
Approximability of Dense Instances of NearestCodeword ProblemCristina Bazgan� W. Fernandez de la Vegay Marek Karpinskiz
Abstract. We give a polynomial time approximation scheme (PTAS) for dense in-stances of the Nearest Codeword problem.

�LAMSADE, Universit�e Paris-Dauphine, 75775 Paris, bazgan@lamsade.dauphine.fr.yLRI, Universit�e Paris Sud, 91405 Orsay, lalo@lri.fr.zDept. of Computer Science, University of Bonn, 53117 Bonn, marek@cs.uni-bonn.de.1



1 IntroductionWe follow [KST97] in de�ning the Nearest Codeword problem as the minimum constraintsatisfaction problem for linear equations mod 2 with exactly 3 variables per equation. Itis shown in [KST97] that the restriction imposed on the number of variables per equation(�xing it to be exactly 3) does not reduce approximation hardness of the problem. Theproblem is, for a given set of linear equations mod 2 to construct an asignment which mini-mizes the number of unsatis�ed equations. We shall use in this paper clearly an equivalentformulation of the problem of minimizing the number of satis�ed equations. Adopting thenotation of [H97] we denote it also as the Min-E3-Lin2 problem. Min-Ek-Lin2 will standfor the k-ary version of the Nearest Codeword problem.The Nearest Codeword problem arises in a number of coding theoretic, and algorithmiccontexts, see, e.g., [ABSS93], [KST97], [DKS98], [DKRS00]. It is known to be exceed-ingly hard to approximate; it is known to be NP-hard to approximate to within a factorn
(1)=loglogn. In this paper we prove that, somewhat surprisingly, the Nearest Codewordproblem on dense instances does have a PTAS. We call an instance of Nearest Codewordproblem (Min-E2-Lin2) problem dense, if the number of occurrences of each variable inthe equations is �(n2) for n the number of variables. We call an instance of Nearest Code-word (Min-E2-Lin2) dense in average if the number of equations is �(n3). Analogously,we de�ne density, and average density, for Min-Ek-Lin2 problems.It is easy to be seen that the results of [AKK95] and [FdV96] on existence of PTASsfor average dense maximum constraint satisfaction problems cannot be applied to theiraverage dense minimum analogs (for a survey paper on approximability of some other denseoptimization problems see also [K97]). This observation can be also strenghten for the denseinstances of minimum constraint satisfaction by noting that dense instances of Vertex Covercan be expressed as dense instances of minimum constraint satisfaction problem for 2DNFclauses, i.e. conjunctions of 2 literals, and then applying the result of [CT96], [KZ97] tothe e�ect that there are no PTAS for the dense Vertex Cover. In [FdVK99] it was alsoproven that the dense and average dense instances of Min Tsp(1,2) and Longest Pathproblems do not have polynomial time approximation schemes.In [AKK95] there were however two dense minimization problems identi�ed as havingPTASs, namely dense Bisection, and Min-k Cut. This has lead us to investigate theapproximation complexity of dense Nearest Codeword problem. Also recently, PTASs havebeen designed for dense Min Equivalence and dense Min-kSat problems (cf. [BFdV99],[BFK00]). The main result of this paper is a proof of an existence of a PTAS for the denseNearest Codeword problem.The approximation schemes developed in this paper for the dense Nearest Codewordproblem use some novel density sampler techniques for graphs, and k-uniform hypergraphs,and extend available up to now approximation techniques for attacking dense instances ofminimum constraint satisfaction problems.The Nearest Codeword problem in its bounded arity (=3) form was proven tobe approximation hard for its unbounded arity version in [KST97] (Lemma 37). Thisresults in n
(1)= log logn approximation lower bound for the Nearest Codeword problemby [DKS98], [DKRS00], where n is the number of variables. No nontrivial approximationratios are known for this problem, other than of order n, where n is the number of variables.It is also easy to show that Nearest Codeword is hard to approximate to within a factorn
(1)= log logn on average dense instances. 2



The paper is organized as follows. In Section 2 we give the necessary de�nitions andprove the NP-hardness of dense instances ofMin-E3-Lin2 in exact setting, and in Section 3we give a polynomial time approximation scheme for the dense instances of Min-E3-Lin2.2 PreliminariesWe begin with basic de�nitions.Approximability. A minimization problem has a polynomial time approximation scheme(a PTAS, in short) if, there exists a polynomial time approximation algorithm that gives foreach instance x of the problem a solution y of value m(x; y) such thatm(x; y) � (1+")opt(x)for every constant " > 0 where opt(x) is the value of an optimum solution.Nearest Codeword Problem(Min-E3-Lin2)Input: A set of m equations on boolean variables x1; : : : ; xn where each equation has theform xi1 � xi2 � xi3 = 0 or xi1 � xi2 � xi3 = 1.Output: An assignment to the variables that minimizes the number of equations satis�ed.Density. A set of instances of Min-E3-Lin2 is �-dense if for each variable x, the totalnumber of occurrences of x is at least �n2 in each instance. A class of instances of Min-E3-Lin2 is dense, if there is a constant � such that the class is �-dense.Let us show now that Dense Min-E3-Lin2 is NP-hard in exact setting. The reduc-tion is from Min-E3-Lin2, which is approximation hard for a ratio n
(1)= log logn [DKS98],[DKRS00], where n is the number of variables. Given an instance I of Min-E3-Lin2 onn variables X = fx1; : : : ; xng with m equations xt1 � xt2 � xt3 = b, where b 2 f0; 1g, weconstruct an instance I 0 of Dense Min-E3-Lin2 as follows: we extend the set of variablesX by two disjoint sets Y = fy1; : : : ; yng and Z = fz1; : : : ; zng. I 0 contains aside from theequations of I , the equations of the form xi � yj � zh = 0 and xi � yj � zh = 1 for all1 � i; j; h � n. Note that the system I 0 is dense. We note also that exactly n3 of the addedequations are satis�ed independently of the values of the variables in X , Y and Z. Thusopt(I 0) = opt(I) + n3, proving the claimed reduction.3 Dense Min-E3-Lin2 has a PTASLet the system S = fE1; :::; Emg be a �-dense instance of Min-E3-Lin2, on a set X of nvariables fx1; : : : ; xng.We will run two distinct algorithms, algorithm A and algorithm B, and select the so-lution with the smallest value. Algorithm A gives a good approximate solution for theinstances whose minimum value is at least �n3. Algorithm B gives a good approximatesolution for the instances whose minimum value is less than �n3, where � is a constantdepending both on � and the required accuracy ".3



3.1 Algorithm AAlgorithm A depends on formulating the problem as a Smooth Integer Program [AKK95]as follows.A smooth degree-3 polynomial (with smoothness e) has the formX aijhxixjxh +X bijxixj +X cixi + dwhere each jaijhj � e, jbijj � en, jcij � en2, jdj � en3 (cf. [AKK95]).For each equation xi � yi � zi = bi in S, we construct the smooth polynomialPi � (1� xi)(1� yi)(1� zi) + xiyi(1� zi) + yizi(1� xi) + zixi(1� yi)if bi = 0, andPi � xi(1� yi)(1� zi) + yi(1� xi)(1� zi) + zi(1� xi)(1� yi) + xiyiziif bi = 1. We have then the Smooth Integer Program IP:( minPmj=1 Pis. t. xi; yi; zi 2 f0; 1g 8i; 1 � i � n:A result of [AKK95] can be used now to approximate in polynomial time the minimumvalue of IP with additive error "n3 for every " > 0. This provides an approximation ratio1 + " whenever the optimum value is 
(n3).3.2 Algorithm BThe algorithm B is guaranteed to give, as we will show, approximation ratio 1 + " for each�xed ", whenever the optimum is at most �n3 for a �xed �, depending on " and on thedensity.Algorithm BInput: A dense system S of linear equations in GF[2] over a set X of n variables withexactly 3 variables per equation.1. Pick two disjoint random samples S1; S2 � X of size m = � � logn"2 �;2. For each possible assignment a 2 f0; 1gjS1[S2j for the variables y in S1 [ S2 (ya willstand for the boolean value of y for assignement a) do the following:2.1 For each variable x =2 S1 [ S2 do the following:Let Hax;0 andHax;1 be the bipartite graphs with common vertex set V (Hax;0) = V (Hax;1) =S1 [ S2 and edge setsE(Hax;0) = ffy; zg : �S1(y)� �S1(z) = 1 ^ x� y � z = b 2 S ^ ya � za = bgand E(Hax;1) = ffy; zg : �S1(y)� �S1(z) = 1 ^ x� y � z = b 2 S ^ 1� ya � za = bg4



Let ma0 = jE(Hax;0)j, ma1 = jE(Hax;1)j.If ma0 � 23(ma0 +ma1), then set x to 1.If ma1 � 23(ma0 +ma1), then set x to 0.Otherwise, set x to be unde�ned.2.2 In this stage, we assign values to the variables which are unde�ned after thecompletion of stage 2.1. Let Da be the set of variables assigned in stage 2.1, and letUa = S1[S2 [Da. V a = X nUa denotes the set of unde�ned variables. For each unde�nedvariable y, let Sy denote the set of equations which contain y and two variables in Ua. Letka0 (resp. ka1) denote the number of equations in Sy satis�ed by a and by setting y to 0(resp. to 1).If ka0 � ka1 , then set y to 0. Else, set y to 1.Let Xa denote the overall assignment produced by the end of this stage.3. Among all the assignments Xa pick one which satis�es the minimum number ofequations of S.Output that assignment.4 Proof of the correctness of algorithm B when the value ofthe instance is "small"We will use the following graph density sampling lemma. Recall that the density d of agraph G = (V;E) is de�ned by d = jEj�jV j2 � :Lemma 1 Let d and " be �xed and let the graph G = (V;E) have jV j = n vertices anddensity d. Let m = �(1=d "�2 log n). Let X = fx1; :::; xmg and Y = fy1; :::; ymg be tworandom disjoint subsets of V (G) with jX j = jY j = m and let e(X; Y ) be the number ofedges of G between X to Y . Then, for each su�ciently large n, we havePr[je(X; Y )�m2dj � "m2d] = 1� o(1=n):Proof : We will use the following inequality due to Hoe�ding [H64]. Let X1; :::; Xm beindependent and identically distributed. Let � = E(X1) and assume that X1 satis�es0 � X1 � �. Let Sm =Pmi=1Xi. Then:Pr(jSm � �mj � "�m) � 2 exp(�2"2m): (1)Clearly E(e(X; Y )) = m2d:For each z 2 V nX , write Tz = j�(z) \X j:Let T = Pz2V nX Tz. Then, T = T 0 + � where � � m(m� 1)=2, and T 0 is the sum of mrandomly chosen valencies from the set of valencies of G. Thus using (1),Pr[jT 0�mndj � "mn+m(m� 1)2=2] � 1� 2 exp(�O("2m)):5



Clearly, e(X; Y ) = Xz2Y Tz= X1�i�m �isay. Assume now, with negligible error, that the vertices of Y are produced by independenttrials. Then, the �i are independent r.v.'s with the same distribution as �1, de�ned byPr[�1 = k] = 1n�m jfz 2 V (G)jTz = kgj; 0 � k � m:Conditionally on � where � 2 mnd(1� ") and E(�1) = �, and using again (1),Pr[je(X; Y )� m�n j � "m2] � 1� 2 exp(�2"2m)or Pr[je(X; Y )� m�n j � "m2d] � 1� 2 exp(�2"2d2m):The conditioning event has probability at least 1�2 exp(�2"2m2d). We have thus, withoutany conditioning,Pr[je(X; Y )� m�n j � "m2d] � 1� 2 exp(�2"2d2m)� 2 exp(�2"2m2d)� 1� 3 exp(�2"2d2m):This completes the proof. 2We now return to our proof of correctness. We assume, as we can, that a is the restrictionto S1 [ S2 of an optimal assignment a�. For each y 2 X , we let ya� denote the value of yin a�. Let x 2 X n S1 [ S2.Let Gx;0 and Gx;1 be the graphs with common vertex set V (Gx;0) = V (Gx;1) = X andedge sets E(Gx;0) = ffy; zg : x� y � z = b 2 S ^ ya� � za� = bgand E(Gx;1) = ffy; zg : x� y � z = b 2 S ^ 1� ya� � za� = bgLet na�0 = jE(Gx;0)j; na�1 = jE(Gx;1)j, na� = na�0 + na�1 . Also, let ma = ma0 +ma1.Lemma 2 (i) Assume that x is such that we havena�0 � 3(na�0 + na�1 )4 :Then, with probability 1� o(1=n), x is assigned (correctly) to 1 in step 2.1 of algorithm B.(ii) Assume that x is such that we havena�1 � 3(na�0 + na�1 )4 :Then, with probability 1� o(1=n), x is assigned (correctly) to 0 in step 2.1 of algorithm B.(iii) With probability 1 � o(1), each variable y 2 Da is assigned to its correct value ya�by the algorithm B. 6



Proof : We �rst prove (iii). Suppose that y is assigned to 1 in stage 2.1. The case wherey is assigned to 0 is similar. We have to prove that na�0 � na�1 with probability 1� o(1=n)since if in an optimum solution xi = 1 then na�0 � na�1 . Thus, Lemma 1 applied to thegraph Gx;0 with d = 2na�0n(n�1) and the samples S1 and S2 givesPr ma0 � 8 � 2na�0 m27n(n� 1) ! = 1� o(1=n);and so, Pr�na�0 � 7ma0n(n� 1)2 � 8m2 � = 1� o(1=n):Also, Lemma 1 applied to the union of the graphs Gx;0 and Gx;1 with d = 2na�n(n�1) and thesamples S1 and S2 gives Pr ma � 8 � 2na�m29n(n� 1) ! = 1� o(1=n);and so, Pr�na� � 9man(n� 1)2 � 8m2 � = 1� o(1=n):Since y takes value 1 in stage 2.1 and ma0 � 2=3ma,Pr na�0na� � 7 � 29 � 3! = 1� o(1=n);and so , Pr na�0na� � 12! = 1� o(1=n):Assertion (iii) follows.Now we prove (i). The proof of (ii) is completely similar to that of (i). Lemma 1 appliedto the graph Gx;0 with d = 2na�0n(n�1) and the samples S1 and S2 givesPr ma0 � (1� ") 2m2n(n� 1)na�0 ! = 1� o(1=n):Let ma = ma0+ma1:We apply now Lemma 1 to the union of the graphs Gx;0 and Gx;1. Thisgives Pr ma � (1 + ") 2m2n(n� 1)na�! = 1� o(1=n):Substraction givesPr ma0 � 2ma3 � 2m2n(n� 1)((1� ")na�o � (1 + ")2(na�0 + na�1 )3 )! = 1� o(1=n):7



Using the inequality na�0 + na�1 � 4na�03 , we obtainPr ma0 � 2ma3 � 2m2n(n � 1) 1� 20"9 na�o ! = 1� o(1=n);and �xing " = 1=20, Pr�ma0 � 2ma3 � 0� = 1� o(1=n);concluding the proof. 2Lemma 3 With probability 1�o(1), the number of variables unde�ned after the completionof stage 2.1 satis�es jV aj � 4 opt�n2 :Proof : Assume that x is unde�ned. We have thus simultaneously na�0 < 34(na�0 +na�1 ) andna�1 < 34(na�0 + na�1 ) and so na�1 > 14(na�0 + na�1 ) and na�0 > 14(na�0 + na�1 ). Since x appears inat least �n2 equations, na�0 + na�1 � �n2: Thus,opt � minfna�0 ; na�1 g � jV aj � �n24 jV aj:The assertion of the lemma follows. 2We can now complete the correctness proof. Let val denote the value of the solutiongiven by our algorithm and let opt be the value of an optimum solution.Theorem 1 Let " be �xed. If opt � �n3 where � is su�ciently small, then we have thatval � (1 + ")opt.Proof : Let us write val = val1 + val2 + val3 + val4where:- val1 is the number of satis�ed equations with all variables in Ua- val2 is the number of satis�ed equations with all variables in V a- val3 is the number of satis�ed equations with two variables in Ua and one in V a- val4 is the number of satis�ed equations with one variable in Ua and two in V a.With an obvious intended meaning, we write alsoopt = opt1 + opt2 + opt3 + opt4We have clearly val1 = opt1 and val3 � opt3. Thus,val � opt + val2 � opt2 + val4 � opt4� opt + val2 + val4� opt + jV aj36 + n jV aj22 ;8
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