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21 IntroductionIn this note we study the approximation hardness of bounded occurence min-imum constraint satisfaction problem E3-OCC-MIN-E3-LIN2 and 3-MIN-BISECTION. MIN-LIN2 problem has as its input a system of linear equa-tions over GF [2] and the minimized objective function is the number ofequations satis�ed by a solution; -Ek- denotes its restriction to equationswith exactly k variables, and Ek-OCC- denotes another restriction, namelythat each variable occurs exactly k times in a system. (In�x and pre�x kdenote more loose restrictions, to equations with at most k variables and toat most k occurrences of each variable respectively.) The MIN-LIN2 prob-lem or equivalently Nearest Codeword problem is known to be exceedinglyhard to approximate. It is known to be NP-hard to approximate to withina factor n
(1)= log logn (cf. [DKS98], [DKRS00]). Recently, also the �rst non-linear approximation ratio O(n=logn) algorithm has been designed for thatproblem [BK01], see also [BFK00]. MIN-BISECTION problem has as itsinput an undirected graph, say with 2n nodes, a solution is a subset S ofnodes with n elements, and the size of a cut jCut(S)j (i.e. the number ofedges from S to its complement ) is its minimizing objective function; pre�xk- denotes its restriction to k-regular graphs.Our results are tight in the following sense: 2-OCC-MIN-LIN2 can besolved in polynomial time, and MIN-2-LIN2 is much easier to approximatethan MIN-LIN2 (cf. [KST97], [DKS98], [DKRS00]), while E3-OCC-MIN-E3-LIN2 is as hard to approximate as MIN-LIN-2 itself, i.e. it is NP-hardto approximate to within n
(1)= log logn. Similarly, 2-MIN-BISECTION canbe solved in polynomial time while 3-MIN-BISECTION is as hard to ap-proximate as the general MIN-BISECTION.In what follows we assume some basic familiarity with [BK99].2 MIN-LIN2 Problem2.1 Our terminologyFor a system of linear equations S over GF [2], we denote the set of variableswith V (S), the total number of occurrences of variables in S (equivalently,the number of non-zero coe�cients) with size(S), the set of assignments ofvalues to variables of S with AV (S). For a 2 AV (S) the number of equationsof S that a satis�es is denoted with sat(a; S). As mentioned before, sat(a; S)is the minimized objective function.A reduction of MIN-LIN-2 to 3-OCC-MIN-E3-LIN-2 will be describedvia the following triple of functions:� an instance transformation f such that f(S) is a system in which eachvariable occurs exactly 3 times and size(f(S)) = O(size(S));



3� a solution normalization g such that for a 2 AV (S) we have g(a) 2AV (S) and jsat(g(a); f(S))j � jsat(a; f(S))j,� a bijection h between AV (S) and g(AV (f(S))) such that jsat(a; S)j =jsat(h(a); f(S))j:The above description of a reduction directly relates to the standard def-inition of aproximation preserving reductions. The implied solution trans-formation is h�1 �g, its desired properties follow immediately from the prop-erties of a normalization and \equivalence bijection".2.2 Consistency gadgetsIn approximation preserving reductions there exist a number of ways toreplace a variable with a set of variables and auxiliary equations so thateach element of the set occurs exactly three times. We have explored oneof such constructions in [BK99] in a context of the maximization problems.In the reductions described in that paper the objective function is diluted,because part of the score assures that we can normalize each solution insuch a way that the new set of variables correctly replaces a single variable.The same construction yields no such dilution in our minimization problems,because a normalized solution satis�es none of the auxiliary equations.However, we describe here a di�erent construction, which can be com-puted determinististically and the size of the new formula is a linear functionof the size of the original formula. The construction of our reduction dependson the existence of special graphs which we call consistency gadgets.In an undirected graph (V;E), we de�ne Cut(U) = fe 2 E : e \ U 6=
∅ and e\ (V �U) 6= ∅g. A consistency gadget CG(K) is a graph with thefollowing properties:� K � VK where VK is the set of nodes of CG(K);� if A � VK and jA \Kj � jKj=2, then jCut(A) � jA \Kj;� each node in K has 2 neighbors and each node in VK � K has 3neighbors. of size k = jKj.As described in Arora and Lund [AL95] (cf. also [PY91]), we could usea family of graphs that we may call strong expanders. The graph (V;E) isa strong expander if jU j � jV j=2 implies jCut(U) � jU j for each U � V .Lubotzky et al. [LPS88] showed that a family of 14-regular strong expandersis constructible in polynomial time.Arora and Lund suggest that one can obtain CG(K) by constructinga 14-regular strong expander with node set K, and then by replacing eachnode with a cycle of 15 nodes: one node being the element of K and theother node being the terminal of the 14 connections to the other cycles.
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Figure 1: An example of CG(S15); element of S15 are black.One can see that this construction is not quite su�cient for our purposes,because it is conceivable that the new graph contains a set that contradictsthe CG(K) property, and which properly intersects some of the cycles. Au-rora and Lund use a weaker notion of consistency, but in this paper we wishto establish an exact relationship between the tresholds of approximability.To remedy this problem, we can modify the construction slightly. Inparticular, let S15 be a set of 15 elements, we will replace each node of the14-regular strong expander with a copy of a CG(S15) which is shown in Fig.1.2.3 Reduction to E3-OCC-MIN-3-LIN2Recall that in E3-OCC-MIN-3-LIN2 we also allow equations in which exactly2 variables appear.Consider a system of equations S. Without loss of generality, we assumethat each variable of S occurs at least 2 times, otherwise we reduce theproblem by removing the equations in which a variable has its sole occurence.Suppose that S contains an equation with more than 3 variables, �+� =b, where � is a sum of 2 variables and � is a sum of at least 2 variables. Weobtain f(S) by replacing in S this equation with two equations, � + x = 1and x + � = b, where x is a new variable. We de�ne the normalizingtransformation g(a) as follows: g(a)(y) = a(y) for every variable y otherthan x, and g(a)(x) = a(�) where a(�) is the value of the linear expression� under assignment of values a. This assures that g(a) does not satisfyequation � + x = 1. In turn, g(a) satis�es � + x = b if and only if a satis�es� + � = b. The bijection h is de�ned by the same formula as g.Now we assume that each equation consists of at most 3 variables. Con-sider a variable x that occurs in k > 3 equations. Let K be the set of theseequations. We form the graph CG3(K) with node set VK , for each node inVK we introduce a new variable with the same name (so now VK becomes aset of variables) and for each edge fu; gg we introduce an equation u+v = 1.Then we replace an occurrence of x in equation e with the variable that re-placed e (as a node of VK). This is the instance transformation (obviously,



5we may need a sequence of such transformations to achieve our goal).To de�ne h(a) for an assignment of values a of the new instance, we�nd value b that is assumed by at least half of the variables in K; thenfor every x 2 VK we set h(a)(x) = b. Suppose that this normalizationchanged the values of l variables from K . Then up to l \old" equationsmay become satis�ed. However, none of the equations that replaced theedges of CG3(K) is satis�ed now. Because 2l < jKj, we have l edge disjointpaths from the l variable/nodes that change the value to nodes that didnot, in turn, on each path we have at least one edge corresponding to anequation that ceased to be satis�ed, thus at least l \new" equations ceasedto be satis�ed. consequently, sat(a; f(S)) did not increase.The bijection transformation simply h(a) assigns a(x) to each variablein VK .To summarize the reasoning of this section we introduce the followingde�nition.We call an approximation algorithm A for an optimization problem P ,an (r(n); t(n))-approximation algorithm if A approximates P within an ap-proximation ratio r(n) and A works in O(t(n)) time with n the size of theproblem instance.We can formulate the following lemma.Lemma 1 There exists a constant c such that if there exists an (r(n); t(n))-approximation algorithm for E3-OCC-MIN-3-LIN2 then there exists an(r(cn); t(cn))-approximation algorithm for MIN-LIN2.2.4 Reducing MIN-LIN2 to E3-OCC-MIN-E3-LIN2An existing method of converting equations with 2 variables into equationswith 3 equations, described by Khanna, Sudan and Trevisan [KST97] cannotbe applied here because it increases the number of occurences of variables.Therefore we need to provide a di�erent technique.Instead, we will modify the reduction of the previous sections. First, wecan make sure that the variables in a resulting instance of E3-OCC-MIN-3-LIN2 can be colored with two colors blue and red, so that the followingholds true: in an equation of three variables all three must be blue, in anequation with two variables, one must be blue and the other must be red.If we accomplish that, we can replace each red variable with a sum of twonew variables.This simple idea has some minor complications, so we describe it inmore detail. The reduction again consists of functions f , g and h | trans-formation, normalization and bijection | except that now jsat(a; S)j =3jsat(h(a); f(S)j, i.e. the normalized solutions for a transformed instancewill satisfy 3 times as many equations as the equivalent solutions of theoriginal instance.



6We �rst color occurences of variables as described above: in an equationwith 3 variables all occurences are blue, in an equation with 2 variables, oneis blue, the other is red. Then we replicate the occurences 3 times, and eachreplicated occurence is a new variable. Each original equation is replacedwith 3 new equations in an obvious manner.Now, let K be the set of occurences of a variable. Note that the num-bers of blue and red elements of K are divisible by 3. We create a gadgetCG(K) very similarly as before, so we will only mention the di�erences ina construction:� we double the lenth of all cycles that replace nodes of a strong ex-pander, the colors on the cycle alternate, if a contact belongs to sucha cycle, it keeps its original color;� an edge of the strong expander is replaced by two edges between therespective cycles, one being fblue, redg and the other fred, blueg;� at the moment, each cycle that contains a node that is connected onlyto its neighbors on the cycle and that has a color di�erent than thecolor of the K element of this cycle, within CG(K) we contact, weconnect each 3 such blue nodes with a new red node, and each 3 redswith a new blue.Now, each equation with 2 variables has one blue and one red variable, sowe can replace each red variable with a sum of two new variables, and as aresult each equation has 3 variables.Because we increase the size of the transformed instance only by a con-stant factor, we can restate our lemma as the following theorem:Theorem 1 There exists a constant c such that if there exists an (r(n); t(n))-approximation algorithm for E3-OCC-MIN-E3-LIN2 then there exists an(r(cn); t(cn))-approximation algorithm for MIN-LIN2.3 MIN-BISECTION3.1 NotationFor a graph G, V (G) is a set of nodes, E(G) is a set of edges, S = V � S,B(G) is the set of bisections, e.g. sets S � V (G) such that jSj = jSj andCut(S) = fe 2 E(V ) : e \ S 6= ∅ and e \ S 6= ∅g for S � V (G).The MIN-BISECTION problem is to �nd S 2 B(G) such thatjCut(S)jis minimum.Our reduction is described using the following three functions:� an instance transformation f such that if G is a graph with n nodesthen f(G) is a graph of degree 3 with O(n3) nodes;
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Figure 2: Gadget for d = 8; black circles are the contact nodes.� a solution normalization g such that for S 2 B(f(G)) we have g(S) 2B(f(G)) and jCut(g(S))j � jCut(S)j;� a bijection h : B(G)! g(B(f(G))) such that jCut(S)j = jCut(h(S))j.3.2 The reductionWe assume that the maximum node degree in G is bounded by some evend. Our instance transformation replaces every node v with a gadget Av inwhich d nodes are the contacts (black circles in the Fig. 2). The diagramdepicts a gadget for d = 8. The gadget is a cylindrical hexagonal meshthat can be alternatively decomposed into d=2 horizontal cycles and intod diagonal paths. Each diagonal path contains d nodes, for the total of d2nodes. Every other diagonal path has two contact nodes at its ends.An edge fu; vg is replaced with an edge between the contacts of Au andAv, these replacement edges are disjoint.Solution normalization will assure that for each u either Au � g(S) orAu � g(S). We will compute g(S) in two stages. In the �rst stage we decidewhether to place Au within g(S) or within g(S) based solely on S \Au. Asa result, ku nodes that belong to S will become members of g(S), or �kunodes that belong to S will become members of g(S).After the �rst stage, jg(S)j� jSj =Pu2V (f(G)) ku = s. If s 6= 0, g(S) isnot a bisection. Therefore in the second stage we remove s=d2 gadgets fromg(S) (if s < 0, we insert �s=d2 gadgets).The normalization causes some edges that did not belong to Cut(S) tobecome members of Cut(g(S)). In the �rst stage we move some contacts fromS to g(S), or from S to g(S); for each such contact the incident replacementedge may become a member of Cut(g(S)). In the second stage, we moves=d2 gadgets, thus s=d contacts, and again, the replacement edges incidentto the contacts that moved may become members of Cut(g(S)). This allowsus to estimate the consequences of the decision made during the �rst stageabout each gadget Au.Let Eu be the set of edges inside Au. A decision moves k = jkuj nodes,among them, i contacts. To o�set the increases of Cut(g(S)) it su�ces to



8gain i+ k=d edges, and this happens if jCut(S) \Euj � i+ k=d.Suppose �rst that jCut(S)\Euj � d. Let j be the number of contacts inS \Au and k = jS \Au j. If j+k=d � d, we can place Au in g(S); otherwise(d� j) + (d2 � k)=d � d and we can place Au in g(S).Now we can assume that jCut(S)\Euj < d. We will make an observation.Our gadget contains d=2 vertical cycles, if one of them contains an edge ofCut(S), it must contain two such edges; we can conclude that at least one ofthe vertical vertical cycles has no edges in Cut(S), and thus is contained inS or in S. For similar reasons, one of the diagonal paths must be containedin Because every horizontal cycle overlaps every diagonal path, it is true forexactly one S 2 fS; Sg that S contains a horizontal cycle and a diagonalpath. We place Au is S.Let U be a connected component of Au�S, and let C(U) = Cut(U)\Ev.Assume that U contains iU contacts. To �nish the proof of correctness of ournormalization, it su�ces to show that i + jU j=d � jC(U)j, or, equivalently,that �(U) = jC(U)j � iU � jU j=d � 0.Suppose, by the way of contradiction, that for some U that is disjointwith a horizontal cycle and with a diagonal path we have �(U) < 0. Wechoose such U with the smallest possible jC(U)j, and, with this constraint,the smallest possible �(U).Observation 1. A node v 2 U cannot have two neighbors in Au � U .Otherwise if v has no neighbors in U , then U = fvg and �(U) � 2�1�1=d.If v has a neighbor in U , we could remove v from U and decrease both C(U)and �(U).Observation 2. A node v 2 Au � U must have at least two neighbors inAu � U . otherwise we could insert v to U and decrease both jC(U) and�(U).Our gadget Au can be covered with a collection of cycles of length 6 thatwe will call hexagons.Observation 3. Set U cannot contain exactly 1,4, or 5 nodes of a hexagon.If U contains 1 or 5 nodes, it contradicts Observation 1 or Observation 2.If U contains 4 nodes, then the other two nodes, if they do not contradictObservation 2, form an edge with exactly two neighbors in U and two neigh-bors in Au � U , thus we can insert this pair to U without increaseing jCjwhile increasing �(U).Observation 4. Assume that D0, D1 are two adjacent diagonal paths,U \D0 = ∅ and B = U \D1 6= ∅. Then B forms a path that has a contactnode at one of its ends.To show it, consider D2, the other diagonal path adjacent to D1, andA0, a connected component of A. A brief and easy case analysis shows thatA0 has more neighbors in D0 [ (D1 � U) than in D2. Because at least onehorizontal cycle is disjoint with U , jAj < d. Therefore removing A0 fromU decreases jCj and jC(U)j � jU j=d. Because �(U) cannot be decreased inthis fashion, A0 must contain a contact node. Because U is disjoint with a



9horizontal cycle, there is only one contact node for which it is possible.Another brief and easy case analysis shows that U must form a \trape-soid", with one basis being a fragment of a horizontal cycle that forms apath between two contact nodes, the other basis being a path that is a frag-ment of another horizontal cycle and the sides are the initial fragments oftwo diagonal paths.Assume that such a set U contains a contact nodes and overlaps b hori-zontal cycles. U contains 4a�3 nodes in the basis that contains the contactnodes, then it the consecutive horizontal cycles it contains 4a�5, 4a�7; : : :down to 4a� 3� 2(b� 1) = 4a� 2b� 1 nodes. ThusjU j = b 4a� 3 + 4a� 2b� 12 = b (4a� b� 2):In turn, C(U) contains 2 edges in each of the b horizontal cycles, plus theedges extending to the horizontal cycle that is disjoint with U and adjacentto its smaller basis. This basis has 4a � 2b � 1 nodes and the nodes withsuch edges alternate with the nodes without them, so we havejC(U)j = 2b+ b(4a� 2b� 1)=2c = 2b+ 2a� b� 1 = 2a+ b� 1:Thus �(U) = (2a+b�1)�a�b(4a�b�2)=d = a+b�1�b(4a�b�2)=d,while we have the following constraint: jCj < d, i.e. 2a+ b � 1 < d. If wedecrease d, �(U) will also decrease, so we assume d = 2a + b and thusb = d� 2a. Then we haved�(U) = d(a+ d� 2a� 1)� (d� 2a)(4a� d+ 2a� 2) =d(d� a� 1)� (d� 2a)(6a� d� 2) =d2 � da� d� 6da+ d2 + 2d+ 12a2 � 2da� 4a =2d2 + 12a2 � 9da+ d� 2a =2(d� 2:25a)2 + 1:875a2 + d� 2a:This concludes the proof of the followingTheorem 2 If there exists an (r(n); t(n))-approximation algorithm for 3-MIN-BISECTION then there exists an (r(n3); t(n3))-approximation algo-rithm for MIN-BISECTION. 2AcknowledgmentsWe thank Lars Engebretsen, Ravi Kannan, Mario Szegedy, and Ran Razfor stimulating discussions.
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