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1 IntroductionSuppose r is a �xed integer. In the MAX-rSAT problem, we are given a Conjunctive NormalForm Boolean formula on n variables, with each clause being the OR of precisely r literals.The objective is to maximize the number of clauses satis�ed by an assignment to the nvariables. The exact problem is NP-hard for r � 2. This paper has two main results - the�rst concerns general r, and the second the special case of r = 2. The �rst result is thatfor any � > 0, there is a positive integer q 2 O(log(1=�)=�12) such that if we pick at randoma subset of q variables (among the n) and solve the \induced" problem on the q variables(maximize the number of clauses satis�ed among those containing only those variables andtheir negations), then the answer multiplied by nr=qr is, with high probability, within anadditive factor �nr of the optimal answer for the n variable problem. The q needed herewill be called the \(vertex) sample complexity" of the problem for obvious reasons.In fact, we show the same result for all MAX-rCSP problems. (MAX-rCSP problems, alsocalled MAX-rFUNCTION-SAT, are equivalent to MAX-SNP [3]). We note that while,normally, sampling is used to estimate certain speci�c quantities, here the result actuallysays that the sample estimates an optimal solution value well. We do not know of any suchoptimizing results in statistics prior to this work.The MAX-rSAT and other MAX-rCSP problems all admit �xed factor relative approxima-tion algorithms which run in polynomial time. For some MAX-SNP problems, there havebeen major breakthroughs in achieving better factors using semi-de�nite programming andother techniques [9]. More relevant to our paper is the line of work started with the paperof Arora, Karger and Karpinski [3] which introduced the technique of smooth programs,and designed the �rst polynomial time algorithms for solving MAX-SNP problems (of arityr) to within additive error guarantee �nr , for each �xed � > 0. Frieze and Kannan [7]proved an e�cient version of Sz�emeredi's Regularity Lemma and used it to get a uniformframework to solve all MAX-SNP and some other problems in polynomial time with thesame additive error. In [8], they introduced a new way of approximating matrices and moregenerally r-dimensional arrays, called the \cut-decomposition" and using those, proved aresult somewhat similar to the main result here (for each �xed r), but with two impor-tant di�erences - (i) the sample complexity was exponential in 1=� and (ii) their result didnot relate the optimal solution value of the whole problem to the optimal solution of therandom sub-problems in their original setting; instead it related it to a complicated com-putational quantity associated with the random sub-problem. We will make central use ofcut-decompositions in this paper.For the special case of r = 2, Goldreich, Goldwasser and Ron [10] designed algorithms,where the sample complexity was polynomial in 1=�; indeed, by exploiting the specialstructure of individual problems like the MAX-CUT problem they improved the polynomialdependence. Their results relate the optimal solution value of the whole problem to acomplicated function of the random sub-problems like [7] (see also [7], [5] and [2] for higherdimensional cases, or for cases in which our only objective is to decide if we can satisfyalmost all constraints). Thus they di�er from our new uniform method.2



Our second main result is a reduction of the sample complexity for all MAX-2CSP prob-lems to O(1=�4). We must remark here that both our main results are derived by generalarguments about approximating multi- (and 2-) dimensional arrays by some simple arraysand then using Linear Programming arguments. Unlike previous papers, we do not useproblem-speci�c arguments which dwelve into the special structure of individual problems.The MAX-CUT problem (a special MAX-2CSP problem) has received much attention inthis context. Indeed, independently of the papers so far cited, Fernandez de la Vega [6]developed a di�erent algorithm for this problem which within polynomial time, produced asolution with additive error �n2. [10] used the special structure of the problem to derive analgorithm with the best up to now sample complexity O(1=�5) (in the sense of (ii) above).Our improved sample complexity argument uses a tightened cut-decomposition argumentas well as a better Linear Programming argument.The global view of our method is the following. We represent MAX-rCSP problems byr-dimensional arrays. In the �rst stage we use the main result of Section 3 on cut norm ofrandom subarrrays to transfer a cut decomposition of the whole array to a random sample.We use then a cut decomposition of a sample to approximate the value of the objectivefunction. Then, in the second stage, we use linear programs to relate it to the value of theobjective function on the whole array by using the main result of Section 4.For arbitrary dimension r, the sample size for the �rst stage is O � 1�6 �, whereas the samplesize for the second stage is O� log( 1� )�12 �.We notice, that in order to approximate any problem from MAX-rCSP, it is enough togive a good absolute approximation to the optimum of an induced random subsystem. Asa consequence, our sample bound above gives, by a direct application of an approximationmethod of [3], the running times 2 ~O� 1�2 � for approximating all MAX-rCSP problems. Thisimproves on the best known up to date bound of the form 2 ~O� 1�2r�2 � for the problems ofdimension r ([8]).The paper is organized as follows. Section 2 proves the existence of a Cut decomposition forarrays of dimension r � 2. This is shown to be essentially optimal in Section 5. Section 3gives the basic result on the Cut decomposition induced on a random sub-array. In Section4 we derive an upper bound for the sample size using Linear Programming. In Section 5,we prove a lower bound for the number of Cut arrays in a Cut decomposition. In Section 6,we give an improvement on sample size for all MAX-2CSP problems, including MAX-CUT,improving over the best known upper bounds for these problems. Further we prove also alower bound on the sample complexity of MAX-CUT.1.1 NotationWe consider r�dimensional arrays, where r � 2. [The r = 2 case gives us matrices.]If V1; V2; : : :Vr are (not necessarily distinct) �nite sets, an r�dimensional array A onV1; V2; : : :Vr is a function A : V1�V2� : : : Vr �! R. For each i1 2 V1; i2 2 V2; : : : ir 2 Vr, we3



call A(i1; i2; : : : ir) an entry ofA. We let jjAjjF be the square root of the sum of squares of allthe entries. [This is sometimes called the Frobenius norm, hence the subscript F .] For anyS1 � V1; S2 � V2 : : :Sr � Vr we let A(S1; S2; : : :Sr) = P(i1;i2;:::ir)2S1�S2�:::Sr A(i1; i2; : : : ir)and then de�ne another norm jjAjjC (called the cut norm) :A+ = maxS1�V1;S2�V2;:::Sr�Vr A(S1; S2; : : :Sr)and jjAjjC = max(A+; (�A)+):The cut norm was de�ned and studied by [8].For any S1; S2; : : :Sr, and real value d we de�ne the Cut Array C = CUT (S1; S2; : : :Sr; d)by C(i1; i2; : : : ir) = ( d if (i1; i2; : : : ir) 2 S1 � S2 : : :Sr;0 otherwise.The real number d is called the coe�cient of the cut array.We use one other piece of notation : for any Q � V2 � V3 : : :Vr, we de�neP (Q) = fz 2 V1 : A(z; Q) =X(z;i2;i3;:::ir):(i2;i3;:::ir)2QA(z; i2; i3; : : : ir) > 0g:Note that P is with reference to an array A. It will be clear from context which array P isin reference to.1.2 Main ResultsWe formulate now the main results of the paper. We denote by MAX-rCSP the class of all r-ary (r-dimensional) Maximum Constraint Satisfaction Problems (i.e. the problems de�nedby the collections of r-ary boolean functions f : f0; 1gr ! f0; 1g for r given variables outof the set of n variables with the objective to construct an assignment s 2 f0; 1gn whichmaximizes the number of satis�ed constraints, cf., e.g., [12]). Given a problem P fromMAX-rCSP for a given dimension r � 2, we call a (randomized) algorithm A an (absolute)�nr- approximation algorithm for P , if for any instance I of P with n variables, the valuec(A(I)) produced by A on I satis�es, with high probability, jOPT (I)� c(A(I))j � �nr ,where OPT (I) is the value of the optimum. The sample complexity of an r-dimensional�nr-approximation algorithm (de�ned for all � > 0 ) is the number of variables (nodes) ina random sample required by the algorithm as a function of 1� . We are interested in casesin which this complexity is independent of the size of the input size, and is bounded bya function of 1� only; when this is not the case we say that the the sample complexity isin�nite. We call a sample complexity fully polynomial if it is (1� )0(1).For a �xed dimension r, a problem P from MAX-rCSP is said to have (an absolute) fullypolynomial sample complexity S = �1��0(1), if for every �xed � > 0, there exists a constanttime �nr-approximation algorithm for P with a sample complexity S. A class of problems X4



will be said to have a sample complexity S if all problems P in X have sample complexityS.We formulate now our main results.Theorem 1. For every dimension r, and every �xed � > 0, MAX-rCSP has a constanttime �nr-approximation algorithm with fully polynomial sample complexity O� log( 1� )�12 �.Theorem 2. For every �xed � > 0, MAX-2CSP has a constant time �n2-approximationalgorithm with a sample complexity O � 1�4�.The rest of the paper is devoted to the proofs of the above results as well as to the lowerbound results on the number of Cut Arrays needed in our cut decompositions, and a lowerbound on the sample complexity of MAX-CUT.1.3 Constant Time BoundsWe show now that the fully polynomial sample size bounds of Theorem 1 (and more ex-plicitly of Theorem 8) entail the existence of �nr-approximation algorithms for arbitraryMAX-rCSP problems running, for any �xed � > 0, in time 2 ~O� 1�2 � and using sample sizeO� log( 1� )�12 �. This improves on the best known so far running time bounds for approxi-mating those problems which were of the form 2 ~O� 1�2r�2 � for r the dimension of a problem[8], and making them asymptotically equal to that of the MAX-CUT. The argument usedin the proof of the following theorem is based on a technique of smooth programs and theapproximation result of Arora, Karger and Karpinski [3]. The crucial point here is the inde-pendence of the exponent of �1�� in the running times of smooth programs approximations,on a dimension r.Theorem 3. For every �xed dimension r, and every � > 0, MAX-rCSP has �nr-approximationalgorithms running in time 2 ~O� 1�2 � and having sample complexity O� log( 1� )�12 �.Proof. Let P be a problem on n variables from MAX-rCSP for a given r. We denoteby OPT its optimum value. We consider subsystem S of constraints of P induced by arandom sample of its variables of size q = �� log( 1� )�12 �. We denote by OPTS the optimumvalue of a subsystem S. We have, by Theorem 8, w.h.p., the following inequalityjOPT � nrqrOPTS j � �nr : (1)We consider now only a new problem de�ned by a random subsystem S, and represent it,by using a standard \arithmetization", as a degree-r Smooth Integer Program, see for details5



[3]. We apply now Theorem 1.10 of [3] to get an �0qr-approximation algorithm A for aninduced subproblem computing a solution Y which satis�es OPTS � �0qr � Y � OPTS forarbitrary �0 > 0. The running time of A is qO� 1(�0)2� = 2 ~O� 1(�0)2�, with an explicit constanthidden in our O-notation upstairs depending polynomially on a dimension r, see [3].By (1) we have, for all �; �0 > 0,OPT � nrqr �Y + �0qr�+ �nr ;and OPT � nrqr Y + ��+ �0�nr :We have also OPT � nrqr Y � �nr �� nrqr Y � �� + �0�nr:Thus, we have jOPT � nrqr Y j � ��+ �0�nrfor arbitrary �; �0 > 0.Therefore an existence of an �0qr-approximation algorithm computing a solution Y for aninduced subproblem which works in time 2 ~O� 1(�0)2� (cf. [3]) entails, by Theorem 8, an �nr-approximation algorithm for P working in time 2 ~O� 1�2 � (and using sample size O� log( 1� )�12 �)for all � > 0. 2A similar argument can be applied to Theorem 2, yieldingTheorem 4. For every � > 0, MAX-2CSP has �n2-approximation algorithms working intime 2 ~O� 1�2 � and having sample complexity O � 1�4�. 22 Existence of Cut DecompositionIn this section, we prove the existence of a certain approximation to any matrix. Theapproximation will be the sum of a small number of cut-arrays. The sum is taken entry-wise. The proof is elementary and essentially drawn from [8].6



Theorem 5. Suppose A is an array on V1; V2; : : :Vr, N = jV1jjV2j : : : jVrj and � is a positivereal number. There exist at most 4r=�2 cut arrays whose sum D approximates A well in thesense : jjA�DjjC � �pN jjAjjF (2)jjA�DjjF � jjAjjF (3)The sum of the squares of the coe�cients of thecut arrays is at most 4r jjAjj2FN : (4)This upper estimate on the number of cut arrays is tight up to the dependence on thedimension r.Proof. For an existence argument, we are going to �nd cut arrays D(1); D(2); : : :D(t)one by one always maintaining the condition:jjA� (D(1) +D(2) + � � �+D(t))jj2F � (1� �2t4r )jjAjj2F : (5)We start with t = 0. At a general stage, suppose we already have D(1); : : :D(t) satisfying(5). If now W (t) = A� (D(1) +D(2) + � � �+D(t)) satis�es jjW (t)jjC � �pN jjAjjF , then westop. Otherwise, there exist S1; S2; : : :Sr such that jW (t)(S1; S2; : : :Sr)j � �pN jjAjjF . IfjS1j < jV1j=2, then since W (t)(S1; S2; : : :Sr) = W (t)(V1; S2; : : :Sr)�W (t)(V1nS1; S2; : : :Sr),we have that one of jW (t)(V1; S2; : : :Sr)j or jW (t)(V1 n S1; S2; : : :Sr)j must be at least(�=2)pN jjAjjF . Thus we have that there exist some S1 � V1, jS1j � jV1j=2 and S2; : : :Srsuch that jW (t)(S1; S2; : : :Sr)j � (�=2)pN jjAjjF . By repeating this with S2; S3; : : :Sr, wesee that 9St+11 ;St+12 ; : : :St+1r : jSt+1i j � jVij=2jW (t)(St+11 ;St+12 ; : : :St+1r )j � (�=2r)pN jjAjjF :Let dt+1 = W (t)(St+11 ;St+12 ; : : :St+1r )=(jSt+11 jjSt+12 j : : : jSt+1r j) be the average of the entriesin S1 � S2 � : : :Sr and let D(t+1) = CUT (St+11 ;St+12 ; : : :St+1r ; dt+1). Then, noting thatsubtracting the cut array D(t+1) from W (t) just corresponds to subtracting the averagefrom a set of real numbers, we have :jjW (t) �D(t+1)jj2F � jjW (t)jj2F =Xi12St+11 ;i22St+12 :::((W (t)(i1; i2; : : : ir)� dt+1)2�(W (t)(i1; i2; : : : ir))2) (6)= �jSt+11 jjSt+12 j : : : jSt+1r jd2t+1 =�W (t)(St+11 ; St+12 ; : : :St+1r )2jSt+11 jjSt+12 j : : : jSt+1r j � � �222r jjAjj2F :Also, jjW (t) �D(t+1)jj2F � jjW (t)jj2F � �d2t+1N=22r: (7)7



We now have (5) satis�ed with t one greater. Note that (5) implies that we must stopbefore t exceeds 22r=�2. The upper bound on the sum of the d2t follows from adding up theinequalities (7) which yieldsjjAjj2F � jjAjj2F � jjA� (D(1) +D(2) + : : :D(t))jj2F �Xt d2tN=22r:The proof of the thigtness of the upper estimate is included in Section 5. 23 Cut Norm of Random SubarraysThe main purpose of this section is to show that if an array on V r (where jV j = n islarge) has small cut-norm, then so does the array induced by a random subset J of V ofcardinality O(1=�6).The outline of the proof is as follows : Suppose G is the array on V r, and B is the array onJr . Suppose Q1; Q2; : : :Qr are random subsets of Jr�1, each of cardinality 
(1=�2). Then,lemma (7) asserts that with high probability, there are subsets Q01 � Q1, Q02 � Q2 : : :Q0r �Qr such that B(P (Q01); P (Q02); : : :P (Q0r)) � B+: (8)In other words, we need to consider only 2O(1=�2) candidate subsets of J to �nd theS1; S2; : : :Sr � J approximately maximizing B(S1; S2; : : :Sr) (not all 2O(jJ j) of them.) NextLemma (8) shows that if we had already �xed, say X1 = P (Q01); X2 = P (Q02); : : :Xr =P (Q0r), and then we pick J (independently of Xi), we will have that with high probabilityG(X1; X2; : : :Xr) � jV jrjJ jr B(X1; X2; : : :Xr): (9)Multiplying the failure probability with the number of possible subsets of the Qi (which is2O(1=�2)), we also get that with high probability, this holds for every subset Q01 of Q1, Q02of Q2 etc. If this holds rigorously, we would then clearly be able to infer from (8) and (9)that G+ � jV jrjJ jr B+ :A similar inequality also will follow (along the same lines) for (�G)+ and this would �nishthe proof.The major problem is that J is not independent of Q1; Q2; : : :Qr; if it were (8) will nothold. To tackle this, we adopt a method of proof reminiscent of the argument of Vapnik andChervonenkis [15]. We consider a set J 0 which is J minus all the end points of r� tuplesin Q1; Q2; : : :Qr. Noting that jJ j � jJ 0j 2 O(1=�2), we argue that we get roughly the sameprobability distributions if we pick, as we described already, J �rst and then Q1; Q2; : : :Qras random subsets of Jr�1, whence (8) holds as if we �rst pick J 0 and then Q1; Q2; : : :Qr asrandom subsets of V r�1, whence we have that (9) holds. Thus, we may actually use both(8) and (9) to get our result. 8



Lemma 6. Suppose B is a r�dimensional array on R1 � R2 � : : :Rr. Suppose S1 �R1; S2 � R2; : : :Sr � Rr are some �xed subsets. Suppose Q1 is a random subset of R2 �R3 � : : :Rr of cardinality p. 1 Then, with probability at least 1� 140(4r)r , we have :B(P (Q1 \ (S2 � S3 : : :Sr)); S2; S3; : : : ; Sr) �B(S1; S2; : : :Sr)� 40(4r)rpjR1jjR2j : : : jRrjpp jjBjjF :Proof. Let S2 � S3 : : :� Sr = S. We have,B(P (Q1 \ S); S) = B(P (S); S)� B(B1; S) +B(B2; S); (10)where B1 = fz 2 R1 : B(z; S) > 0 and B(z; S \ Q1) < 0g;B2 = fz 2 R1 : B(z; S) < 0 and B(z; S \ Q1) > 0g;Consider one �xed z 2 R1. Let Xz = B(z; S \ Q1). We may write Xz as the sumX1 + X2 + : : :Xp, where X1; X2; : : :Xp is a sample of size p drawn uniformly withoutreplacement from the set of l = jR2j�jR3j� : : : jRrj reals - fB(z; y))1y2Sg. For analysis, wealso introduce the random variables Y1; Y2; : : :Yp - a sample of size p drawn independently,each uniformly distributed over the same set of reals, but now with replacement. We haveE(X1+X2 + : : :Xp) = pl B(z; S)Var(X1 +X2 + : : :Xp) � Var(Y1 + Y2 + : : :Yp) �pl Xu2SB(z; u)2 � pl Xu2R2�R3�:::Rr B(z; u)2;where the second line is a standard inequality (for example, it follows from Theorem 4 of[11]). Hence, for any � > 0,Pr�����Xz � pl B(z; S)���� � �� � pPu2R2�R3�:::Rr B(z; u)2l�2 (11)If z 2 B1 then Xz�(p=l)B(z; S)� �(p=q)B(z; S) and so applying (11) with � = pB(z; S)=lwe get that for each �xed z,Pr(z 2 B1) � lPu2R2�R3�:::Rr B(z; u)2pB(z; S)2 :E0@Xz2B1B(z; S)1A1So, each of the �jR2jjR3 j:::jRr jp � subsets is equally likely to be picked to be Q1.9



� Xfz2R1: B(z;S)>0gmin(B(z; S); lPu B(z; u)2pB(z; S) )� Xfz2R1: B(z;S)>0gslPu2R2�R3:::Rr B(z; u)2p (12)By an identical argument we obtainE0@Xz2B2B(z; S)1A � � Xfz2R1: B(z;S)<0gslPuB(u; z)2p :Hence, (using the Cauchy-Schwartz inequality),E(B(P (Q1 \ S); S))� B(P (S); S)� Xz2R1slPuB(u; z)2p� B(P (S); S)� pjR1jjR2j : : : jRrjpp jjBjjF :Now, B(P (S); S)�B(P (S \Q1); S) is a nonnegative random variable with expectation atmost pjR1jjR2j:::jRr jpp jjBjjF , as argued above. So using Markov inequality, the lemma follows.2Lemma 7. Suppose B is a r�dimensional array on R1 � R2 � : : :Rr. Let p � 160r4=�2.Suppose also that Qi is a random subset of R1 � R2 � : : :Ri�1 �Ri+1 : : :Rr of cardinalityp. Then with probability at least 1� r=(40(4r)r), we have :9Q01 � Q1; 9Q02 � Q2; : : :9Q0r � Qr;B(P (Q01); P (Q02); : : :P (Q0r)) � B+ � �qjR1jjR2j : : : jRrj jjBjjF :Proof. Let S1 � R1; S2 � R2 : : :Sr � Rr satisfy B(S1; S2; : : :Sr) = B+ . ApplyingLemma (6) r times, we get the current lemma. 2We �rst need one more simple technical lemma.Lemma 8. Suppose G is a r dimensional array on V r with each entry of absolute value atmost M . Let t be a �xed positive integer. Let I be a random subset of V of cardinality t.Then, with probability at least 1� e��4t=8 we havejG(V; V; V; : : :V )� jV jr(t)r G(I; I; : : :I)j � �2M jV jr:Proof. Note that changing any one element of I changes the random variable G(I; I; : : : I)by at most Mtr�1. Thus the lemma follows by standard Martingale inequalities ([4]).10



Theorem 9. Suppose G is a r�dimensional array on V r = V � V � : : : V with all entriesof absolute value at most M . Let J be a random subset of V of cardinality q � 1000r7=�6.Let B be the r�dimensional array obtained by restricting G to Jr. Then, we have withprobability at least 39/40:jjBjjC � qrjV jr jjGjjC + 10�2Mqr + 5�qr jjGjjFjV jr=2 :Proof. First we have that E(jjBjj2F ) = qrjV jr jjGjj2F , so using Markov inequality, we havethat with E1 : jjBjjF � 4 qr=2jV jr=2 jjGjjF has Pr(E1) � 9=10: (13)Let p = 160r4=�2. Let Q1; Q2; : : :Qr be r independently, each uniformly randomly pickedsubsets of Jr�1, each of cardinality p. We apply Lemma (7) to B. So, with probability atleast 7/8 (using (13))9Q01 � Q1; 9Q02 � Q2; : : :9Q0r � Qr; G(P (Q01) \ J; P (Q02)\J; : : :P (Q0r) \ J) � B+ � �3 qrjV jr=2 jjGjjF : (14)[Here, we mean by P (Q01) the set fz 2 V : G(z; Q01) > 0g.] Let J 0 be obtained from J byremoving the at most r(r � 1)p end points of the elements of Q1 [Q2 [ : : :Qr.We will make crucial use of the fact that the following two di�erent methods of pickingJ;Q1; Q2; : : :Qr produce nearly the same joint probability distribution on them :(i) As above, pick J to be a random subset of V of cardinality q and then pick Q1; Q2; : : :Qrto be independent random subsets of Jr�1 each of cardinality p. Let P (i)(J;Q1; Q2; : : :Qr)be the probability that we pick J;Q1; Q2; : : :Qr in this experiment. Then, clearly, for eachJ;Q1; Q2; : : :Qr with jJ j = q; Q1; Q2; : : :Qr � Jr�1; jQij = p, we haveP (i)(J;Q1; Q2; : : :Qr) =   jV jq ! qr�1p !r!�1 :(ii) Now, pick J 0 to be a random subset of V of cardinality q�r(r�1)p. Then pick indepen-dently (of J 0 and of each other) r random subsets ~Q1; : : : ~Qr of V r�1 of cardinality p each.Let ~J = J 0[ (the set of all end points of elements of ~Q1[ ~Q2 : : : ~Qr). Let P (ii)(J 0; ~Q1; : : : ~Qr)be the probabilities here.De�ne E2 to be the event that all pr(r� 1) end points of the elements in Q1; Q2; : : :Qr areall distinct and let E3 be the event that all the end points of ~Q1; ~Q2; : : : ~Qr are distinct andnone of them is in J 0. It is easy to see by direct calculation that conditioned on the eventsE2; E3 P (i) and P (ii) are exactly equal. It is also easy to see thatP (i)(E2) =  � qr�1�p ! � qr�1�� pp ! : : : � qr�1�� (r� 1)pp !=11



" qr�1p !#r � 99=100;and P (ii)(E3) � 99=100; so we have that the following inequality which we will use shortly: jjP (i) � P (ii)jjTV � 1=50: (15)Consider one particular collection of subsets Q01 � Q1; Q02 � Q2; : : :Q0r � Qr. We will applyLemma (8) to the array G0 on V r obtained by settingG0(i1; i2; : : : ir) = G(i1; i2; : : : ir)8(i1; i2; : : : ir) 2 P (Q01)�P (Q02)� : : :P (Q0r)G(i1; i2; : : : ir) = 0 otherwise :Note that jjG0jjF � jjGjjF . Note that we are considering the set-up regarding P (ii); sowe may assume that Q1; Q2; : : :Qr have already been picked. For now, the subsets Q01 �Q1; Q02 � Q2; : : :Q0r � Qr have been also �xed. Then we pick J 0 � V of cardinalityq�r(r�1)p independently of Q1; Q2; : : :Qr. Thus applying the lemma, we get the claimedbounds for the probabilities of the events de�ned below :Let E8(J 0; Q01; Q02; : : :Q0r) :����G(P (Q01); P (Q02); : : :P (Q0r))� jV jr(q � r(r � 1)p)rG(P (Q01) \ J 0; P (Q02) \ J 0; : : : ; P (Q0r) \ J 0)��� 10�2M jV jrThen, P (ii)(E8(J 0; Q01; Q02; : : :Q0r)) � 1� e��4q=16:Now using the fact that for a choice of Q1; Q2; : : :Qr, there are 2pr � e�2q=32 choices ofQ01; Q02; : : :Q0r, we get :E9(J 0; Q1; Q2; : : :Qr) : 8Q01 � Q1; 8Q02 � Q2; : : :8Q0r � QrE8(J 0; Q01; Q02; : : :Q0r)P (ii)(E9(J 0; Q1; Q2; : : :Qr)) � 1� e��4q=32 � 99=100:Noting that qr � (1+ �2)(q� r(r� 1)p)r and jG(P (Q01)\ J 0; P (Q02)\ J 0; : : : ; P (Q0r)\ J 0)�G(P (Q01) \ J; P (Q02) \ J; : : : ; P (Q0r) \ J)j � �2qrM , we get (using also (15)) :Let E10(J;Q1; Q2; : : :Qr) :8Q01 � Q1; 8Q02 � Q2; : : :8Q0r � Qr����G(P (Q01); P (Q02); : : :P (Q0r))� jV jr(q � r(r � 1)p)rG(P (Q01) \J; P (Q02) \ J; : : : ; P (Q0r) \ J)�� � 10�2M jV jr;P (i)(E10(J;Q1; Q2; : : :Qr)) � 97=100: (16)Under E10(J;Q1; Q2; : : :Qr), we have from (14) that9Q01 � Q1; 9Q02 � Q2 : : :G(P (Q01); P (Q02); : : :P (Q0r)) �12



jV jrqr B+ � 5�jV jr=2jjGjjF � 10�2M jV jr:Thus, we get that with probability at least 79=80 :G+ � jV jrqr B+ � 10�2M jV jr � 5�jV jr=2jjGjjF :By an exactly identical argument applied to �G, we get also that with probability at least79=80, (�G)+ � jV jrqr (�B)+ � 10�2M jV jr � 5�jV jr=2jjGjjF :From the last two statements, the Theorem follows.4 Upper Bound on the Sample Complexity of MAX-rCSPThe purpose of this section is to prove the following theorem.Theorem 10. Let r be a �xed integer such that r � 2. Let F = ff1; :::f`g be a collectionof functions where each fi is a boolean function of exactly r variables picked from V =fx1; :::xng. Assume that J is a random subset of V of cardinality q where q = 
( log(1=�)�12 ).Let m(V ) denote the maximum number of functions in F which can be made true for someassignment of V and m(J) the maximum number of functions in F with all variables in Jwhich can be made true. Then we have thatm(V ) � m(J) jV jrqr + �jV jr (17)m(V ) � m(J) jV jrqr � �jV jr (18)with probability at least 2/3.Note that our 
 hides a factor exponential in rProof. For each 0; 1 sequence z of length r, z = (z1; z2; :::zr); say, we de�ne the r-dimensional array A(z) on V r byA(z)(i1; :::ir) = number of functions in F true by settingxi1 = z1; :::xir = zrNote that the A(z) are not algorithmically constructed. They are used only for the proof.We let M = maxz2f0;1gr jjA(z)jj1. We can of course assume M � 22r . 2Let S : V ! f0; 1g be any �xed assignment. We will also think of S as the set of truevariables under S. Clearly, the number of functions satis�ed by S is equal toXz2f0;1gr Xi1;:::ir :S(i1)=z1 ;:::S(ir)=zr A(z)(i1; :::ir) (19)13



Suppose that we have cut decompositions of all the A(z)D(z) = A(z) � E(z) = sXt=1Cut(S(z)t;1 ; S(z)t;2 ; :::S(z)t;r ; d(z)t ); 1 � t � s;say, with s = 4r�2 ; jjE(z)jjC � �M jV jr. Using (19), we see that the number of functionswhich are true in the assignment S and with weights given by the arrays D(z); z 2 f0; 1gr,is equal to v�(�), say, where v�(�) = Xz2f0;1gr sXt=1 d(z)t �ri=1�(z)t;i (20)with �(z)t;i = jS(z)t;i \ Sj if zi = 1 and �(z)t;i = jS(z)t;i \ (V nS)j if zi = 0:For t = 1; 2; :::s; i = 1; 2; :::r and z 2 f0; 1gr, �x a set � of values of the �(z)t;i . We say that� is realizable if there exists S � V such thatjjS(z)t;i \ Sj � �(z)t;i j � 3�38rsn for all triples (z; t; i) with zi = 1; andjjS(z)t;i \ (V nS)j � �(z)t;i j � 3�38rsn for all triples (z; t; i) with zi = 0:We claim that if � is not realizable, then the following Linear Program LP(V; �) which isjust a tightening of the above inequalities, is not feasible:�(z)t;i � 2�3n8rs � Xj2S(z)t;i xj � �(z)t;i + 2�3n8rs for all triples (z; t; i)with zi = 1�(z)t;i � 2�3n8rs � Xj2S(z)t;i (1� xj) � �(z)t;i + 2�3n8rsfor all triples (z; t; i) with zi = 00 � xj � 1; 1 � j � n [LP (V; �)][This is because if LP(V; �) was feasible, then it would have a basic feasible solution whichwould have at most N = sr2r+1 fractional components; setting the fractional xi to zerowill yield a 0-1 vector realizing �. We use the obvious fact that for large n, we have thatsr2r+1 � �38rsn]. So, by Linear Programming duality, we see that there exists one inequalityobtained as a nonnegative combination of the �rst N inequalities of LP(V,�) for which thereis no solution x satisfying the bounds 0 � xi � 1. It is easy to see that the combinationneed not involve both the upper bound and the lower bound on any of the sets S(z)t;i . Thus14



we get that there are sr2r real numbers u(z)t;i ; 1 � t � s; 1 � i � r; z 2 f0; 1gr (dependingon �) such that, letting,c(�)i = X1�j�r0BB@ Xz:zj=1 Xt:i2S(z)t;j u(z)t;j � Xz:zj=0 Xt:i2S(z)t;j u(z)t;j 1CCAand c(�)0 = Xz2f0;1gr0@ X1�t�s; 1�j�r(u(z)t;j �(z)t;j + ju(z)t;j j�3n8rs )1A� X1�j�r Xz:zj=0 X1�t�s u(z)t;jwe get that nXi=1 c(�)i xi � c(�)0 has no solution x with 0 � xi � 1 (21)which is equivalent to nXi=1Min(c(�)i ; 0) > c(�)0 : (22)Let J be a random subset of V of cardinality q = 
 � log(1=�)�12 �. Let 
(�) =Pz2f0;1grP1�t�s ju(z)t;j j:Noting that jc(�)i j � 
(�), we have from (22), using the Theorems of Hoe�ding [11],Pr Xi2JMin(c(�)i ; 0) � qnc(�)0 � 2�3q8rsn
(�)! � exp � 2�6q82rs2!which implies that the following Linear Program [LP (J; �)] on the variables xi; i 2 J isunfeasible : qn  �(z)t;j � �3n8rs! � Xi2S(z)t;j \J xi � qn  �(z)t;j + �3n8rs!for all (z; t; j) with zj = 1qn  �(z)t;j � �3n8rs! � Xi2S(z)t;j \J(1� xi) � qn  �(z)t;j + �3n8rs!for all (z; t; j) with zj = 00 � xi � 1 8i 2 J [LP (J; �)]Let � = exp �� 2�10q(32)2r � : To summarize, we have that for any �,LP(V; �) is not feasible implies that LP(J; �) is not feasible with probability at least 1��:This is of course the same asPr(LP(J; �) feasible) > �) implies LP(V; �) feasible:15



This means that, again for any �xed �, either we are guaranteed the existence of a \good"solution in V , or the probability that LP(J; �) is feasible is very small. Now, we �x attentionon the set K, say, of points with coordinates of the form q�38r �(z)t;j where the �(z)t;j are integers.Note that there are at most�8r�3 � r8r�2 such points. Thus, we can bound above the totalprobability of having simultaneously LP(J; �) feasible and LP(V; �) unfeasible on one pointof K by jKj� = �8r�3� r8r�2 exp � 2�10q(32)2r!which is less than 1=3 for q = 
 � log(1=�)�12 �For each z 2 f0; 1gr, let B(z) be the matrix induced by A(z) on Jr , and let us writeB(z) = F (z) + X0�t�sCut(S(z)t;1 \ J; S(z)t;2 \ J; :::S(z)t;r \ J; d(z)t )say. Then we have that F (z) is the array induced by E(z) on Jr.The following theorem resembles Theorem 9. However it di�ers from it in that it does notrequire a bound for the Frobenius norm (and requires higher sampling size).Theorem 11. Suppose G is a r-dimensional array on V r = V �V � :::V with all entries ofabsolute value at most M . Suppose J is a random subset of V of cardinality q � 5000r7=�8.Let B be the r-dimensional array obtained by restricting G to Jr. Then we have, withprobability at least 1� 1=(4:2r),jjBjjC � qrjV jr jjGjjC + 5�2qrM(3 + 4r=�):Proof The proof of Theorem 11 mimics the proof of Theorem 9 and we give only a sketch.There are two di�erences. First we use the trivial upper bound jV jr=2M(1 + 4r=�) for theFrobenius norm of B. Also, we increase the value of p in Lemma 7 by a factor 
(1=�2)so as to get the assertion of Lemma 2 with �2 in place of � and with probability at least1� 1=(4:2r). We get then that, with probability at least 1� 1=(3:2r),jjBjjC � qrjV jr jjGjjC + 10�2Mqr + 5�2qrM(1 + 4r=�):This implies immediately the assertion of the theorem. 2We return now to the proof of Theorem 8.Taking G = F (z) gives jjF (z)jjC � 16�4rqrMsimultaneously for all z 2 f0; 1gr with probability at least 2=3. For v�(�) as already de�ned(we use � when referring to J , �; � when referring to V ) and v(�) the number of functions16



with variables in J satis�ed by S(�) we havejv(�)� v�(�)j � Xz2f0;1gr jjF (z)jjC � 16�M8rqr: (23)Also, since maxz;t jd(z)t j � 2rM ,jv�(�)� v�(�)j � 8rM�2 jj�� �jj`1: (24)For each realizable � there is an �0, say, belonging toK and for which jj�0��jj`1 � q�38rsr2rs ��3qr4r :We know that, with probability at least 2=3, there exists simultaneously for all �0 in K,a feasible �0 satisfying the inequalities of the Linear Program [LP (J; �)] where � is replacedby �0, and with jj�0 � jV jq �0jj`1 � �3jV j8rs r2rs = �3rjV j4r :This implies, using (24), jv�(�0)� v�(�)j � 8rM�2 jj�0� (�)jj`1 � �2rqrM and, with the aboveinequality, jv�(�0)� jV jrqr v�(�)j � �(r + 1)2rjV jrM:Now we use (23) twice to get from the above inequality,jv(�0)� jV jrqr v(�)j � �((r + 1)2r + 32:4r)jV jrM;which gives, after a rescaling of �, both assertions of the theorem by choosing � such thatv(�) = m(J). 2This closes the proof of Theorem 1.The re�nement of the general method to the case of MAX-2CSP and the proof of Theorem2, as well as a lower bound on sample complexity of MAX-CUT are included in Section 6.5 Lower Bound on Number of Cut Arrays NeededIn this Section we show that the c(r)=�2 upper estimate for the number of cut arraysin Theorem 5 is tight (up to the dependence on r), even if we restrict our attention tof�1; 1g-arrays A, and even if we only require that the sum of the cut arrays D will satisfy(2). Throughout the subsection we assume, whenever this is needed, that � is su�cientlysmall as a function of r. We also omit all 
oor and ceiling signs whenever these are notcrucial, to simplify the presentation. Note that if we only wish to satisfy (5) in Theorem5, then its proof implies that 1=�2 cut arrays su�ce, as the extra 4r term appears becauseof the need to satisfy (4). 17



The L1-norm of an array A : V1 � V2 � � � � Vr 7! R is given byjjAjj1 = X(i1;i2;:::;ir)2V1�V2����Vr jA(i1; i2; : : : ; ir)j:The following lemma supplies a lower bound for the cut-norm of an array in terms of itsL1-norm. The proof is based on the method of [1].Lemma 12. Let A : V1 � V2 � � � � Vr 7! R be an array. Then its cut norm satis�esjjAjjC � jjAjj12 � 8(r�1)=2Qrj=2 jVj j1=2 :The proof (following the ideas of [1]) uses a result of Szarek. Let c1; c2; : : : ; cn be a setof n reals, let �1; : : : ; �n be independent, identically distributed random variables, eachdistributed uniformly on f�1; 1g, and de�ne X =Pi �ici.Lemma 13. (Szarek [14]) In the above notation,E(jX j)� 2�1=2(c21 + : : :+ c2n)1=2 (� jc1j+ : : :+ jcnjp2n :)Corollary 14. Let c1; : : : ; cn be reals, and let S be a random subset of f1; 2; : : : ; ng takenuniformly among all 2n subsets. Let Y be the random variable Y =Pi2S ci. ThenE(jY j) = PS�f1;:::ng jPi2S cij2n � Pi jcijp8nProof. For every vector � = (�1; : : : ; �n) 2 f�1; 1gn de�ne S� = fi : �i = 1g andS0� = fi : �i = �1g. Then, by the triangle inequalityjXi2S� cij+ jXi2S0� cij � jXi �icij:As � ranges over all 2n members of f�1; 1gn, S�, as well as S 0� range over all 2n subsets off1; 2; : : : ; ng implying that 2E(jY j) � E(jX j), where X is as above. The result now followsfrom Lemma 13. 2Proof of Lemma 12. We prove, by induction on t, that for every 0 � t � r there aresubsets Sr�t+1 � Vr�t+1 : : :Sr � Vr such thatXi12V1 � � � Xir�t2Vr�t j Xir�t+12Sr�t+1 � � � Xir2SrA(i1; i2; : : : ; ir)j � jjAjj18t=2Qrj=r�t+1 jVj j1=2 : (25)18



For t = 0 there is nothing to prove. Assuming the assertion holds for t � 1 < r, we proveit for t. For each (r � t)-tuple i1; i2; : : : ; ir�t and each i 2 Vr�t+1 de�neci = ci(i1; i2; : : : ; ir�t)= Xir�t+22Sr�t+2 � � � Xir2Sr A(i1; i2; : : : ; it�r; i; it�r+2; : : : ; ir);and apply Corollary 14 with n = jVr�t+1j. Summing the resulting inequalities for all(i1; : : : ; ir�t) 2 V1 � � � � � Vr�t we conclude that the average (over Sr�t+1 � Vr�t+1) of thesum Xi12V1 � � � Xir�t2Vr�t j Xir�t+12Sr�t+1 � � � Xir2SrA(i1; i2; : : : ; ir)jis at least 1p8jVr�t+1j jjAjj18(t�1)=2Qrj=r�t+2 jVj j1=2 = jjAjj18t=2Qrj=r�t+1 jVjj1=2 :Therefore, there is a set Sr�t+1 � Vr�t+1 for which (25) holds, showing that it indeed holdsfor all t � r.In particular, for t = r � 1 there are sets S2 � V2; : : : ; Sr � Vr such thatXi12V1 j Xi22S2 � � � Xir2VrA(i1; i2; : : : ; ir)j � jjAjj18(r�1)=2Qrj=2 jVjj1=2 : (26)Fixing such sets Si, either the contribution of the positive termsPi22S2 � � �Pir2Vr A(i1; i2; : : : ; ir)gives at least half of (26), or the contribution of the absolute values of the negative termsgives at least half the sum. In each case we can de�ne S1 as the set of those i1 2 V1 thatcorrespond to those contributing terms and conclude thatjjAjjC � j Xi12S1 � � � Xir2Sr A(i1; : : : ; ir)j� jjAjj12 � 8(r�1)=2Qrj=2 jVjj1=2 :This completes the proof. 2From now on we restrict our attention in this subsection to arrays A : V1�V2� � � ��Vr 7!f�1; 1g where jVij = n for all i. We need the following simple fact.Lemma 15. There exists a family F of r-dimensional arrays, each mapping V1�V2�� � ��Vr, where jVij = n for each i, into f�1; 1g such that jFj � 2nr=2 and for each two distinctmembers A;B 2 F , jjA� Bjj1 > nr5 :Proof. Let H(x) = �x log2 x � (1 � x) log2(1 � x) be the binary entropy function.By the Gilbert-Varshamov bound (see, e.g., [13]), for every (large) m there are at least2(1�H(1=10))m ( > 2m=2) vectors of length m over f�1; 1g, where the Hamming distancebetween each pair exceeds m=10. Taking m = nr and viewing these vectors as arrays19



mapping V1 � � � � � Vr to f�1; 1g, the desired result follows, as the di�erence between anytwo distinct arrays in the collection will have more than nr=10 nonzero entries, each ofwhich is either 2 or �2. 2We can now prove the main result of this subsection.Theorem 16. For every �xed dimension r � 2 there exists some c(r) > 0 so that for every� > 0 there are n;N = nr and an r-dimensional array A : V1 � � � � � Vr 7! f�1; 1g, wherejVij = n for all i, such that for every array D which is the sum of less than c(r)=�2 cutarrays, jjA�DjjC > �nr ( = �pN jjAjjF )Proof. We prove the theorem for all � which is su�ciently small as a function of r,and with c(r) = 14r�402�8r�1 : Clearly this implies the result for all � (with a possibly smallerc = c(r)). De�ne n = 18 � (40)2=(r�1)�2=(r�1) ;and note that N = nr < 1=(2�4). By Lemma 15 there is a family F of 2nr=2 arraysA : V1 � V2 � � � � � Vr 7! f�1; 1g such that for every two distinct members A;B 2 F ,jjA�Bjj1 > N=5. By Lemma 12 this implies that for every such A;B,jjA� BjjC � jjA�Bjj12 � 8(r�1)=2n(r�1)=2 > n(r+1)=210 � 8(r�1)=2 = 4�nr; (27)where the last equality follows from the de�nition of n.Therefore, F is a large set of arrays, so that the cut-distance between any pair of them islarge. To complete the proof we show that at least one member ofF cannot be approximatedwell (in the cut metric) by a sum of a small number of cut arrays. To do so, suppose that foreach member A of F there is an array D which is a sum of at most t cut arrays, such thatjjA�DjjC � �nr . Call a cut-array �-nice if it is an array of the form CUT (S1; S2; : : : ; Sr; d)where d is an integral multiple of �=t. An obvious rounding procedure implies that for eachmember of F there is an array D which is the sum of at most t �-nice cut arrays, such thatjjA�DjjC < 2�nr .We next prove an upper bound for the total possible number of such arrays D. Note, �rst,that as nr < 1=(2�4), the absolute value of no entry of such a D can exceed 1+1=�3 < 2=�3(since otherwise the cut-norm of A � D would exceed 2�nr simply by considering a singleentry). As each entry ofD is also an integral multiple of �=t it follows that there are at most4t=�4 possibilities for each such entry. There are at most 2nr possibilities for choosing thesets S1; : : : ; Sr in each cut array CUT (S1; : : : ; Sr; d), and as D is the sum of t such arraysthere are at most 2nrt possibilities for choosing the de�ning sets of all of them. Once theseare chosen, we have to choose the densities d of these arrays. Each of those is an integralmultiple of �=t, but the trouble is that its absolute value may be large (as there may becancellations between them, while forming D). It is thus better to bound the number ofpossibilities of all these densities as follows. Let d1; : : : ; dt be the densities. Since we havealready chosen all sets Si in all the cut arrays whose sum is D, we can express each entry of20



D as a sum of a subset of the densities di. At most t of the characteristic vectors of thesesubsets span all the characteristic vectors of all other subsets we have, and thus if we aregiven the values of D in these entries, we can solve for all other entries of D. There are atmost nrt ways to choose t entries of D, and then there are at most (4t=�)t possibilities forthe values of D in these entries (as each entry is an integral multiple of �=t whose absolutevalue does not exceed 2=�3.) Therefore, the total number of possible arrays D is at mostnrt(4t� )t2nrt:Each member of F is within cut-distance smaller than 2�nr from at least one of these arraysD, and the cut-distance between any two distinct members of F exceeds 4�nr, by (27). Itthus follows that the number of arrays D is at least as large as F , implying thatlog jFj = nr2 � rt logn+ t log(4t=�) + nrt < 2trn;where here we used the fact that n is much bigger than log n+log(4t=�). The last inequalityimplies that t � nr�14r = 14r � 402 � 8r�1�2 ;completing the proof. 26 MAX-CUT and MAX-2CSP6.1 Cut norm of random submatricesIn this section, we will prove that the cut decomposition obtained for arrays in the lastsection also holds with high probability for a submatrix of A \induced" by a random subsetJ of f1; 2; : : :ng of size 
(1=�4). [A \random" subset of size q is obtained by taking qindependent samples with replacement.] More precisely,Theorem 17. Suppose J is a random subset of f1; 2; : : :ng of cardinality q � 108=�4 andlet B be the q � q submatrix of W in the rows and columns in J. Then, with probability atleast 9/10, we have jjBjjC � 41�q2:The use of this theorem for the MAX-CUT problem will become clear later. But wemotivate its use with the solution of another problem :De�nition 1 The maximum submatrix sum of A (denoted MSS(A)) ismaxS;T�f1;2;:::ngA(S; T ):21



Corollary 18. If A satis�es jAij j � 1, q � 108=�4 is a positive integer, J is a randomsubset of f1; 2; : : :ng of cardinality q, and F is the q � q submatrix of A in the J rows andcolumns, then with probability at least 9/10, we havejMSS(A)� n2q2MSS(F )j � 4�n2:We will actually prove a more general result (Theorem 19) from which Theorem 17 willfollow.Theorem 19. Suppose G is a n�n matrix with rows and columns indexed by f1; 2; : : :ng.Suppose jGij j �M for all i; j. Suppose � is a real number satisfyingjjGjjFp2nM � � � 10 ; 103n1=8 � �:Let q be any positive integer which is at least 108=�4. Then for a random subset J off1; 2; : : :ng, with jJ j = q, the submatrix B of G consisting of its rows and columns in Jsatis�es both the following inequalities with probability at least 9/10 :MSS(B) � 4�2Mq2 +MSS(G) q2n2 + 8�q2 jjGjjFn :Remark 1. It is not di�cult to see from the above theorem that in fact if A satis�esjAij j � 1, and F is the submatrix of A induced on J , thenjMSS(A)� n2q2MSS(F )j = O(�n2):[What remains to be proved is that MSS(F ) is not too small - this part is easy - if S; Trealize the MSS of A, then w.h.p., S \ J , T \ J give a fairly high submatrix sum too, justby standard sampling arguments which we omit here.]Thus, at least for the MSS problem, these methods say that a random subset of size 
(1=�4)does the job. The proof for the maximum cut is more di�cult, primarily because, whereasin the MSS problem, the choice of the set of rows and columns are both open (to us) andnot interlinked, in the maximum cut problem, they have to be complementary sets. Thesedi�culties are tackled in the next section via Linear Programming techniques. Proof.First we have that E(jjBjj2F ) = q2n2 jjGjj2F , so using Markov inequality, we have thatE1 : jjBjjF � 4q jjGjjFn has Pr(E1) � 9=10: (28)Let p = 1600=�2. We pick random subsets U;Q of J , each of cardinality p, independently ofeach other. [There are auxillary random sets which we use for the proof.] We let J 0 denoteJ n (U [Q). We will make crucial use of the fact that the following two di�erent methodsof picking J 0; U;Q produce nearly the same joint probability distribution on them :22



(i) As above, pick J to be a random subset of V of cardinality q; and then pick Q;Uto be independent random subsets of J of cardinality p each. Let P (i)(J;Q; U) be theprobability that we pick J;Q; U in this experiment. Then, clearly, for each J;Q; U withjJ j = q; Q; U � J; jU j = jQj = p, we have P (i)(J;Q; U) = 1=�nq��qp��qp�.(ii) Now, pick J 0 to be a random subset of V of cardinality q�2p. Then pick independently(of J 0 and of each other) two random subsets ~Q; ~U of V of cardinality p each. Let ~J =J 0 [ ~Q [ ~U . Let P (ii)( ~J; ~Q; ~U) be the probabilities here.It is easy to see by direct calculation that conditioned on the events E2 : Q \ U = ; andE3 : ( ~Q \ ~U = ;) ^ (J 0 \ ( ~Q [ ~U) = ;), P (i) and P (ii) are exactly equal. It is also easy tosee that P (i)(E2) = (q�p)!(q�p)!q!(q�2p)! � 99=100 and P (ii)(E3) � 99=100; so we have thatjjP (i) � P (ii)jjTV � 1=50: (29)We will use the above facts later. Now, for any subset Y of the rows of G, we de�ne P (Y )to be the set of (indices of) columns of G whose sum in the Y rows is nonnegativeP (Y ) = fj 2 V :Xi2Y Gij � 0g:Similarly, for subset X of the columns of G, we de�ne P (X) as the set of rows which havenonnegative sum in the X columns. Suppose S0; T0 � J satisfyG(S0; T0) = maxS;T�J G(S; T ):So, we may assume that T0 = P (S0) \ J .Lemma 20. The probability of the event E(Q;U) de�ned below is at least 19/20 :E(Q;U) : 9Q0 � Q;U 0 � U : G(P (Q0) \ J; P (U 0) \ J) � G(S0; T0)� 8�q2 jjGjjFn : (30)Proof. Let Z = P (S0) \ J and Z0 = P (U \ S0) \ J . We have,G(S0; Z 0) = G(S0; Z)�G(S0; B1) + G(S0; B2); (31)where B1 = fz 2 J : G(S0; z) > 0 and G(U \ S0; z) < 0g;B2 = fz 2 J : G(S0; z) < 0 and G(U \ S0; z) > 0g:Consider one �xed z. Let Xz = G(U\S0; z). We may write Xz as the sum X1+X2+: : :Xp,where X1; X2; : : :Xp is a sample of size p drawn uniformly without replacement from the setof q reals - fG(y; z)1y2S0g. For analysis, we also introduce the random variables Y1; Y2; : : :Yp- a sample of size p drawn independently, each uniformly distributed over the same set ofreals, but now with replacement. We have E(X1+X2 + : : :Xp) = pqG(S0; z);Var(X1 +X2 + : : :Xp) � V ar(Y1 + Y2 + : : : Yp) � pq Xu2S0G(u; z)2 � pq Xu2J G(u; z)2;23



where the second line is a standard inequality (for example, it follows from Theorem 4 of[11]). Hence, for any � > 0,Pr�����Xz � pqG(S0; z)���� � �� � pPu2J G(u; z)2q�2 (32)If z 2 B1 then Xz � (p=q)G(S0; z) � �(p=q)G(S0; z) and so applying (11) with � =pG(S0; z)=q we get that for each �xed z,Pr(z 2 B1) � qPu2J G(u; z)2pG(S0; z)2 :E0@Xz2B1G(S0; z)1A � Xfz2J : G(S0;z)>0gmin(G(S0; z); qPu2J G(u; z)2pG(S0; z) )� Xfz2J : G(S0;z)>0gsqPu2J G(u; z)2p (33)By an identical argument we obtainE0@Xz2B2G(S0; z)1A � � Xfz2J : G(S0;z)<0gsqPu2J G(u; z)2p :Hence, (using the Cauchy-Schwartz inequality),E(G(S0; Z 0)) � G(S0; Z)�Xz2JsqPu2J G(u; z)2p � G(S0; Z)� qpp jjBjjF :Now, G(S0; Z) � G(S0; Z 0) is a nonnegative random variable with expectation at mostqjjBjjF =pp, as argued above. So using Markov inequality, we havePr (G(S0; P (S0) \ J)� G(S0; P (U \ S0) \ J) � �qjjBjjF ) � 140 : (34)Now, by de�nition of P , we haveG(P (P (U \ S0) \ J) \ J; P (U \ S0) \ J) � G(S0; P (U \ S0) \ J): (35)By an exactly symmetric argument now applied to the random choice of columns Q, we getanalogously to (34), that with probability at least 39/40, the following holds :G(P (P (U \ S0) \ J) \ J; P (U \ S0) \ J) � G(P (P (U \ S0) \ J \ Q) \ J; P (U \ S0) \ J)� �qjjBjjF : (36)By applying (34),(35) and (36) and using (29), the lemma follows with Q0 = P (U \S0)\Qand P 0 = U \ S0. 24



2The lemma below is a particular \large-deviations" result. While the proof is standard, itdi�ers from the usual ones in its hypothesis which upper bound each real as well as the sumof squares. [We note that if we did not have the upper bound on the sum of squares, theupper bound one usually gets on the probability in the lemma depends on 
2 rather than
.]Lemma 21. Suppose a1; a2; : : :ar are any reals with jaij �M for all i and Pri=1 a2i � Nr.Let X1; X2; : : :Xq be a sample of size q picked by sampling uniformly without replacementfrom the set fa1; a2; : : :arg. Then, for any real 
 2 [ 2NM2 ; 100], we have :Pr ����� qXt=1Xt � qrXi ai����� � 
Mq! � 2e�
q=4:Proof. Let � be a positive real to be chosen later. Let �a = 1r Pri=1 ai and bi = ai � �aand let Y1; Y2; : : :Yq be a sample of size q drawn with replacement from the same set ofreals - fa1; a2; : : :arg. (To be used just in the proof.) Let � = 
Mq. 2Pr qXt=1Xt � q�a+�! � E �e�PtXt� e��q�ae��� � E �e�Pt Yt� e��q�ae���the last since ex is a convex function - from Theorem 4 of [11]� �E �e�(Y1��a)��q e���: = 1rq  rXi=1 e�bi!q e���:The bi satisfy the constraints Pi b2i � Pi a2i � Nr and jbij � 2M . The maximum of thelast expression subject to these two constraints is attained when r0 =Min(r; Nr4M2 ) of the bi's are 2M each and the rest are zero. Thus, we have, by choosing � = 1=(4M) in the above,Pr qXt=1Xt � q�a +�! � 1rq [r0e1=2 + r � r0]qe��=(4M) � (1 + N4M2 )qe��=(4M) � e�
q=4;using (1 + (N=4M2) � eN=4M2. This bounds the probability of PXt being too large. Tobound the probability of this sum being too negative, we just use the same argument withthe set of ai replaced by the set of �ai. This then yields the lemma. 2Now we go back to the proof of Theorem 19. Let q0 = (q � 2p)=2. Let L be a random setof q0 pairs (i; j) picked by sampling without replacement from the set of n2 pairs in V �V .Under the assumption that n � 100q02, we have that with probability at least 49/50, notwo pairs in L share an endpoint. We assume this from now on.For the moment, �x attention on one particular Q0 � Q and one particular U 0 � U . LetX = P (Q0) and Y = P (U 0). By Lemma 21, the event E10 de�ned below has the claimedprobability bound (by putting r = n2; q = q0;N = jjGjj2F=n2 in that lemma)E10(L) : ������G(X; Y )� n2q0 X(i;j)2L\X�Y Gi;j������ � �2Mn2 has Pr(E10) � 1� 2e��2q0=4: (37)25



Now imagine having picked already Q;U and having �xed this Q0 � Q and U 0 � U . Nowwe pick J 0; L independently of Q;U . We will say that L belongs to J 0 if the at most 2q0end points of pairs in L all belong to J 0. It is easy to check by direct counting thatE10(L) holds for all L belonging to J 0 implies (38)E11(J 0) holds, where E11(J 0) : �����G(X; Y )� n2q02G(J 0 \X; J 0 \ Y )����� � 2�2Mn2: (39)It is clear that each L belongs to exactly one J 0. So, we have :jfJ 0 : :E11(J 0)gj � jfL : :E10(L)gj � Pr(:E10) n2q0! � 2e�q0�2=4 n2q0!:The total number of J 0 's is � n2q0� which under the assumption that n � 100q02, is at least1/2 of �n2q0 �. Thus, we have that Pr(E11) � 1� 4e�q0�2=4:Let nowE12(J 0) : 8Q0 � Q; 8U 0 � U : jG(P (Q0); P (U 0))� n2q02G(J 0 \ P (Q0); J 0 \ P (U 0))j � 2�2n2:Then, clearly, the event :E12 is the union of at most 22p events :(E11 - one for eachQ0 � Q;U 0 � U . So, by the above, Pr(E12) � 1� 2pPr(:E11 for one �xed Q0; U 0 ). Thuswe get Pr(E12) � 19=20:But under E12(J 0), we have8Q0; 8U 0; G(J 0 \ P (Q0); J 0 \ P (U 0)) � 2�2Mq02 + jjGjjCq2=n2:which implies that (since jGi;jj �M),8Q0; 8U 0; G(J \ P (Q0); J \ P (U 0)) � 4�2Mq2 + jjGjjC q2n2 :This along with Lemma 20 implies that G(S0; T0) � 4�2Mq2+ jjGjjC q2n2 +8p
q2 jjGjjFn . withprobability at least 9/10 proving the theorem. 2Proof of Theorem 17: We apply Theorem 19 to W as follows : we take G = W . Wesee that by Theorem (5), jGij j � ps(2jjAjjF)=n � 8=�. We may thus take M = 8=� inTheorem 19. Then we get that maxS;T�J B(S; T ) � 41�q2 holds with probability at least9/10. Applying the same argument to �W also, we see that maxS;T�J �B(S; T ) � 41�q2holds with probability at least 9/10. So, Theorem 17 follows. 226



6.2 Linear Programming Formulation for the Max-Cut ProblemIt is easy to see that the value of any cut (S; �S) in G, is determined to within �n2 by justthe quanities jSt \ Sj; t = 1; 2; : : :s and jTt \ �Sj; t = 1; 2; : : :s, namely :D(S; �S) = sXt=1 dtjSt \ SjjTt \ �Sj andjA(S; �S)�D(S; �S)j � �n2:Noting that Pt jdtj � 2ps, it is possible to show that if we approximate each jSt \ Sj andjTt \ �Sj to within an error of plus or minus �n=s, then we can get the value of D(S; �S) toan error of plus or minus �n2. This then leads us to an algorithm : enumerate all O(s=�)2scandidate sets of values for fjSt\Sj; jTt\ �Sj : t = 1; 2; : : :sg, check which ones are realizableand then take the one that attains the best value of Pst=1 dtjSt \ SjjTt \ �Sj. This was thestrategy adopted in [8].Here we will give a �ner (self-contained) analysis wherein we essentially enumerate thevalues of jSt \ Sj, jTt \ Sj to within plus or minus �n (rather than �n=s.)We represent a set S by its characteristic vector - x 2 f0; 1gn . Then it is easy to seethat the value of the cut (S; �S) is Pi;j xi(1 � xj)Aij . Also, jS \ Stj = Pi2St xi, andj �S \ Ttj =Pi2Tt(1� xi). For any n� vector x, we de�nea(x) = 0@Xi2S1 xi;Xi2S2 xi; : : :Xi2Ss xi;Xi2T1(1� xi);Xi2T2(1� xi);: : :Xi2Ts(1� xi)1A :Let A = fa 2 R2s : ai�n 2 f0; 1; : : :b(1=�)cg for i = 1; 2; : : :2sg:For each vector a, de�ne P (a) = fb 2 R2s : jbi�aij � 2�ng:We say that a 2 A is realizableif there is a 0-1 vector x with ja(x)� aj1 � 2�n; in that case, we will say that x realizesa. If a is not realizable, then the following Linear Program - LP(a) is unfeasible :[LP (a)]at � 2�n+ 4s � Xi2St xi � at + 2�n � 4s (40)at+s � 2�n + 4s � Xi2Tt(1� xi) � at+s + 2�n � 4s for t =for t = 1; 2; : : :s; 0 � xi � 1[This is because if LP(a) was feasible, then it would have a basic feasible solution whichwould have at most 4s fractional components; setting the fractional xi to zero will yield a0-1 vector weakly realizing a.] So, by Linear Programming duality, we see that there exists27



one inequality obtained as a nonnegative combination of the �rst 4s inequalities of (LP(a))for which there is no solution x satisfying the bounds 0 � xi � 1. It is easy to see that thecombination need not involve both the upper bound and the lower bound on any one St orTt. So, we get that there are 2s real numbers u(a)1 ; u(a)2 ; : : :u(a)2s such thatLetting c(a)i = Xt:i2St u(a)t � Xt:i2Tt u(a)t+s andc(a)0 = 2sXt=1 u(a)t at + 2sXt=1 ju(a)t j(2�n� 4s)� 2sXt=s+1 u(a)t (41)nXi=1 c(a)i xi � c(a)0 has no soultion x with 0 � xi � 1 (42)which is equivalent to nXi=1Min(c(a)i ; 0) > c(a)0 : (43)Now, for the rest of this paper, J is a random subset of V of cardinality q, which satis�es :q � 108 log(2=�)=�4 (44)Noting that jc(a)i j �P2st=1 ju(a)t j, we have from (43), using the Theorems of Hoe�ding [11],Pr Xi2J Min(c(a)i ; 0) � qnc(a)0 � �q2 [ 2sXt=1 ju(a)t j]!� �2���2s =100;which implies that the following Linear Program on the variables xi; i 2 J is infeasible :qn(at � 54�n) � Xi2St\J xi � qn(at + 54�n)qn (at+s � 54�n) � Xi2Tt\J(1� xi) � qn (at+s + 54�n) for t =1; 2; : : :s [LP (J; a)]0 � xi � 18i 2 J:So we have the following fact which will be used later :Pr (9an unrealizable a with LP (J; a) feasible )� �2��2s �2���2s =100 � 1100 : (45)Now, we will deal with the realizable a and show that for these, the max-cut in J is notmuch greater than the max-cut in G. 28



Lemma 22. For any a, de�ne :c0(a) = Xi=2E(a) Xt:i2Tt dtat ci(a) = Xt:i2St dtat+s �Xt:i2Tt dtat for i1 =; 2; : : :n: (46)Then for any realizable a and any x 2 Rn with 0 � xi � 1, we havenXi=1 ci(a)2 � 2500n3 (47)������ nXi=1 ci(a)xi + sXt=1 dtatat+s + c0(a)�Xi;j xi(1� xj)Aij������� 8� ja� a(x)j21 + �n2; (48)and; w:h:p:; �����Xi2J qnci(a)xi + qnc0(a) + q2n2 sXt=1 dtatat+s� Xi;j2J xi(1� xj)Aij������� 8q2�n2 ja� a(x)j21 + 20�q2: (49)(50)Proof. Fix attention on a particular a; x. Let � = a(x)� a.D(x; �x) = sXt=1 dtjx \ Stjj�x \ Ttj= sXt=1 dt(at + �t)(at+s + �t+s)= sXt=1 dtatat+s + sXt=1 dtat�t+s + sXt=1 dt�tat+s + �1;where j�1j �Xt jdtjja� a(x)jinfty2= sXt=1 dt(at + �t)at+s + sXt=1 dtat(Xi2Tt(1� xi)� at+s) + �1= nXi=10@xi Xt:i2St dtat+s1A+ nXi=10@(1� xi) Xt:i2Tt dtat1A� sXt=1 dtatat+s + �1: (51)29



Then, we see that from (51),A(x; �x) = D(x; �x) + �2 = nXi=1 ci(a)xi + c0(a)+ sXt=1 dtatat+s + �1 + �2;where �2 � �n2. This proves the second statement of the lemma. The third statementfollows by exactly analogous argument, noting that the cut decomposition of A also holdsfor A restricted to J as proved in the last section.The upper bound on the sum of all the ci(a)2 is proved as follows : since a is realizable,there is some x 2 f0; 1gn such that ja�a(x)j1 � 2�n. Let l be any natural number between1 and n and consider the l largest ci(a) among i =2 x. Adding these i to x (and droppingthem from �x) changes the value of the cut by at most ln. But by part (ii) of the lemma,the value of the cut changes by at least the sum of these ci(a) minus 20�n2; so we have thatthe sum of these ci(a) is at most ln+ 20�n2. Similarly, the sum of the largest l of the ci(a)among i 2 x is at most ln + 20�n2. Thus the sum of the largest l ci(a) overall is at most2ln+ 40�n2. Similarly, the sum of the smallest l of the ci(a) is at least �2ln � 40�n2. Forthe moment, renumber the i such that jc1(a)j � jc2(a)j : : : jcn(a)j. Then, by the above, wehave (the upper bound on individual jcl(a)j follows from their de�nition)lXi=1 jci(a)j � 2ln+ 40�n2; jcl(a)j � nXt jdtj � 8n�for l = 1; 2; : : :n:It is easy to see that under these constraints, the maximum value of cl(a)2 is attained whenthe �rst 40�n[(8=�)�2] of the jcl(a)j are 8n=� each and the rest of the jcl(a)j are 2n thus provingpart 1 of the lemma. 2Let v be the value of the max-cut in the graph G. For each a 2 A, de�ne a linear program[LP (a)]MaxXi ci(a)xi + c0(a)at � 2�n+ 4s � Xi2St xi � at + 2�n+ 4sat+s � 2�n + 4s �Xi2Tt(1� xi) � at+s + 2�n � 4s for t = 1; 2; : : :s (52)0 � xi � 1:The maximum value of this LP (if feasible) is at most v+ 1000�n2�Pt dtatat+s. Then byLinear Programming duality, there exist real numbers u(a)1 ; u(a)1 ; : : :u(a)2s such that with c(a)i30



de�ned as in (41), we haveXi (c(a)i � ci(a))� > �c0(a) + c(a)0 � v � 1000�n2+Xt dtatat+s:I.e., with R = fi : c(a)i � ci(a) < 0g;Xi2R c(a)i � ci(a) > �c0(a) + c(a)0 � v � 1000�n2 +Xt dtatat+s:Each c(a)i is at mostPt jutj in absolute value; so using the standard Hoe�ding inequalities,we get that with probability at least 1� (2=�)�2s=200 :Xi2R\J c(a)i > qnXi2R c(a)i � 34�qXt ju(a)t j: (53)Using part (i) of lemma (22), we see thatPi jci(a))j2 � 2500n3. Also, we have jci(a)j � 8�n.So applying lemma (21), with N = 2500n2, M = 8�n, we get that with probability at least1� (2=�)�2s=200 : Xi2R\J�ci(a) > qnXi (�ci(a))� 200�qn: (54)Adding (53) and (54), we get with probability at least 1� (2=�)�2s=100 :Xi2R\J(c(a)i � ci(a)) > qn [�c0(a) + c(a)0 � v � 1000�n2]��q(200n+ 34Xt ju(a)t j) + qnXt dtatat+s:The last inequality implies that the optimum value of the Linear Program below is upperbounded by qvn + 1005�qn+ qnPt dtatat+s : MaxXi2J ci(a)xi + c0(a)qn(at � 54�n) � Xi2St\J xi � qn(at + 54�n)qn(at+s � 54�n) � Xi2Tt\J(1� xi) � qn (at+s + 54�n)for t = 1; 2; : : :s0 � xi � 18i 2 J:For every x feasible to the above LP, we have using (49),������ Xi;j2JAijxi(1� xj)� qn  Xi2J ci(a)xi + c0(a)!+ q2n2 Xt dtatat+s����� � 4000�q2Thus, Xi;j2JAijxi(1� xj) � q2vn2 + 7000�q2: (55)31



Thus with probability at least 19/20, we have that for every a, for which the Linear ProgramLP(J; a) is feasible, the optimal solution to it is at most q2vn2 + 7000�q2. Further, from (45),we have that for every a which is not realizable, LP (J; a) is infeasible (with probability); sounder this, the maximum cut in J is clearly at most the maximum over all feasible LP (J; a)of the maximum value of Aijxixj , where the xi; i 2 J satisfy the constraints of LP (J; a)[at most because, we have relaxed the integrality constraints.] Thus we get our result onMAX-CUT. 26.3 A Lower Bound for the Sample Complexity of MAX-CUTWe formulate our sample lower bound for MAX-CUT in a general black-box model of com-putation. In this model any algorithm within the black-box can sample a graph accordingto uniform or biased but �xed distribution depending only on the number n of verticesand output an approximate value of the maximum cut. The sample complexity of such analgorithm is the number of sampled vertices. We denote it by S(MAX� CUT). It dependsof course on the required accuracy �.Theorem 23. S(MAX� CUT) = 
(1=�2)Proof. Theorem 23 will be deduced from the next theorem.Theorem 24. Let � be any su�ciently small positive real. Suppose G is an undirectedgraph on n vertices and c is a su�ciently small positive number. Suppose s = c=�2 is aninteger and H is the induced graph on a random subset of s vertices of G. Then,Pr(jmax� cut(G)� n2s2max� cut(H)j � �n2) > 1=5for any su�ciently small � and in�nitely many G.Proof. We consider the sequence of graphs (Gn)n=1;2;:: where Gn is the complete bi-partite graph with color classes C and C0, jCj = n; jC 0j = 2n. (Thus Gn has 3n vertices.)Let Q denote the number of vertices in the sample that belong to C. Clearly, max� cut(H) =Q(s�Q). Q has a Binomial distribution B(m; p) with parametersm = s = c=�2 and p = 1=3,and with variance mp(1� p) = 2c9�2 . By the Central Limit Theorem, if we set� = maxt ����Pr� 3�p2c(Q� c3�2 ) � t�� Z t�1 1p2�e�s2=2ds����we have that � tends to 0 as � tends to 0. Fix t = to such that R�to�1 1p2�e�s2=2ds = 1=4:Then, by the preceding assertion we have thatPr� 3�p2c(Q� c3�2 ) � �to� > 1=532



for any su�ciently small �. Let us rewrite this as followsPr Q� c3�2 � � top2c3� ! > 1=5We have thus, with probability at least 1/5,max� cut(H) � ( c3�2 � top2c3� )( 2c3�2 + top2c3� )� (2c29�4 � top2c3=23�3 )max� cut(G)�n2s2 max� cut(H) � �n2 top23pc� 9�n2if c � 2t2o729 .Thus it follows that, with probability 
(1), any algorithm that samples only c=�2 manyvertices, will not be able to distinguish between the graphs Gn on 3n vertices, and thegraphs Bn, for Bn complete bipartite graphs on 3n vertices with color classes of sizes n��nand 2n+ �n. We note thatjmax� cut(Gn) � max� cut(Bn)j = (�� �2)n2;and therefore, any (�=3)n2-approximation algorithm for MAX-CUT should distinguish be-tween the graphs Gn, and Bn, a contradiction. 26.4 An Improvement for MAX-2CSPAn instance of MAX-2CSP on a set V of logical variables is a set of binary logical constraintson these variables, which are called the "constraints", and the aim is to �nd an assignmentwhich makes the number of satis�ed constraints maximum.We can assume that the instance I is, in fact, an instance of MAX-2DNF. We only need forthis to replace each constraint by an equivalent set of conjunctions. We let A(1) denote then�n matrix with V as set of rows and set of columns associated with the sets of constrainsin I of the form x ^ y: A(1)i;j = 1 if xi ^ xj 2 I; 0 otherwiseSimilarly, we let A(2), (resp. A(3)) denote the matrices associated with the constrains ofthe form x ^ :y, (resp.:x ^ :y.) The main idea is to use separate cut decompositions(S(i)t ; S(i)s+t; d(i)t ); 1 � t � s; i = 1; 2; 3; for A(1); A(2) and A(3). We can apply Theorem 17 fori = 1; 2; 3, with the result that the cut decompositions induced on a a random subset J off1; 2; ::ng of cardinality q = 
(1=�4) by the decompositions (S(i)t ; S(i)s+t; d(i)t ); 1 � t � s; of33



A(i); i = 1; 2; 3; satisfy simultaneously to the cut norm bounds jjB(i)jjC � 41�q2; i = 1; 2; 3,where B(i) is the matrix induced on J by the di�erence W (i) between A(i) and its cutdecomposition. Then, if a is any assignment to the variables in J , the number of constrainsof A(1) satis�ed by this assignment is of the form A(1)(a�1(1); a�1(1)) and we approximatethis by (A(1) � W (1))(a�1(1); a�1(1)). This involves an error at most jjB(1)jjC by thede�nition of the cut norm. A similar observation applies for i = 2 and i = 3. Thus, exactlyas for MAX-CUT, we can use on the sample the cut decomposition induced by the cutdecomposition of the whole set.The function to be maximized is f(x) =Xi;j2f1;::;ng�xixjA(1ij ) + xi(1� xj)A(2)ij + (1� xi)(1� xj)A(3)ij � ;xi 2 [0; 1]; 1� i � n:Similarly as for MAX-CUT, we can approximate this function in terms of the weighted sizesof the intersections of the vector x with the sets of rows and the sets of columns de�ningthe cut decompositions: If for each vector x 2 [0; 1]n we de�ne the vector a = a(x) 2 R6sby: aj = Xi2S(1)j xi; aj+s = Xi2S(1)j+s xiaj+2s = Xi2S(2)j xi; aj+2s = Xi2S(2)j+s xiaj+4s = Xi2S(3)j xi; aj+5s = Xi2S(3)j+s xi:then we have that, f(x) is well approximated by the expressionsXt=1 d(1)t atat+s + sXt=1 d(2)t at+2s(jS(2)t+sj � at+3s) +sXt=1 d(3)t (jS(3)t j � at+4s)(jS(3)t+sj � at+5s) (56)As for MAX-CUT, we can approximate this expression in the vicinity of a feasible point bya linear function of x. We can thus extend to this case the linear programming argumentsused for the MAX-CUT problem. 27 AcknowledgementsWe thank Alan Frieze, Oded Goldreich and Claire Kenyon for helpful comments.34
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