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Abstract

We consider the following optimization problem: given a system
of m linear equations in n variables over a certain field, a feasible so-
lution is any assignment of values to the variables, and the minimized
objective function is the number of equations that are not satisfied.
For the case of the finite field GF[2], this problem is also known as
the Nearest Codeword problem. In this note we show that for any
constant ¢ there exists a randomized polynomial time algorithm that
approximates the above problem, called the Minimum Unsatisfiability
of Linear Equations (MIN-UNSATISFY for short), with n/(clogn) ap-
proximation ratio. Our results hold for any field in which systems of
linear equations can be solved in polynomial time.
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1 Introduction

The lower approximation bounds for the MIN-UNSATISFY problem over fi-
nite fields and Q were studied intensively in a number of papers, cf., e.g.
[ABSS93], [KST97], [DKS98], [DKRS00] and [BFKO00]. The papers [DKS98]
and [DKRS00] yield an approximation lower bound of nf{1/18lesn fo, finite
fields. However, no good approximation algorithms other that of order n
were known up to now for any field. Kannan [KO01] has designed a poly-
nomial time approximation algorithm for MIN-UNSATISFY over Q within a
factor of n + 1 using Helly’s theorem.

In this paper we present the first sublinear approximation ratio algorithm
for MIN-UNSATISFY problem working for any field in which systems of linear
equations can be solved in polynomial time.

Our method depends on incremental randomized selection of the equa-
tions from the input system with the new choices being linearly independent
from the previous ones. Once the set of selected equations forms a base of the
input system, it determines a solution. We run such a procedure a number
of times and select the best solution. Surprisingly, a polynomial number of
runs of this procedure suffices to find a good approximate solution.

2 Preliminaries

We consider a certain fixed field K, and assume that we can solve a system
of n linear equations in n variables over K in polynomial time.

An instance of MIN-UNSATISFY is a set E of equations in n variables
and the objective is to find a solution that minimizes the number of unsat-
isfied equations in . Below we give some notations and definitions used in
formulation and analysis of our algorithms.

e An equation ax = b in n variables is represented by a pair (a,b) where
a€ K" and b e K.

e For a set of equations S and an @ € K™, SAT(S,z) = {(a,b) € S : ax =
b}, UNSAT(S,2) = 5 — SAT(S, 2) and u(S, x) = |UNSAT(S, z)|.

o F denotes a set of equations that forms the MIN-UNSATISFY instance
we consider, u(FE,xz) is the objective function and 2* is an optimal
solution.



e A set of equations S is independent if the set of vectors V = {a : (a,b) €
S for some b} is linearly independent and |V| = |S].

e A maximal independent subset of S is a base of S.
In this note we use several times the following lemma.
Lemma 1 A base of SAT(E, x*) is also a base of .

Proof. Let B be a base of SAT(FE, x*). Suppose that B is not a base of .
Because B is an independent set, we can find a base C' of E such that C' O B.
Let & be the solution of system of equations C. Clearly, UNSAT(B,x) = [;
moreover, UNSAT(SAT(F, x*),x) = O because every equation in SAT(F, ™)
is a linear combination of equations of B. We got a contradiction, because

UNSAT(C,2) = 0 and thus u(F,2) <u(E,2*) — |C — B| < u(F,z"). [

3 A Randomized Approximation Algorithm

We first discuss the main subroutine GUESS(FE) of our algorithm that uses
a good extension function GEXT(B). This function returns the set of good
extensions of independent set B, i.e. GEXT(B)={e€ F— B: BU{e} is
independent }. We note that a membership of an equation to GEXT(B) can
be verified by solving a linear system.

Guess(F)
B+ 0
while GEXT(B) # [
B + B U {random element of GEXT(B)}

return a solution of system of equations B

Lemma 2 If x is the oulpul of Guess(E), then u(E,x) < Zu(E,x*) with
probability at least e~ for any d > 0.

Proof. In consecutive iterations of Guess set B changes from U to By =
{b1}, then to By = {by,by} etc. We say that b; is a good selection if either

b; € SAT(F,x*) or we have
n—d
d

|GEXT(B;_1)| < u(E,z"). (*)



If all selections are good, then u(F,z) < Su(FE,z*). Indeed, if all se-
lections belong to SAT(F, x*), then UNSAT(E, ) = UNSAT(FE, 2*) and thus
u(E,x) = u(E,2*). Otherwise let b; be the first selection such that (*) holds.

Because B;_y C SAT(FE,z*), if all equations in B;_; are satisfied and
By U{e} is dependent, then e is satisfied if and only if e € SAT(E, 2*). For
this reason

UNSAT(E, z) — GEXT(B;-1) C UNSAT(FE,z") and
UNSAT(E,2) N GEXT(B;i_1) C GEXT(Bi_1),

and thus u(E, z) < %u(E,:L‘*) + %U(E,:Jc*) = Su(k, x*).

Now it remains to show that the probability that all selections are good
is at least e First we will estimate from below the conditional prob-
ability that selection b; is good if all previous selections were good. If
|GEXT(B;-1)| < %U(E,x*), then b; is good with probability 1. Other-
wise, we choose b; in |GEXT(B;_1)| many possible ways, of which at most
u(E,2*) many do not belong to SAT(FE,x*), thus the probability that b; is

good is at least

u(F,x*) . d
|GEXT(Bi-1)] — n—d
Probability that all selections are good is the product of the conditional
probabilities estimated above, thus it can be estimated from below as

NG g\ =D/ d ;
(1_n—d> ~ (1_n—d> ~ e .

Actually, this estimate is a bit inaccurate, but our application of this in-

equality does not rely too much on precision, e.g., the estimate %e‘d is good

enough; importantly, we consider only very small values of d as compared

with n. U
We are going to formulate now our approximation algorithm.

Rand_App(F,N)
Thest <~ 0
repeat N times
x < Guess(F)
if u(l,2) < u(E, vpeg)



Thest T ¢
output rp gt

The algorithm works by running N times the subroutine Guess(F) and
then choosing the best solution. If a run of Guess delivers approximation
ratio r with probability at least N7!, then a run of Rand_App delivers
ratio 7 with probability at least e7!. If we choose N = n°, then we need

Guess to deliver ratio r with probability at least n™°. Lemma 2 says that

d

C

Guess obtains ratio n/d with probability e=¢. Thus we have e=? = n=¢, or

b
equivalently, d = c¢In n.

Summarizing, for every ¢ we obtain an algorithm with approximation
ratio n/(clnn). Note that if Lemma 2 is inaccurate by a factor of 2 (and it
is much more accurate), we just need to double N. This proves the following

theorem:

Theorem 1 For every ¢ > 0 there exists a randomized polynomial time ap-
prozimation algorithm that approrximates MIN-UNSATISFY within ratio
n/(clnn).

For the sake of completeness we present in the next section a simple
deterministic algorithm with n/e¢ approximation ratio for any constant c.

4 A Deterministic Approximation Algorithm
We start with formulating the following lemma.

Lemma 3 For cvery positive integer ¢ there exists a polynomial time algo-
rithm for the following subproblem:

Input: An equation system FE and a base B of E;

Output: A solution x of E that minimizes u(E, x) under restriction u(B,x) <
c.

Proof. We sketch the algorithm.

EasyCase(F, B, ¢)
Thegt ¢ 0
for every S C B such that |S] < ¢
for every T'C E — B such that |T'| = |S5]



B '+~ B-SUT
if B’ is independent
x + a solution of system B’
if u(l,2) < u(E,21,0qt)
Thest < ¢
output 1,4

It is easy to see that EasyCase runs in polynomial time, because the search-
ing space of each of the for loops is polynomial in size (for a fixed c!).
To see the correctness, note first that the outer for loop inspects every
UNSAT(B, z) that is allowed under our restriction. Under assumptions that
SAT(B,x) = B—S, B— S is an independent subset of SAT(F, x); thus B— S
is contained in some base B’ of SAT(F, x). By Lemma | we may assume that
B’ is a base of E, hence the inner for loop inspects all possible B’. Once we
make our assumption concerning B’, the value of z is determined.

Note that it is possible that B has fewer elements than n, and thus a
system of equations formed by a base of £ may have more than one solution.
Therefore we introduce an assignment = < a solution of system B’. N

Theorem 2 There exists a polynomial time algorithm that for any equation
sel I it returns a solution x such that u(E,x) < Zu(E,z*).

Proof. We describe the algorithm Det_App recursively.

Det_App(FE,¢)
if £ =10
output 0
B + a base of F.
z1 < EasyCase(F, B, ¢)
z9 < Det_App(F — B, ¢)
if u(F,a1) <u(k,xs)
output
else
output z,

To see that Det_App runs in polynomial time for a fixed ¢, note that it
invokes EasyCase only once, and then it makes a recursive call for a smaller
problem instance.



The approximation property of Det_App can be proven by induction.
The claim is trivial if £ = 0. If u(B,2*) < ¢, then x; found by EasyCase
is optimal, hence u(F,x1) < u(E,2*). Otherwise we have, by induction:

cu(F,x3) = c(u(B,x) + u(E — B,axs)) < c(n+u(E — B, xg)

en+ cu(FE — Byxg) <en+nu(E — B,z
n(e+u(E — B,2")) < n(u(B,z") + u(E — B, ")

<
<
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