
Approximating MinimumUnsatis�ability of Linear EquationsPiotr Berman � Marek Karpinski yAbstractWe consider the following optimization problem: given a systemof m linear equations in n variables over a certain �eld, a feasible so-lution is any assignment of values to the variables, and the minimizedobjective function is the number of equations that are not satis�ed.For the case of the �nite �eld GF[2], this problem is also known asthe Nearest Codeword problem. In this note we show that for anyconstant c there exists a randomized polynomial time algorithm thatapproximates the above problem, called the Minimum Unsatis�abilityof Linear Equations (Min-Unsatisfy for short), with n=(c logn) ap-proximation ratio. Our results hold for any �eld in which systems oflinear equations can be solved in polynomial time.
�Dept. of Computer Science, University of Bonn, 53117 Bonn, visiting from Pensylva-nia State University, University Park, PA 16802. Partially supported by DFG grant Bo56/157-1 and NSF grant CCR-9700053, Email berman@cse.psu.eduyDept. of Computer Science, University of Bonn, 53117 Bonn. Supported in part byDFG grants KA 673/4-1 and Bo 56/157-1, DIMACS, and IST grant 14036 (RAND-APX),Email marek@cs.uni-bonn.de 1

21 IntroductionThe lower approximation bounds for the Min-Unsatisfy problem over �-nite �elds and Q were studied intensively in a number of papers, cf., e.g.[ABSS93], [KST97], [DKS98], [DKRS00] and [BFK00]. The papers [DKS98]and [DKRS00] yield an approximation lower bound of n
(1)= log logn for �nite�elds. However, no good approximation algorithms other that of order nwere known up to now for any �eld. Kannan [K01] has designed a poly-nomial time approximation algorithm for Min-Unsatisfy over Q within afactor of n+ 1 using Helly's theorem.In this paper we present the �rst sublinear approximation ratio algorithmforMin-Unsatisfy problem working for any �eld in which systems of linearequations can be solved in polynomial time.Our method depends on incremental randomized selection of the equa-tions from the input system with the new choices being linearly independentfrom the previous ones. Once the set of selected equations forms a base of theinput system, it determines a solution. We run such a procedure a numberof times and select the best solution. Surprisingly, a polynomial number ofruns of this procedure su�ces to �nd a good approximate solution.2 PreliminariesWe consider a certain �xed �eld K, and assume that we can solve a systemof n linear equations in n variables over K in polynomial time.An instance of Min-Unsatisfy is a set E of equations in n variablesand the objective is to �nd a solution that minimizes the number of unsat-is�ed equations in E. Below we give some notations and de�nitions used informulation and analysis of our algorithms.� An equation ax = b in n variables is represented by a pair (a; b) wherea 2 Kn and b 2 K.� For a set of equations S and an x 2 Kn, Sat(S; x) = f(a; b) 2 S : ax =bg, UnSat(S; x) = S � Sat(S; x) and u(S; x) = jUnSat(S; x)j.� E denotes a set of equations that forms the Min-Unsatisfy instancewe consider, u(E; x) is the objective function and x� is an optimalsolution.

3� A set of equations S is independent if the set of vectors V = fa : (a; b) 2S for some bg is linearly independent and jV j = jSj.� A maximal independent subset of S is a base of S.In this note we use several times the following lemma.Lemma 1 A base of Sat(E; x�) is also a base of E.Proof. Let B be a base of Sat(E; x�). Suppose that B is not a base of E.Because B is an independent set, we can �nd a base C of E such that C � B.Let x be the solution of system of equations C. Clearly, UnSat(B;x) = ∅;moreover, UnSat(Sat(E; x�); x) = ∅ because every equation in Sat(E; x�)is a linear combination of equations of B. We got a contradiction, becauseUnSat(C; x) = ∅ and thus u(E; x) � u(E; x�)� jC �Bj < u(E; x�). ❑3 A Randomized Approximation AlgorithmWe �rst discuss the main subroutine GUESS(E) of our algorithm that usesa good extension function GExt(B). This function returns the set of goodextensions of independent set B, i.e. GExt(B) = fe 2 E �B : B [feg isindependentg. We note that a membership of an equation to GExt(B) canbe veri�ed by solving a linear system.Guess(E)B ∅while GExt(B) 6= ∅B B [frandom element of GExt(B)greturn a solution of system of equations BLemma 2 If x is the output of Guess(E), then u(E; x) � ndu(E; x�) withprobability at least e�d for any d > 0.Proof. In consecutive iterations of Guess set B changes from ∅ to B1 =fb1g, then to B2 = fb1; b2g etc. We say that bi is a good selection if eitherbi 2 Sat(E; x�) or we havejGExt(Bi�1)j � n� dd u(E; x�): (�)

4If all selections are good, then u(E; x) � ndu(E; x�). Indeed, if all se-lections belong to Sat(E; x�), then UnSat(E; x) = UnSat(E; x�) and thusu(E; x) = u(E; x�). Otherwise let bi be the �rst selection such that (�) holds.Because Bi�1 � Sat(E; x�), if all equations in Bi�1 are satis�ed andBi�1 [feg is dependent, then e is satis�ed if and only if e 2 Sat(E; x�). Forthis reasonUnSat(E; x)�GExt(Bi�1) � UnSat(E; x�) andUnSat(E; x) \GExt(Bi�1) � GExt(Bi�1);and thus u(E; x) � ddu(E; x�) + n�dd u(E; x�) = ndu(E; x�).Now it remains to show that the probability that all selections are goodis at least e�d. First we will estimate from below the conditional prob-ability that selection bi is good if all previous selections were good. IfjGExt(Bi�1)j � n�dd u(E; x�), then bi is good with probability 1. Other-wise, we choose bi in jGExt(Bi�1)j many possible ways, of which at mostu(E; x�) many do not belong to Sat(E; x�), thus the probability that bi isgood is at least 1 � u(E; x�)jGExt(Bi�1)j � 1 � dn� d:Probability that all selections are good is the product of the conditionalprobabilities estimated above, thus it can be estimated from below as�1� dn� d�n � �1� dn� d�(n�d)=d!d � e�d:Actually, this estimate is a bit inaccurate, but our application of this in-equality does not rely too much on precision, e.g., the estimate 12e�d is goodenough; importantly, we consider only very small values of d as comparedwith n. ❑We are going to formulate now our approximation algorithm.Rand App(E;N)xbest 0repeat N timesx Guess(E)if u(E; x) < u(E; xbest)

5xbest xoutput xbestThe algorithm works by running N times the subroutine Guess(E) andthen choosing the best solution. If a run of Guess delivers approximationratio r with probability at least N�1, then a run of Rand App deliversratio r with probability at least e�1. If we choose N = nc, then we needGuess to deliver ratio r with probability at least n�c. Lemma 2 says thatGuess obtains ratio n=d with probability e�d. Thus we have e�d = n�c, or,equivalently, d = c ln n.Summarizing, for every c we obtain an algorithm with approximationratio n=(c ln n). Note that if Lemma 2 is inaccurate by a factor of 2 (and itis much more accurate), we just need to double N . This proves the followingtheorem:Theorem 1 For every c > 0 there exists a randomized polynomial time ap-proximation algorithm that approximates Min-Unsatisfy within ration=(c ln n).For the sake of completeness we present in the next section a simpledeterministic algorithm with n=c approximation ratio for any constant c.4 A Deterministic Approximation AlgorithmWe start with formulating the following lemma.Lemma 3 For every positive integer c there exists a polynomial time algo-rithm for the following subproblem:Input: An equation system E and a base B of E;Output: A solution x of E that minimizes u(E; x) under restriction u(B;x) <c.Proof. We sketch the algorithm.EasyCase(E;B; c)xbest 0for every S � B such that jSj < cfor every T � E �B such that jT j = jSj

6B0 B � S [Tif B0 is independentx a solution of system B 0if u(E; x) < u(E; xbest)xbest xoutput xbestIt is easy to see that EasyCase runs in polynomial time, because the search-ing space of each of the for loops is polynomial in size (for a �xed c!).To see the correctness, note �rst that the outer for loop inspects everyUnSat(B;x) that is allowed under our restriction. Under assumptions thatSat(B;x) = B�S, B�S is an independent subset of Sat(E; x); thus B�Sis contained in some base B0 of Sat(E; x). By Lemma 1 we may assume thatB0 is a base of E, hence the inner for loop inspects all possible B0. Once wemake our assumption concerning B0, the value of x is determined.Note that it is possible that B has fewer elements than n, and thus asystem of equations formed by a base of E may have more than one solution.Therefore we introduce an assignment x a solution of system B 0. ❑Theorem 2 There exists a polynomial time algorithm that for any equationset E it returns a solution x such that u(E; x) � ncu(E; x�).Proof. We describe the algorithm Det App recursively.Det App(E; c)if E = ∅output 0B a base of E.x1 EasyCase(E;B; c)x2 Det App(E �B; c)if u(E; x1) � u(E; x2)output x1elseoutput x2To see that Det App runs in polynomial time for a �xed c, note that itinvokes EasyCase only once, and then it makes a recursive call for a smallerproblem instance.

7The approximation property of Det App can be proven by induction.The claim is trivial if E = ∅. If u(B;x�) < c, then x1 found by EasyCaseis optimal, hence u(E; x1) � u(E; x�). Otherwise we have, by induction:cu(E; x2) = c(u(B;x2) + u(E �B;x2)) � c(n+ u(E �B;x2)) =cn+ cu(E �B;x2) � cn+ nu(E �B;x�) =n(c+ u(E �B;x�)) � n(u(B;x�) + u(E �B;x�)) =nu(E; x�)
❑AcknowledgmentsWe thank Ravi Kannan and Madhu Sudan for stimulating discussions.References[ABSS93] S. Arora, L. Babai, J. Stern and Z. Sweedyk, The hardness ofapproximate optima in lattice, codes, and systems of linear equations,Proc. of 34th IEEE FOCS, 1993, 724-733.[BFK00] C. Bazgan, W. Fernandez de la Vega and M. Karpinski, Approxima-bility of dense instances of NEAREST CODEWORD problem, ECCCTech. Rep. TR00-091, 2000.[DKS98] I. Dinur, G. Kindler and S. Safra, Approximating CVP to withinalmost polynomial factors is NP-hard, Proc. of 39th IEEE FOCS, 1998,99-109.[DKRS00] I. Dinur, G. Kindler, R. Raz and S. Safra, An improved lowerbound for approximating CVP, 2000, submitted.[K01] R. Kannan, personal communication (see also [ABSS93], p. 725).[KST97] S. Khanna, M. Sudan and L. Trevisan, Constraint Satisfaction: theapproximability of minimization problems, Proc. of 12th IEEE Compu-tational Complexity, 1997, 282-296.

