algorithm as a function of % We are interested in cases
in which this complexity is independent of the size of the input size, and is bounded by
a function of % only; when this is not the case we say that the the sample complexity is
infinite. We call a sample complexity fully polynomial if it is (%)0(1).

For a fixed dimension r, a problem P from MAX-rCSP is said to have (an absolute) fully

o(1
polynomial sample complezity S = (%) ( ), if for every fixed € > 0, there exists a constant

time en”-approzimation algorithm for P with a sample complexity S. A class of problems X



will be said to have a sample complexity S if all problems P in X have sample complexity

S.

We formulate now our main results.

Theorem 1. For every dimension r, and every fived ¢ > 0, MAX-rCSP has a constant

1
time en” -approximation algorithm with fully polynomial sample complexity O <10§1(2€)).

Theorem 2. For every fived ¢ > 0, MAX-2CSP has a constant time en?-approximation
algorithm with a sample complexity O (%4)

The rest of the paper is devoted to the proofs of the above results as well as to the lower
bound results on the number of Cut Arrays needed in our cut decompositions, and a lower
bound on the sample complexity of MAX-CUT.

1.3 Constant Time Bounds

We show now that the fully polynomial sample size bounds of Theorem 1 (and more ex-
plicitly of Theorem 8) entail the existence of en"-approximation algorithms for arbitrary

MAX-rCSP problems running, for any fixed ¢ > 0, in time 2(3(6%) and using sample size

1
0] <10§1(2€)). This improves on the best known so far running time bounds for approxi-

mating those problems which were of the form 20<e2%2) for r the dimension of a problem
[8], and making them asymptotically equal to that of the MAX-CUT. The argument used
in the proof of the following theorem is based on a technique of smooth programs and the
approximation result of Arora, Karger and Karpinski [3]. The crucial point here is the inde-
pendence of the exponent of (%) in the running times of smooth programs approximations,
on a dimension r.

Theorem 3. For every fized dimension r, and every € > 0, MAX-rCSP has en” -approzimation

A( 1 1
algorithms running in time 20<e_2) and having sample complexity O <10§1(2€)).

Proof. Let P be a problem on n variables from MAX-rCSP for a given r. We denote
by OPT its optimum value. We consider subsystem & of constraints of P induced by a

1
random sample of its variables of size ¢ = © (begl#) We denote by OPTs the optimum

value of a subsystem §. We have, by Theorem &8, w.h.p., the following inequality
OPT — 20PTs| < an”. (1)
qT’

We consider now only a new problem defined by a random subsystem &, and represent it,
by using a standard “arithmetization”, as a degree-r Smooth Integer Program, see for details



[3]. We apply now Theorem 1.10 of [3] to get an ¢¢"-approximation algorithm A for an
induced subproblem computing a solution Y which satisfies OPTs — ¢'¢q" <Y < OPTs for

. _— . o(Zs) _o(3e) g
arbitrary ¢ > 0. The running time of A is ¢ \(9°/ =2 \(D*/ with an explicit constant
hidden in our O-notation upstairs depending polynomially on a dimension r, see [3].

By (1) we have, for all ¢,€¢ > 0,

r

OPT < n (Y + e’qr) +en”,
q?”

and

OPT < n—Y—I— (e4€)n'.
qT’

We have also

Thus, we have

|OPT — n—Y| < (e4€)n”
qT’

for arbitrary ¢, ¢ > 0.

Therefore an existence of an €’ ¢"-approximation algorithm computing a solution Y for an
O
induced subproblem which works in time 2 \( )2) (cf. [3]) entails, by Theorem 8, an en”-
A( 1 1
approximation algorithm for P working in time 20<e_2) (and using sample size O (loegl#))
for all € > 0.

a

A similar argument can be applied to Theorem 2, yielding

Theorem 4. For every ¢ > 0, MAX-2CSP has en?-approximation algorithms working in
A1
time 20<e_2) and having sample complexity O (%4)

2 Existence of Cut Decomposition

In this section, we prove the existence of a certain approximation to any matrix. The
approximation will be the sum of a small number of cut-arrays. The sum is taken entry-
wise. The proof is elementary and essentially drawn from [8].



Theorem 5. Suppose A is an array on Vi, Vo, ... V., N = |V1||Vz|...|V,| and € is a positive
real number. There exist at most 4" /¢* cut arrays whose sum D approzimates A well in the

sense :
|A = Dllc < eV'N||A||r (2)
|A = Dl < [|AllF (3)

The sum of the squares of the coefficients of the

Al

cut arrays is at most 4"

This upper estimate on the number of cut arrays is tight up to the dependence on the
dimension r.

Proof. For an existence argument, we are going to find cut arrays DWW p@ . p
one by one always maintaining the condition:

2

€“t
1A= (DW + D® ... 4 DW)||F < (1 - 4—T)IIAII%- (5)

We start with £ = 0. At a general stage, suppose we already have D ... DW satisfying
(5). If now W) = A — (DM 4+ D@ 4 ... 4 D) satisfies ||[IWV)||¢ < ev/N||A||F, then we
stop. Otherwise, there exist Sy, Ss,...5, such that |VV(75)(517527 .8 > ' N||AllF. If
|S1] < |Vi]/2, then since W(Sy, Sy, ...5,) = W (11, S,,...5,) = WO (V1\ Sy, S, ...5,),
we have that one of |W(t)(V17527...S7»)| or |W(t)(V1 \ 51,52,...5,)] must be at least
(¢/2)V/N||A||r. Thus we have that there exist some S; C Vi, [Si| > |V1]/2 and Ss, .. .S,
such that |[W®(Sy, Sy, ...5,)| > (¢/2)V/N||A||r. By repeating this with Sy, S3,...S,, we
see that
IS S LS ST > (12

WSS LS > (¢/2)VN[Allp.

Let dipy = WO (ST GiFL 1) /(| ST S L. |SEHY) be the average of the entries
in S; x Sy x ...5, and let DU = CUT(SITY S+t [ S diy1). Then, noting that
subtracting the cut array DU+ from W® just corresponds to subtracting the average
from a set of real numbers, we have :

W — DI — w7, =
> (WO iy, dg, .. dy) — dyyy)?
ineSithiesitt
— (W iy, i, ...1r))?) (6)
= —|STTHISEY LS T dE =
WO (St gt gtt1y2 e
b b r < _
SIS s T2
Also, |[W — DU — [[WO||} < —di, N/27 (7)

[1A][7-



We now have (5) satisfied with ¢ one greater. Note that (5) implies that we must stop
before t exceeds 2% /¢2. The upper bound on the sum of the d? follows from adding up the
inequalities (7) which yields

1AIIE > [JAlF = 1A = (DY + DB . DO} > S diN/2.
t

The proof of the thigtness of the upper estimate is included in Section 5. O

3 Cut Norm of Random Subarrays

The main purpose of this section is to show that if an array on V" (where |V| = n is

large) has small cut-norm, then so does the array induced by a random subset J of V of
cardinality O(1/¢%).

The outline of the proof is as follows : Suppose G is the array on V", and B is the array on
J7. Suppose Q1,Qs,-..Q, are random subsets of J"71, each of cardinality (1/€*). Then,
lemma (7) asserts that with high probability, there are subsets Q] C Q1, Q5 C Q2...Q. C
@, such that

B(P(Q}). P(QY), ... P(QL)) ~ BY. (8)

In other words, we need to consider only 2001/¢) candidate subsets of J to find the
S1,S%,...S, C J approximately maximizing B(S1, Sy, ...S,) (not all 200D of them.) Next
Lemma (8) shows that if we had already fixed, say X; = P(Q}), X2 = P(Q%),... X, =
P(Q!), and then we pick J (independently of X;), we will have that with high probability

VI
G(X17X27 .. Xr) ~ ||J||7’

B(X1, Xy,...X,). (9)

Multiplying the failure probability with the number of possible subsets of the (); (which is
20(1/52))7 we also get that with high probability, this holds for every subset Q] of Q1, @)
of (3 etc. If this holds rigorously, we would then clearly be able to infer from (8) and (9)
that

G-I—

2

A similar inequality also will follow (along the same lines) for (—G)* and this would finish
the proof.

The major problem is that J is not independent of Qq,Q2,...Q,; if it were (8) will not
hold. To tackle this, we adopt a method of proof reminiscent of the argument of Vapnik and
Chervonenkis [15]. We consider a set J’ which is J minus all the end points of r— tuples
in Q1,Q2,...Q,. Noting that |J| — |J'] € O(1/¢?), we argue that we get roughly the same
probability distributions if we pick, as we described already, J first and then @1,Q9,...Q;
as random subsets of J"71 whence (8) holds as if we first pick .J' and then Q1, Q2,...Q, as
random subsets of V"~! whence we have that (9) holds. Thus, we may actually use both
(8) and (9) to get our result.



Lemma 6. Suppose B is a r—dimensional array on Ry X Ry X ... R,.. Suppose S; C
Ry,5 C Ry,...5. C R, are some fized subsels. Suppose ()1 is a random subset of Ry X
Ry X ... R, of cardinality p. ' Then, with probability at least 1 — W, we have :

B(P(Ql N (52 X 53...57,)),52,53,...,57») >

B 40(4r)"/|R1||R2] - - .| R/ ]

B(S1,5%,...5;) p || Bl|F-
Proof. Let 59 x S3...%x S, = 5. We have,
B(P(Q1N5),5) = B(P(5),5) — B(B1,5) + B(Ba,5), (10)

where

By = {z€Ry: B(z,5)>0and B(z,5N Q) <0},
B, = {z€Ry: B(z,5)<0and B(z,5NQ4) >0},

Consider one fixed z € R;. Let X, = B(z,5N Q1). We may write X, as the sum
X1+ Xy +...X,, where X, Xy,...X, is a sample of size p drawn uniformly without
replacement from the set of [ = |Ry| X |R3| X...|R,| reals - {B(z,y))1,cs}. For analysis, we
also introduce the random variables Y7, Y5,...Y, - a sample of size p drawn independently,
each uniformly distributed over the same set of reals, but now with replacement. We have

E(X1+ X2+4...X,) = %B(z, S)

Var(Xl —|—X2 —|— .. Xp) S Var(Yl —|—Y2 —|— .. Yp) S
EY Bwr<t Y Bw?

ueS uERgXRgX...RT

where the second line is a standard inequality (for example, it follows from Theorem 4 of
[11]). Hence, for any £ > 0,

p ZUERQ XRsX...Ry B(Zv u)2
1£2

If z € By then X, —(p/l)B(z,5) < —(p/q)B(z, S) and so applying (11) with £ = pB(z,5)/!
we get that for each fixed z,

Pr (‘X - %B(Z, S)‘ > 5) < (11)

ZZUERQXRgx...RT B(Zv u)2
pB(Z} 5)2

PI‘(Z € Bl) S

E (Z B(Z,S))

ZEBl

190, each of the (lRQHRzl'”erl) subsets 1s equally likely to be picked to be Q5.

9



2
< > min{B(z,S),M}
{z€R1: B(z,58)>0} pB(z,5)
S Z lZuERngg...RT B(Zvu)z (12)
p

{z€R1: B(#,5)>0}
By an identical argument we obtain
>,B 2
E(Z 3(275))2_ S 132, Blu, )"
~€B, {2€Ry: B(2,5)<0} p
Hence, (using the Cauchy-Schwartz inequality),

E(B(P(Q1NS),8)) > B(P(S),9) - Y W
z€R,

> B(p(s), 5) - L gy
VP
Now, B(P(S),S)— B(P(SNQ1),S5) is a nonnegative random variable with expectation at
most —V|Rl||\]/%_;|"'|RT|||B||F7 as argued above. So using Markov inequality, the lemma follows.

a

Lemma 7. Suppose B is a r—dimensional array on Ry X Ry X ... R.. Let p > 160r1/é2.
Suppose also that (Q; is a random subset of Ry X Re X ... Ri—1 X Riy1 ... R, of cardinality
p. Then with probability at least 1 — r/(40(4r)"), we have :

ElQll g QhElQ/Z g Q27 e HQ;’ g QM

B(P(Q}), P(QY),-.-P(QL) > BY — e\/|Ril|Ry| ... |R,| || Bllr.

Proof. Let S; C Ry,S2 C Ry...S, C R, satisfy B(S1,952,...5,) = Bt. Applying
Lemma (6) r times, we get the current lemma. O

We first need one more simple technical lemma.

Lemma 8. Suppose G is a r dimensional array on V" with each entry of absolute value at
most M. Lett be a fived positive integer. Let I be a random subset of V' of cardinality t.
Then, with probability at least 1 — e="1/8 we have

VI

IG(V,V,V,...V) - OF

G, I,...N| <EMVI.

Proof. Note that changing any one element of I changes the random variable G(I,1,...1)
by at most M¢"~1. Thus the lemma follows by standard Martingale inequalities ([4]).

10



Theorem 9. Suppose G is a r—dimensional array on V' =V XV x ...V with all entries
of absolute value at most M. Let J be a random subset of V of cardinality ¢ > 100017 /¢°.
Let B be the r—dimensional array obtained by restricting G to J". Then, we have with
probability at least 39/40:

q 207 -GF
Bllc < —=||G 10e* M 5 .
Proof. First we have that E(||B||%) = |‘q/r|r ||G]|%, so using Markov inequality, we have
that with
qr/2

Let p = 160r/e%. Let Qq,Qs,...Q, be r independently, each uniformly randomly picked
subsets of J"~! each of cardinality p. We apply Lemma (7) to B. So, with probability at
least 7/8 (using (13))

3Q) € Q1,3Q5 C Q2,...3Q, C Q) G(P(QY) N J, P(QY)

e q"
mJ,...P(Q;)ﬁJ)2B+—§W||G||F. (14)

[Here, we mean by P(Q}) the set {z € V : G(z,Q}) > 0}.] Let J' be obtained from J by
removing the at most r(r — 1)p end points of the elements of Q1 UQ2U...Q,.

We will make crucial use of the fact that the following two different methods of picking
J,QQ1,Q2,...Q, produce nearly the same joint probability distribution on them :

(i) As above, pick J to be a random subset of V' of cardinality ¢ and then pick Q1,Q2,...Q:
to be independent random subsets of J"~! each of cardinality p. Let P(i)(J7 Q1,Q2,...Q/)
be the probability that we pick J, @1, Q2,...Q, in this experiment. Then, clearly, for each

J7Q17Q27 B 'Qr’ with |J| = q7Q17Q27 B 'Qr’ g Jr_17 |Q2| =p, we have

p(i)(J,Qth---Qr) = ((|‘;|) (qrp_l) )_ ‘

(ii) Now, pick J/ to be a random subset of V' of cardinality ¢—r(r—1)p. Then pick indepen-
dently (of J and of each other) r random subsets Q1,...Q, of V'~ of cardinality p each.
Let J = J'U (the set of all end points of elements of Q;UQ5...Q,). Let P (J' Qy,...Q,)
be the probabilities here.

Define E5 to be the event that all pr(r — 1) end points of the elements in Q1,Q2,...Q, are
all distinct and let E5 be the event that all the end points of Qy, Qs, . ..Q, are distinct and
none of them is in J'. It is easy to see by direct calculation that conditioned on the events
Fy, Fs P and P are exactly equal. It is also easy to see that

PO (15, = ((ril)) ((TLZ))—P) ((il) —p(r - 1)p)/

11



r

qr—l
l( ) ) > 99/100,

and PU9(F3) > 99/100; so we have that the following inequality which we will use shortly

1P — Py < 1/50. (15)

Consider one particular collection of subsets Q| C Q1,Q% C Q2,...QL C Q.. We will apply
Lemma (8) to the array G’ on V" obtained by setting

G/(i17 1, .. 7/7,) = G(ih 1, .. 7/7»)V(’L17 1, .. 7/7,) € P(Qll)

XP(Q5) x ... P(Q7)

G(i1,92,...1.) = 0 otherwise .
Note that ||G']|r < [|G||r. Note that we are considering the set-up regarding PU9: so
we may assume that Q1,Q2,...Q, have already been picked. For now, the subsets @} C
Q1,04 C Q2,...Q. C Q, have been also fixed. Then we pick J' C V of cardinality

q—r(r—1)pindependently of Q1,Q2,...Q,. Thus applying the lemma, we get the claimed
bounds for the probabilities of the events defined below :

Let Es(J',Q1, Q% ...QL)

GIP(@1). PIQY) - PIQI) ~ sy
@) N P@Y) NI, PRI D)
< 10E2M|V "

Then, P (Bs(', Q1 Q@) > 1 — =9/

Now using the fact that for a choice of Q)1,@2,...Q,, there are 2P" < ¢€"4/32 choices of
/val27 e Qg’v we get :
EQ(J/7Q17Q27 e Qr’) : VQII g QhVQ/Z g Q27 e VQ;’ g Qr
ES(J/7 th Q/27 B Q;’)
PU(Eo(J',Q1,Qa, Q) > 1= €732 > 99/100.

Noting that ¢" < (1+€*)(¢—r(r—1)p)" and |G(P(Q))NJ', P(QY)NJ' ..., P(Q.)nJ) —
GPQ)NJ,PQYNJ,....,PQL)NJ)| < e¢¢"M, we get (using also (15)) :

Let Fio(J,Q1,Q2,...Qr) :
VQ1 C Q1,YQ3 C Q... .VQ, C Qr
GIP(@i), P(@)). PO -
G(P(Q1) NI, P(@Qy) N ..., P(@Q)NJ)| <10 M|V,
PO(Eo(J.Q1,Qa, . ..Qy)) > 97/100. (16)
Under Fio(J,Q1,Q2,...Q;), we have from (14) that

Q1 € Q1,3Q3 C Q2. .G(P(QY), P(QY), ... P(Q))) >

12



VT’
V] BT — 5 V["?||G|F — 103M V]

qT’
Thus, we get that with probability at least 79/80 :
V r
Gt > ¥B+ —10M|V] = 5¢V|"?||G|p.

By an exactly identical argument applied to —G, we get also that with probability at least
79/80,

(-G >

V r
#(—B)* — 10 M|V]" = 5| V|G| |F

q
From the last two statements, the Theorem follows.

4 Upper Bound on the Sample Complexity of MAX-rCSP

The purpose of this section is to prove the following theorem.

Theorem 10. Let r be a fized integer such that r > 2. Let F' = {fi,...fe} be a collection
of functions where each f; is a boolean function of exactly r variables picked from V =
{z1,..0,}. Assume that J is a random subset of V of cardinality q where q = Q(%éﬁl)
Let mY) denote the mazimum number of functions in F which can be made true for some
assignment of V. and m\) the mazimum number of functions in F' with all variables in J
which can be made true. Then we have that

O Ll (17)
W > Yy (18)
qT’
with probability at least 2/3.
Note that our 2 hides a factor exponential in r
Proof. For each 0,1 sequence z of length r, z = (21, 22, ...2,), say, we define the r-

dimensional array A®) on V" by
AB) (i1, ..i,) = number of functions in F' true by setting

i = By Ty, = 2y

Note that the A are not algorithmically constructed. They are used only for the proof.
We let M = max.¢qq1}r [|A®)|| .. We can of course assume M < 22", 0

Let S : V. — {0,1} be any fixed assignment. We will also think of S as the set of true
variables under S. Clearly, the number of functions satisfied by S is equal to

S S AP iy, ., (19)

ZE{O,I}T il,...iT:S(il):zl ,...S(ir):Zr

13



Suppose that we have cut decompositions of all the A()
D) = 4 ZCut 9,58, 89 a1 <t <,

say, with s = %5, |EG)||o < eM|V]". Using (19), we see that the number of functions
which are true in the assignment S and with weights given by the arrays D), z € {0,1}",
is equal to v*(v), say, where

S S dP (20)

2€{0,1}7 t=1
with 1/75Z |S“ NS|if z; =1 and 1/75Z |S“ (VA9)|if z; = 0.

Fort=1,2,...s, i = 1,2,...r and z € {0,1}", fix a set v of values of the ij»). We say that
v is realizable if there exists S C V such that

3 3
||S“ ns|— | < 8in for all triples (z,t,4) with z; = 1, and
s

3
||S§ZZ») N(V\S)| - szi)| < 2in for all triples (z,t,¢) with z = 0.
El ] T’S

We claim that if v is not realizable, then the following Linear Program LP(V,v) which is
just a tightening of the above inequalities, is not feasible:

. 2¢3n 2¢3n .
V?f,i) - < Z x5 < I/,fz) + —s for all triples (z,t,1)

87’
ies’)
with 2, =1
2 2¢3n P 2¢3n
ZEEE— e DN SO RV
jes®

t,2
for all triples (z,t,4) with z;, =0
0<2;<1,1<7<n [LP(V,v)]

[This is because if LP(V, v) was feasible, then it would have a basic feasible solution which
would have at most N = sr2"*! fractional components; setting the fractional z; to zero
will yield a 0-1 vector realizing v. We use the obvious fact that for large n, we have that
sr2rtl < 85:)5 n]. So, by Linear Programming duality, we see that there exists one inequality
obtained as a nonnegative combination of the first NV inequalities of LP(V,v) for which there
is no solution z satisfying the bounds 0 < z; < 1. It is easy to see that the combination

need not involve both the upper bound and the lower bound on any of the sets Sfj). Thus

14



we get that there are sr2" real numbers ug?, 1<t<s, 1<i<r, z€{0,1}" (depending
on v) such that, letting,

SOl DVID IR Db S

1<5<r | ziz5=1 t:iESt(j) z12;=0 t:iESt(j)
and
v z z z €3n
N T
ze{0,1}r \1<t<s, 1<5<r
- X Yo
1<5<r 2:2;=0 1<t<s
we get that
chy)xi < céy) has no solution = with 0 < z; <1 (21)
=1
which is equivalent to Z:Min(cgy)7 0) > Céy). (22)
=1

Let J be a random subset of V of cardinality ¢ = Q (%éﬁl) Let y(*) = 2ore{01}r 2o1<t<s |u£?|
Noting that |c£y)| < 4", we have from (22), using the Theorems of Hoeffding [11],

3 6
Pr (Z Min(e{"),0) < Lcf? a qv(”)) < exp (— 822652)

- T
ey & sn

which implies that the following Linear Program [LP(J,v)] on the variables x;,7 € J is

unfeasible : . .
91 (») _€n I O B
n (Vm N 87’8) < Z Ti < n (Vt,j + 87’8)
iestlng

for all (z,t,j) with z; =1

3 3
gz _ " IR A I B
n (Vtv] 87’8) < Z (1 $2) < n (Vtv] + 87’8)

iestlng

for all (z,t,j) with z; =0
0<e; <1VieJ [LP(J,v)]

10
Let o = exp (— (2352)2%) . To summarize, we have that for any v,

LP(V,v)is not feasible implies that LP(J,v) is not feasible with probability at least 1 —a.
This is of course the same as

Pr(LP(J,v) feasible) > «) implies LP(V,v) feasible.

15



This means that, again for any fixed v, either we are guaranteed the existence of a “good”
solution in V', or the probability that LP(.J, v) is feasible is very small. Now, we fix attention

on the set K, say, of points with coordinates of the form qSE:) /\EZJ) where the /\EZJ) are integers.

T

ra”
Note that there are at most(f—g) < guch points. Thus, we can bound above the total

probability of having simultaneously LP(.J, v) feasible and LP(V,v) unfeasible on one point

of K by
8"
) 8"\ 2 2610(]
LK|QWZ (Zg) exp (—“Gigi;)

which is less than 1/3 for ¢ = Q (%éﬁl)

For each z € {0,1}", let B be the matrix induced by A®) on J”, and let us write

B® =B 4 S cut(sl)n g8 0,8 0l
0<t<s

say. Then we have that F(*) is the array induced by E(*) on J".

The following theorem resembles Theorem 9. However it differs from it in that it does not
require a bound for the Frobenius norm (and requires higher sampling size).

Theorem 11. Suppose G is a r-dimensional array on V' =V XV x ..V with all entries of
absolute value at most M. Suppose J is a random subset of V of cardinality ¢ > 500017 /€.
Let B be the r-dimensional array obtained by restricting G to J". Then we have, with
probability at least 1 — 1/(4.2"),

qT’

1Blle <
VI

G||lc + 562(]TM(3 + 4" /e).

Proof The proof of Theorem 11 mimics the proof of Theorem 9 and we give only a sketch.
There are two differences. First we use the trivial upper bound |V|"/2M (1 4 4" /€) for the
Frobenius norm of B. Also, we increase the value of p in Lemma 7 by a factor Q(1/€?)
so as to get the assertion of Lemma 2 with €2 in place of € and with probability at least
1—1/(4.2"). We get then that, with probability at least 1 —1/(3.2"),

1Blle < Hq/—VIIGIIO + 102 Mq" + 5¢%¢" M (1 447 /).
This implies immediately the assertion of the theorem. |

We return now to the proof of Theorem 8.

Taking G = F*) gives
I1FO)|c < 16e4"q" M

simultaneously for all z € {0, 1}" with probability at least 2/3. For v*(n) as already defined
(we use 7 when referring to J, u, v when referring to V') and v(n) the number of functions

16



with variables in J satisfied by S we have

() —v ()] < D FP|e < 16eM8"q". (23)
z€4{0,1}7

Also, since max, 4 |d£z)| <2"M,

8" M
2

0™ () = ™ (V)] < i = vller (24)

For each realizable 5 there is an 7/, say, belonging to K and for which ||n'—7n||,, < gi r2's <
Ez?r. We know that, with probability at least 2/3, there exists simultaneously for all " in K|
a feasible v/ satisfying the inequalities of the Linear Program [LP(.J, )] where 7 is replaced

by 7', and with

Vi

3V 3 V
I = 2, < gry’s— LH
q

8"s 4
This implies, using (24), [v*(n') — v* ()| < EX||' — (n)||er < €2"¢" M and, with the above
inequality,

VT’
qT’

Now we use (23) twice to get from the above inequality,

()] < e(r+ D2V]"M.

v
qT’

|o()

v < e((r+ 12" + 3247 V|" M,

which gives, after a rescaling of ¢, both assertions of the theorem by choosing 7 such that
o() = mt.

This closes the proof of Theorem 1.

The refinement of the general method to the case of MAX-2CSP and the proof of Theorem
2, as well as a lower bound on sample complexity of MAX-CUT are included in Section 6.

5 Lower Bound on Number of Cut Arrays Needed

In this Section we show that the c(r)/e? upper estimate for the number of cut arrays
in Theorem 5 is tight (up to the dependence on r), even if we restrict our attention to
{—1, 1}-arrays A, and even if we only require that the sum of the cut arrays D will satisfy
(2). Throughout the subsection we assume, whenever this is needed, that ¢ is sufficiently
small as a function of r. We also omit all floor and ceiling signs whenever these are not
crucial, to simplify the presentation. Note that if we only wish to satisfy (5) in Theorem
5, then its proof implies that 1/€% cut arrays suffice, as the extra 4" term appears because
of the need to satisfy (4).

17



The Lij-norm of an array A : Vi X Va--- X V. — R is given by

[AllL = Z |A(i1,i2,...7ir)|.

(31,821eir JEVI X Voo X Vi

The following lemma supplies a lower bound for the cut-norm of an array in terms of its
Li-norm. The proof is based on the method of [1].

Lemma 12. Let A: Vi X Vo---x V., — R be an array. Then its cut norm satisfies

[1A[l1
[Alle > ; :
9. 8(r=1)/2 Ti—s TARE
The proof (following the ideas of [1]) uses a result of Szarek. Let ¢1,¢q,...,¢, be a set
of n reals, let 61,...,8, be independent, identically distributed random variables, each

distributed uniformly on {—1,1}, and define X = 3", 6;¢;.

Lemma 13. (Szarek [14]) In the above notation,

+ ...+ e

_ C
BQX]) > 27V 4.4 21 (3 1 VeI

Corollary 14. Let ¢y, ..., ¢, be reals, and let S be a random subset of {1,2,...,n} taken
uniformly among all 2" subsets. Let Y be the random variable Y =3 . csc;. Then

B(Y)) = Zsc{l,..g}n| >ies Gl > Z¢E|g0¢|
VvV Oon

Proof. For every vector § = (01,...,9,) € {—1,1}" define Ss = {i : §; = 1} and
S5 ={i:9; = —1}. Then, by the triangle inequality

1>l 1Dl > 1D dicil.

1€Ss i€S} 7

As § ranges over all 2" members of {—1,1}", S5, as well as S§ range over all 2" subsets of
{1,2,...,n} implying that 2E/(]Y]|) > E(|X]), where X is as above. The result now follows
from Lemma 13. O

Proof of Lemma 12. We prove, by induction on ¢, that for every 0 < ¢t < r there are
subsets S,_y+1 C Vi—y41...S5, C V, such that

11EV] tr—t€Vr—t tp_t41€Sr—t41 ir €Sy
: [ Al

> .

SR —

j=r—t+1

A(iy, ia, . ..

18



For ¢t = 0 there is nothing to prove. Assuming the assertion holds for ¢ — 1 < r, we prove
it for t. For each (r — t)-tuple iy, 43,...,%—; and each ¢ € V,_;41 define

¢ = Ci(lh 1250y 7/7’—7,‘)
= E : § A(lhl%"'77/75—7’7277/75—7’{—27"'727’)7
tr—t42€Sr_t42 17 €Sy

and apply Corollary 14 with n = |V,_y11|. Summing the resulting inequalities for all
(41, 0p—¢) € VI X -+ x V,_y we conclude that the average (over S,_;41 C V,_¢41) of the

S 3 3 e Y Al gy i)

ilevl tr—t €Vt ir—t-l-lesr—t-l-l 1 €Sy

is at least

! 141l A
Vel 8P T e VAT~ ST IV

Therefore, there is a set S,_;y1 C V,_;41 for which (25) holds, showing that it indeed holds
forall t <r.

In particular, for t = r — 1 there are sets Sy C V5,..., 5, C V. such that

o . [[Allx
D12 2 Al )] 2 RO/ [T, Vi1 20

1€V 12€5; ir€Vr

Fixing such sets .S;, either the contribution of the positive terms 37, g -+ 37 oy A(i1, 22, ...

gives at least half of (26), or the contribution of the absolute values of the negative terms
gives at least half the sum. In each case we can define 57 as the set of those ¢; € V; that
correspond to those contributing terms and conclude that

HAle > 1 S0 - > Alin, ..., 0y)]
11 €51 1 €Sy

1Al |
= 9.8(—-1)/2 H;ZQ |V],|1/2

This completes the proof. O

From now on we restrict our attention in this subsection to arrays A : Vi x Vo X -+ - XV, —
{=1,1} where |V;| = n for all i. We need the following simple fact.

Lemma 15. There exists a family F of r-dimensional arrays, each mapping Vi X Vo X - - - X
V,., where |Vi| = n for each i, into {—1,1} such that |F| > 2""/% and for each two distinct
members A, B € F, ||A— B||; > %.

Proof. Let H(z) = —zlogya — (1 — x)logy(1 — &) be the binary entropy function.
By the Gilbert-Varshamov bound (see, e.g., [13]), for every (large) m there are at least
U=H{/10))m (- 9m/2) yectors of length m over {—1,1}, where the Hamming distance
between each pair exceeds m/10. Taking m = n" and viewing these vectors as arrays
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mapping Vj x --- X V, to {—1, 1}, the desired result follows, as the difference between any
two distinct arrays in the collection will have more than n” /10 nonzero entries, each of
which is either 2 or —2. O

We can now prove the main result of this subsection.

Theorem 16. For every fized dimension r > 2 there exists some c(r) > 0 so that for every
€ > 0 there are n, N = n" and an r-dimensional array A : Vi X --- x V. = {=1, 1}, where
|Vi| = n for all i, such that for every array D which is the sum of less than c(r)/e* cut
arrays,

1A= Dllc > en” (= eV N||Allr)

Proof. We prove the theorem for all ¢ which is sufficiently small as a function of r,
and with ¢(r) = m. Clearly this implies the result for all ¢ (with a possibly smaller

¢ =¢(r)). Define
1

=g (40)2/ =D 2/(=1)"

and note that N = n” < 1/(2¢!). By Lemma 15 there is a family F of 2712 arrays
A:VixVyx---xV,— {=1,1} such that for every two distinct members A, B € F,
||A — Bl|l1 > N/5. By Lemma 12 this implies that for every such A, B,

1A = B, b2
1A= Blle = 5 3r—1/2,0—172 ~ 1. 80—D7z — (27)

where the last equality follows from the definition of n.

Therefore, F is a large set of arrays, so that the cut-distance between any pair of them is
large. To complete the proof we show that at least one member of F cannot be approximated
well (in the cut metric) by a sum of a small number of cut arrays. To do so, suppose that for
each member A of F there is an array D which is a sum of at most ¢ cut arrays, such that
||A— Dl|c < en”. Call a cut-array e-nice if it is an array of the form CUT(Sy, Sz, ..., S,;d)
where d is an integral multiple of €¢/t. An obvious rounding procedure implies that for each

member of F there is an array D which is the sum of at most ¢ e-nice cut arrays, such that
||A = Dllc < 2en”.

We next prove an upper bound for the total possible number of such arrays D. Note, first,
that as n” < 1/(2¢%), the absolute value of no entry of such a D can exceed 1+1/¢® < 2/¢3
(since otherwise the cut-norm of A — D would exceed 2en” simply by considering a single
entry). As each entry of D is also an integral multiple of €/t it follows that there are at most
4t/€* possibilities for each such entry. There are at most 2" possibilities for choosing the
sets S1,...,9, in each cut array CUT(51,...,5,;d), and as D is the sum of ¢ such arrays
there are at most 2" possibilities for choosing the defining sets of all of them. Once these
are chosen, we have to choose the densities d of these arrays. Each of those is an integral
multiple of €/t, but the trouble is that its absolute value may be large (as there may be
cancellations between them, while forming D). It is thus better to bound the number of
possibilities of all these densities as follows. Let dy,...,d; be the densities. Since we have
already chosen all sets S; in all the cut arrays whose sum is D, we can express each entry of
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D as a sum of a subset of the densities d;. At most ¢ of the characteristic vectors of these
subsets span all the characteristic vectors of all other subsets we have, and thus if we are
given the values of D in these entries, we can solve for all other entries of D. There are at
most n"" ways to choose ¢ entries of D, and then there are at most (4¢/¢)" possibilities for
the values of D in these entries (as each entry is an integral multiple of ¢/t whose absolute
value does not exceed 2/¢2.) Therefore, the total number of possible arrays D is at most

4t
nrt - t2nrt‘
&)
Each member of F is within cut-distance smaller than 2en” from at least one of these arrays
D, and the cut-distance between any two distinct members of F exceeds 4en”, by (27). It

thus follows that the number of arrays D is at least as large as F, implying that
log | F| = % < rtlogn + tlog(4t/e) + nrt < 2trn,

where here we used the fact that n is much bigger than log n+4log(4t/¢€). The last inequality
implies that

> !
~ dr 4r-40% 8712’
completing the proof. O

6 MAX-CUT and MAX-2CSP

6.1 Cut norm of random submatrices

In this section, we will prove that the cut decomposition obtained for arrays in the last
section also holds with high probability for a submatrix of A “induced” by a random subset
J of {1,2,...n} of size Q(1/e*). [A “random” subset of size ¢ is obtained by taking ¢
independent samples with replacement.] More precisely,

Theorem 17. Suppose J is a random subset of {1,2,...n} of cardinality ¢ > 108/e* and
let B be the g X q submatriz of W in the rows and columns in J. Then, with probability at
least 9/10, we have

1Bllc < 41eq”.

The use of this theorem for the MAX-CUT problem will become clear later. But we
motivate its use with the solution of another problem :

Definition 1 The maximum submatrix sum of A (denoted MSS(A)) is

max  A(S,T).
S,TC{1,2,..n}
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Corollary 18. If A satisfies |A;j| < 1, ¢ > 10%/¢* is a positive integer, J is a random
subset of {1,2,...n} of cardinality q, and F is the ¢ X q submatriz of A in the J rows and
columns, then with probability at least 9/10, we have

2
IMSS(A) — Z—QMSS(F)| < den?.

We will actually prove a more general result (Theorem 19) from which Theorem 17 will
follow.

Theorem 19. Suppose G is a n X n matriz with rows and columns indexed by {1,2,...n}.
Suppose |G;| < M for all i,j. Suppose ¢ is a real number satisfying

13
wgéglo : Lgé_
V2nM

nl/8
Let q be any positive integer which is at least 10%/¢*. Then for a random subset J of
{1,2,...n}, with |J| = q, the submatriz B of G consisting of its rows and columns in J
satisfies both the following inequalities with probability at least 9/10 :

2

Remark 1. It is not difficult to see from the above theorem that in fact if A satisfies
|A;;] <1, and F is the submatrix of A induced on .J, then

|IMSS(A)— Z—EMSS(FH = O(en?).

[What remains to be proved is that MSS(F') is not too small - this part is easy - if 5,7
realize the MSS of A, then w.h.p., SNJ, T'NJ give a fairly high submatrix sum too, just
by standard sampling arguments which we omit here.]

Thus, at least for the MSS problem, these methods say that a random subset of size Q(1/¢*)
does the job. The proof for the maximum cut is more difficult, primarily because, whereas
in the MSS problem, the choice of the set of rows and columns are both open (to us) and
not interlinked, in the maximum cut problem, they have to be complementary sets. These
difficulties are tackled in the next section via Linear Programming techniques. Proof.
First we have that F(||B||%) = 7‘i—i||G||fV7 so using Markov inequality, we have that

By :|[Bllr < 4(]w has Pr(F7) > 9/10. (28)
n

Let p = 1600/¢2. We pick random subsets U, Q of .J, each of cardinality p, independently of
each other. [There are auxillary random sets which we use for the proof.] We let .J’ denote
J\ (UUQ). We will make crucial use of the fact that the following two different methods
of picking .J/, U, ) produce nearly the same joint probability distribution on them :
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(i) As above, pick J to be a random subset of V' of cardinality g, and then pick Q,U
to be independent random subsets of J of cardinality p each. Let PC (J Q,U) be the
probability that we pick J,Q,U in this expenment Then, clearly, for each J, @, U with

= 0,Q,U C J,|U| = Q] = p, we have PO(J,Q,U) = 1/(") (1) (1).

(i) Now, pick J’ to be a random subset of V' of cardinality ¢ —2p. Then pick independently
(of J" and of each other) two random subsets Q,U of V of cardinality p each. Let J =
J'UQUU. Let P (J,Q,U) be the probabilities here.

It is easy to see by direct calculation that conditioned on the events Ey : QNU = ¢ and
Es: (QNnU=0)AJNQUU) =), PO and P are exactly equal. It is also easy to
see that PO (Ey) = % > 99/100 and P (E3) > 99/100; so we have that

1P — Py < 1/50. (29)
We will use the above facts later. Now, for any subset Y of the rows of ¢, we define P(Y')
to be the set of (indices of) columns of ¢ whose sum in the Y rows is nonnegative

P(Y):{jEV:ZGijZO}.

€Y
Similarly, for subset X of the columns of GG, we define P(X) as the set of rows which have
nonnegative sum in the X columns. Suppose Sy, Ty C J satisfy

G(S0, To) = max G(5,T).
So, we may assume that To = P(Sp) N J.

Lemma 20. The probability of the event F(Q,U) defined below is at least 19/20 :

EQ,U):3Q' CQ,U' CU:G(PQ)NJ, PUYNJ) > G(So, To) — 8eq2@. (30)
Proof. Let Z = P(So)NJ and Z' = P(U N Sp) NJ. We have,
G(So, Z") = G(So, Z) — G(So, B1) + G(So, Bz), (31)

where

By = {z€J: G(So,2)>0and G(UNSy,z) <0},

By, = {z€J: G(Sp,2) <0and G(UN Sy, z) > 0}.
Consider one fixed z. Let X, = G(UNS, z). We may write X, as the sum X14+Xo+...X,,
where X1, X,... X, is asample of size p drawn uniformly without replacement from the set
of g reals - {G/(y, 2)1,¢s, }. For analysis, we also introduce the random variables ¥1,Y5,...Y),

- a sample of size p drawn independently, each uniformly distributed over the same set of
reals, but now with replacement. We have

E(Xi+Xa+...X,) = ga(so, 2),

Var(Xy + X+ X) S Var(Yi 4 Yo V) SO0 Glu)? < 230 Glu,2)?
u€ Sy uEJ
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where the second line is a standard inequality (for example, it follows from Theorem 4 of
[11]). Hence, for any £ > 0,

Pr (‘Xz B gG(sz) > 5) < que}fzg(wz)z 52)

If z € By then X, — (p/q)G(S0,2) < —(p/q)G (S0, 2) and so applying (11) with & =
pG(So, z)/q we get that for each fixed z,

g2 ey Glu, 2)?

<
Pr(z € By) < EINE
2
E (Z G(Soyz)) < > min {G(507Z)7 qzugg(uvd }
z€B) {2€J: G(S0,2)>0} pG(So, 2)
2
S Z qZUEJG(u7Z) (33)
p

{z€J: G(Sp,2)>0}

By an identical argument we obtain

2€B, {2€J: G(So,2)<0} p

Hence, (using the Cauchy-Schwartz inequality),

B(G(S0, 7)) > G(S0, 7) = 31| L=t 205 sy, 7y — L1
zeJ p \/]_)

Now, G/(So, Z) — G(Sp, Z') is a nonnegative random variable with expectation at most
ql|B||r/+/P, as argued above. So using Markov inequality, we have

1
PI‘(G(S(),P(S())QJ)—G(S(), (UQSO)QJ) >€q||B||F) E (34)
Now, by definition of P, we have
G(P(PUNSy)NJ)yNnJ, P(UNSp)NJ) > G(So, P(UNSe)NJ). (35)

By an exactly symmetric argument now applied to the random choice of columns @), we get
analogously to (34), that with probability at least 39/40, the following holds :

G(P(PUNS)NJT)NJ, PUNS)NT) — GEPPUNS)NINQ)NJ, P(UNSe)NJ)
< «q||Bl|F. (36)

By applying (34),(35) and (36) and using (29), the lemma follows with Q' = P(UNSy)NQ
and P'=UnNS,.
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a

The lemma below is a particular “large-deviations” result. While the proof is standard, it
differs from the usual ones in its hypothesis which upper bound each real as well as the sum
of squares. [We note that if we did not have the upper bound on the sum of squares, the
upper bound one usually gets on the probability in the lemma depends on % rather than

7]

Lemma 21. Suppose ay, ay,...a, are any reals with |a;| < M for all i and Y/_, a? < Nr.
Let X1, Xy,...X, be a sample of size q picked by sampling uniformly without replacement
from the set {ay,ay,...a,}. Then, for any real v € [2 | 100], we have :

MZ
pr(Sx,_ 1
el DX =D

> 'qu) < 2e71/4,

t=1
Proof. Let A be a positive real to be chosen later. Let a = %Zle a; and b, = a; — @
and let Y7,Y5,...Y, be a sample of size ¢ drawn with replacement from the same set of
reals - {a1,az,...a,}. (To be used just in the proof.) Let A = vMgq. O

g

Pr (Z X; > qga+ A) <F (e/\ 2o Xt) e MM < B (e/\ Zth) e AN
t=1

the last since €” is a convex function - from Theorem 4 of [11]

< (E (e/\(Yl—a)))q e M riq (Zr: exbi)q =M
i=1

The b; satisfy the constraints 3,62 < 5. a? < Nr and |b;] < 2M. The maximum of the
last expression subject to these two constraints is attained when rq =Min(r, 4]\7?7*2) of the b;
's are 2M each and the rest are zero. Thus, we have, by choosing A = 1/(4M) in the above,

N )qe—A/(4M) < e—wq/‘l7

q
1
Pr (ZXt > qa+A) < lroe!? = eI < (14

=1
using (1 + (N/4M?) < eN/AM? - This bounds the probability of S X, being too large. To
bound the probability of this sum being too negative, we just use the same argument with
the set of a; replaced by the set of —a;. This then yields the lemma. |

Now we go back to the proof of Theorem 19. Let ¢’ = (¢ — 2p)/2. Let L be a random set
of ¢’ pairs (4, j) picked by sampling without replacement from the set of n? pairsin V x V.
Under the assumption that n > 100¢’?, we have that with probability at least 49/50, no
two pairs in L share an endpoint. We assume this from now on.

For the moment, fix attention on one particular ' C ) and one particular U" C U. Let
X = P(Q') and Y = P(U’). By Lemma 21, the event Fyq defined below has the claimed
probability bound (by putting r = n?, ¢ = ¢'; N = ||G||3%/n? in that lemma)
2
Ew(L): |GX,Y) == S Gij| < EMn? has Pr(Eyg) > 1 - 27971 (37)
(¢,7)ELNX XY
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Now imagine having picked already @, U and having fixed this Q' C @ and U’ C U. Now
we pick .J', L independently of ), U. We will say that L belongs to J’ if the at most 2¢’
end points of pairs in L all belong to J'. It is easy to check by direct counting that

F1o(L) holds for all L belonging to J’ implies (38)

2
Ey11(J') holds, where Eyy(J') 1 |G(X,Y) — %G(J’ NX,J' NY)| <2 Mn?. (39)
q

It is clear that each L belongs to exactly one J’. So, we have :
’ ’ n2 —q/52/4 n2
75 Bu ()] < HE s =B D)} < Pr(atia) (7, ) < 267 ( 1)),
The total number of J’ ’s is (22,) which under the assumption that n > 100¢'%, is at least
1/2 of (7;?) Thus, we have that

PI'(Ell) Z 1 - 4€—q'e2/4‘

Let now
F(J):VQ' C QYU C U : |G(PQ), P(U") — ZTZG(J’ NPQ),J nPUY)| <2402

Then, clearly, the event —Fj, is the union of at most 2?7 events —(F11 - one for each
Q' CQ;U" CU. So, by the above, Pr(Fy3) > 1 — 2PPr(—F; for one fixed @', U’ ). Thus
we get

But under Ej5(J'), we have
VQ' YU, G(J' N P(Q"), ] N PU")) <2 Mq"?* +||G||cq?/n*.

which implies that (since |G; ;| < M),
2
VQ' VU, G(J N P(Q'),J N PU")) <4 Mg + ||G||C%,

This along with Lemma 20 implies that G/(So, To) < 4e2Mq? + ||G||CZ—2 —|—8\/'7q2@. with
probability at least 9/10 proving the theorem.

a

Proof of Theorem 17: We apply Theorem 19 to W as follows : we take G = W. We
see that by Theorem (5), |G| < +/s(2||A]|F)/n < 8/e. We may thus take M = 8/¢ in
Theorem 19. Then we get that maxgrcy B(S,T) < 41eq? holds with probability at least
9/10. Applying the same argument to —¥ also, we see that maxgrcs—B(S,7) < 4leq?
holds with probability at least 9/10. So, Theorem 17 follows.

a
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6.2 Linear Programming Formulation for the Max-Cut Problem

It is easy to see that the value of any cut (S,S) in G, is determined to within en? by just
the quanities |S; N S|,t=1,2,...sand |T: N S|, t =1,2,...s, namely :

D(S,S):Zdt|5t05||Tth| and
t=1

JA(S, 5) = D(S, 5)| < en”.

Noting that 3_, |d¢| < 24/s, it is possible to show that if we approximate each |S; N S| and
|T; N S| to within an error of plus or minus en/s, then we can get the value of D(S,S) to
an error of plus or minus en?. This then leads us to an algorithm : enumerate all O(s/¢)?*
candidate sets of values for {|S;N S|, |T;NS| : ¢t = 1,2,...s}, check which ones are realizable
and then take the one that attains the best value of 3>5_, d;|S; N S||T; N S|. This was the
strategy adopted in [8].

Here we will give a finer (self-contained) analysis wherein we essentially enumerate the
values of |S; N S|, |1y N S| to within plus or minus en (rather than en/s.)

We represent a set S by its characteristic vector - @ € {0,1}" . Then it is easy to see

that the value of the cut (S,5) is 3, ;@i(1 — x;) Ay Also, [S N S| = Yicq, @i, and
|S N Ty =3 e, (1 — a;). For any n— vector z, we define

a(ac): (Z X, in,...in,Z(l—xi),Z(l—xi),

1E€ST 1€Sy 1€Ss €T 1€y

Z(l—%))

€T
Let A={a € R*: L € {0,1,...[(1/e)]} for i =1,2,...2s}.
en

For each vector a, define P(a) = {b € R? : |b; — a;] < 2en}. We say that a € A is realizable
if there is a 0-1 vector & with |a(z) — a|s < 2en; in that case, we will say that = realizes
a. If a is not realizable, then the following Linear Program - LP(a) is unfeasible :

[LP(a)]a; — 2en 4 4s < Z z; < a;+2en —4s (40)
1ES

aips — 2en +4s < Z(l— ;) < Qg5 + 2en — 4s for t =
1€Ty

fort=1,2,...s5, 0<z2;<1

[This is because if LP(a) was feasible, then it would have a basic feasible solution which
would have at most 4s fractional components; setting the fractional z; to zero will yield a
0-1 vector weakly realizing a.] So, by Linear Programming duality, we see that there exists
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one inequality obtained as a nonnegative combination of the first 4s inequalities of (LP(a))
for which there is no solution x satisfying the bounds 0 < z; < 1. It is easy to see that the

combination need not involve both the upper bound and the lower bound on any one S; or

(a) . (a) (

T;. So, we get that there are 2s real numbers uy 7, uy /, .. .uzi) such that

Letting cga) = Z uga) - Z ugi)s and

t:1ES tn €Ty

2s 2s 2s
céa) = Z uga)at + Z |u§a)|(26n —4s) — Z u,(fa) (41)

=1 =1 t=s54+1
cha)xi < céa) has no soultion  with 0 <2; <1 (42)
=1

which is equivalent to Z:Min(cga)7 0) > Céa). (43)
=1

Now, for the rest of this paper, J is a random subset of V' of cardinality ¢, which satisfies :
g > 10%log(2/¢) /¢ (44)

Noting that |c£a)| <Y |u,(5a)|7 we have from (43), using the Theorems of Hoeffding [11],

1,2,...s [LP(J,a)]0 < z; < 1Vi € J.
So we have the following fact which will be used later :

Pr (Jan unrealizable a with LP(J, a) feasible )
< (3)25 (3) < L (45)
T \¢€ € ~ 100

Now, we will deal with the realizable ¢ and show that for these, the max-cut in J is not
much greater than the max-cut in G.
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Lemma 22. For any a, define :

cola) = Z Z diay ci(a) = Z diasgs —

i¢E(a) t:ieT, ti€S;

Z dya; for 11 =,2,...n.
tn€Ty

Then for any realizable a and any x € R™ with 0 < z; < 1, we have
> cia)? < 250007

S

Z ci(a)z; + Z diataiys + cola) — zi(l—z;)A
=1

t=1 %)
8 2 2
< _|a - a($)|oo + en”,
q q 7§
and, w.h.p., Z —ci(a)z; + =cola) + — Z diasiys
“~ n n n
eJ t=1
= > will =) Ay
ijed
8¢* 2 2
< wm — a(z)|%, + 20eq
Proof. Fix attention on a particular a,z. Let A = a(z) — a.
D(x,2) =Y _dian S|z N1y
t=1
= Z di(ar + A¢)(aigs + Diys)
t=1
= Z diaaiis + Z diai Ay + Z diA¢arys + 01,
t=1 =1 t=1

where |0y] < Z |d¢||a — a(z)|mfty?
t

= Zdt(at + Ap)aeys + Z dtat(z (1—2;) —apgs) + 0

t=1 t=1 €Ty

:Zn: (902 Z dtat—l—s) + ” ((1_352') Z dtat)
; =1 tn €Ty

K3

- Z deasapys + 0.

t=1
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Then, we see that from (51),

n

A(z,z) = D(z,%) + 03 = Zci(a)xi + co(a)

=1

+ Z diararys + 01 + 0z,
t=1

where §3 < en?.

This proves the second statement of the lemma. The third statement
follows by exactly analogous argument, noting that the cut decomposition of A also holds

for A restricted to J as proved in the last section.

The upper bound on the sum of all the ¢;(a)? is proved as follows : since a is realizable,

there is some z € {0, 1}" such that |a —a(2)]s < 2en. Let [ be any natural number between
1 and n and consider the [ largest ¢;(a) among 7 ¢ z. Adding these 7 to # (and dropping
them from z) changes the value of the cut by at most {n. But by part (ii) of the lemma,
the value of the cut changes by at least the sum of these ¢;(a) minus 20en?; so we have that
the sum of these ¢;(a) is at most In + 20en?. Similarly, the sum of the largest [ of the ¢;(a)
among i € @ is at most {n + 20en®. Thus the sum of the largest [ ¢;(a) overall is at most
2ln + 40en?. Similarly, the sum of the smallest [ of the ¢;(a) is at least —2In — 40en®. For
the moment, renumber the 7 such that |ci(a)| > |e2(a)| .. .|cu(a)|. Then, by the above, we
have (the upper bound on individual |¢;(a)| follows from their definition)

Z|CZ )| < 2ln +40en?;  |o(a |<nZ|dt|<—

forl=1,2,...n

It is easy to see that under these constraints, the maximum value of ¢;(a)? is attained when

the first [(84/2% of the |¢;(a)| are 8n/e each and the rest of the |¢;(a)| are 2n thus proving

part 1 of the lemma.

a

Let v be the value of the max-cut in the graph G. For each a € A, define a linear program
Maxz ci(a)z; + cola)

a; — 2en 4+ 4s < sz < ay+ 2en + 4s
1€St
tips — 2en +4s <
Z(l—xi)gat_|_5—|—26n—4sf0rt:1,2,...s (52)
€Ty
0< €Ty < 1.

The maximum value of this LP (if feasible) is at most v+ 1000en? — > ¢ diararys. Then by

Linear Programming duality, there exist real numbers u(la)7 uga), .. u(QZ) such that with cga)
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defined as in (41), we have
S = (@)™ > —co(a) + ¢ — v — 1000

+ Zdtatat-l—s-
¢

Le., with R = {i: cga) — ¢;(a) < 0},

Z ¢, —ci(a) > —cola) + céa) — v — 1000en? + Z diaasgs.
1€ER t

Each cga) is at most Y, |u| in absolute value; so using the standard Hoeffding inequalities,
we get that with probability at least 1 — (2/€)7%¢/200 :

3 a
Z cg > = Zc Zeqzwg )|. (53)
1€RNJ ZER t
Using part (i) of lemma (22), we see that Y, |c;(a))|? < 2500n°. Also, we have |¢;(a)] < 2n.
So applying lemma (21), with N = 250002, M = % we get that with probability at least
1 —(2/e)7% /200 :
S —ci(a) > L3 (=ci(a)) — 200eqn. (54)
, n -
1€RNJ 7
Adding (53) and (54), we get with probability at least 1 — (2/¢)72/100 :

S (@ — (@) > L-cola) + ¢ — v — 1000en?]
i€RNJ n

3 a
—€q(200n + 1 Z |u£ )|) + %Z diasayys.
i i
The last inequality implies that the optimum value of the Linear Program below is upper
bounded by + 1005¢qn + £ Iy diagagys

Machz a)z; + co(a)
1€J

q 5
—(a; — —en Z x; < at + —en)
" 4T shg 4

q 5 q 5
(A — pen) < Y (1-w)< (v + pen)
€TinJ
fort =1,2,...50 < a; <1Vi € J.

For every x feasible to the above LP, we have using (49),

Z A (1 —xj) — % (Z cila)z; + Co(a))

i,j€J ieJ
f]2 2
— d s| <4000
+n2 % tQtlits| S €q
q*v 2

i, j€J
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Thus with probability at least 19/20, we have that for every a, for which the Linear Program
LP(J, a) is feasible, the optimal solution to it is at most ‘f—; + 7000e¢®. Further, from (45),
we have that for every a which is not realizable, L P(.J, a) is infeasible (with probability); so
under this, the maximum cut in .J is clearly at most the maximum over all feasible LP(.J, a)
of the maximum value of A;;z;z;, where the z;,7 € J satisfy the constraints of LP(J,a)
[at most because, we have relaxed the integrality constraints.] Thus we get our result on

MAX-CUT. O

6.3 A Lower Bound for the Sample Complexity of MAX-CUT

We formulate our sample lower bound for MAX-CUT in a general black-box model of com-
putation. In this model any algorithm within the black-box can sample a graph according
to uniform or biased but fixed distribution depending only on the number n of vertices
and output an approximate value of the maximum cut. The sample complexity of such an
algorithm is the number of sampled vertices. We denote it by S(MAX — CUT). It depends
of course on the required accuracy e.

Theorem 23.
S(MAX — CUT) = Q(1/€%)

Proof. Theorem 23 will be deduced from the next theorem.

Theorem 24. Let ¢ be any sufficiently small positive real. Suppose G is an undirected
graph on n vertices and c is a sufficiently small positive number. Suppose s = c¢/€* is an
integer and H is the induced graph on a random subset of s vertices of G. Then,

2
Pr(|max — cut(G) — n—zmax —cut(H)| > en?) > 1/5
s

Sfor any sufficiently small € and infinitely many G'.

Proof. We consider the sequence of graphs (G,),=1,2,. where (G;, is the complete bi-
partite graph with color classes C' and C”, |C| = n, |C’] = 2n. (Thus G,, has 3n vertices.)

Let () denote the number of vertices in the sample that belong to C'. Clearly, max — cut(H) =
Q(s—Q). @ has a Binomial distribution B(m, p) with parameters m = s = ¢/e and p = 1/3,
and with variance mp(1 — p) = 9272. By the Central Limit Theorem, if we set

P ( - C )<t) /t L2y
r{—©»—--— — e s
V2e 3¢z’ — —oo V2

we have that ¢ tends to 0 as ¢ tends to 0. Fix ¢ = ¢, such that f__gg \/%6_52/2d8 = 1/4.

4 = max
t

Then, by the preceding assertion we have that

Pr (3—6(Q - 3%

NGT: ) < —to) > 1/5
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for any sufficiently small €. Let us rewrite this as follows

Pr (Q _ < _t(’f) >1/5

3e2 —

We have thus, with probability at least 1/5,

c tovV2c,  2c tovV2c

—cut(H) < (= -
max — cut(H) < (362 3e )(362 3e )
(202 tox/§03/2
9et 3e3
max — cut(G)
2 to\/2
—n—zmax—cut(H) > en? V2
s 3y/c
> 9en?
. 2t2
if ¢ < =53,

Thus it follows that, with probability Q(1), any algorithm that samples only ¢/€* many
vertices, will not be able to distinguish between the graphs G, on 3n vertices, and the
graphs B,,, for B, complete bipartite graphs on 3n vertices with color classes of sizes n —en
and 2n 4+ en. We note that

|max — cut(G,) — max — cut(B,)| = (e — €)n?,

and therefore, any (¢/3)n%-approximation algorithm for MAX-CUT should distinguish be-
tween the graphs G, and B,,, a contradiction. O

6.4 An Improvement for MAX-2CSP

An instance of MAX-2CSP on aset V of logical variables is a set of binary logical constraints
on these variables, which are called the ”constraints”, and the aim is to find an assignment
which makes the number of satisfied constraints maximum.

We can assume that the instance [ is, in fact, an instance of MAX-2DNF. We only need for
this to replace each constraint by an equivalent set of conjunctions. We let A() denote the
n X n matrix with V' as set of rows and set of columns associated with the sets of constrains
in I of the form z A y:

Ag}j) =1if z; Ax; € I, 0 otherwise

Similarly, we let A®), (resp. A(3)) denote the matrices associated with the constrains of
the form z A =y, (resp.—a A —y.) The main idea is to use separate cut decompositions
(S,fi)7 Sgt, d,(f))7 1<t<s,i=1,23, for A AR and A®). We can apply Theorem 17 for
1 =1,2,3, with the result that the cut decompositions induced on a a random subset .J of
{1,2,..n} of cardinality ¢ = Q(1/€*) by the decompositions (S;i)7 Sgt, dgi))7 1<t <s, of
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AW i =1,2,3, satisfy simultaneously to the cut norm bounds ||[BO||¢ < 41eq?,i=1,2,3,
where B is the matrix induced on J by the difference W) between A and its cut
decomposition. Then, if @ is any assignment to the variables in J, the number of constrains
of AW satisfied by this assignment is of the form A (a='(1),a~'(1)) and we approximate
this by (AM — WM)(a='(1),a='(1)). This involves an error at most |[B(M||c by the
definition of the cut norm. A similar observation applies for ¢ = 2 and ¢ = 3. Thus, exactly
as for MAX-CUT, we can use on the sample the cut decomposition induced by the cut
decomposition of the whole set.

The function to be maximized is
fle) =
S (wwAD) + a1 - 2)AD + (1 - 2i)(1 - 2))A))
1,5€{1,..,n}
z; €10,1,1 <7< n.
Similarly as for MAX-CUT, we can approximate this function in terms of the weighted sizes

of the intersections of the vector  with the sets of rows and the sets of columns defining
the cut decompositions: If for each vector z € [0,1]" we define the vector a = a(z) € R®*

by:

aj = Y @, A=y

iesM iest)
Aj42s = Z Liy OGj42s = Z €Ty

ies? €5
Ajtas = Z Liy OGj45s = Z €Ty

iest®) iest?),

then we have that, f(z) is well approximated by the expression

> dil)atam +) d§2)0t+2s(|5§-2+)s| = Gryss) +

S AP (] = argas) (1SS = arpss) (56)
t=1

As for MAX-CUT, we can approximate this expression in the vicinity of a feasible point by
a linear function of &. We can thus extend to this case the linear programming arguments

used for the MAX-CUT problem. O
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