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1 IntroductionA common special case of the Traveling Salesman Problem (TSP) is the met-ric TSP, where the distances between the cities satisfy the triangle inequality.The decision version of this special case was shown to be NP-complete byKarp [8], which means that we have little hope of computing exact solutionsin polynomial time. Christo�des [4] has constructed an elegant algorithmapproximating the metric TSP within 3=2, i.e., an algorithm that alwaysproduces a tour whose weight is at most a factor 3=2 from the weight of theoptimal tour. For the case when the distance function may be asymmetric,the best known algorithm approximates the solution within O(logn), wheren is the number of cities [6], although a constant factor approximation algo-rithm has recently been conjectured [3]. As for lower bounds, Papadimitriouand Yannakakis [10] have shown that there exists some constant, see also [1],such that it is NP-hard to approximate the TSP where the distances areconstrained to be either one or two|note that such a distance functionalways satis�es the triangle inequality|within that constant. This lowerbound was improved by Engebretsen [5] to 2805=2804� � for the asymmet-ric and 5381=5380� � for the symmetric, respectively, TSP with distancesone and two. The instances produced in Engebretsen's construction alsohas the property that every city is close to at most four other cities, i.e.,that there are at most four other cities at distance one from it; Trevisan [11]studies TSP for such metrics in greater detail.It appears that the metric TSP lacks the good properties which havebeen needed (so far) for proving strong nonapproximability results. There-fore, any new insights into explicit lower bounds here seem to be of a con-siderable interest. Papadimitriou and Vempala [9] recently announced lowerbounds of 42=41� � and 129=128� �, respectively, for the asymmetric andsymmetric versions, respectively, of the TSP with graph metric, but leftthe question of the approximability for the case with bounded metric open.Apart from being an interesting question on its own, it is conceivable thatthe special cases with bounded metric are easier to approximate than thecases when the distance between two points can grow with the number ofcities in the instance. Indeed, the asymmetric TSP with distances boundedby B can be approximated within B by just picking any tour as the solutionand the asymmetric TSP with distances one and two can be approximatedwithin 17=12 [12]. The symmetric version of the latter problem can be ap-proximated within 7=6 [10].In this paper, we consider the case when the metric contains only in-teger distances between one and six and prove a lower bound of 54=53� �2



for the asymmetric case and 131=130 � � for the symmetric case. This isan improvement of several orders of magnitude compared to the previousbest known bounds of 2805=2804� � and 5381=5380� � for this case, respec-tively [5]. We also prove that it is NP-hard to approximate the asymmetricTSP with distances one and two within 321=320� �, for any constant � > 0.For the symmetric version of the latter problem we show a lower bound of743=742� �.The method of our proofs depends on explicit reductions from certainbounded dependency instances of linear equations satis�ability. The mainidea is to construct certain uniform circles of equation gadgets and, in thesecond part, certain combined hybrid circle constructions.De�nition 1.1. The Asymmetric Traveling Salesman Problem (ATSP) isthe following minimization problem: Given a collection of cities and a matrixwhose entries are interpreted as the distance from a city to another, �nd theshortest tour starting and ending in the same city and visiting every cityexactly once.De�nition 1.2. (1,B)-ATSP is the special case of ATSP where the entriesin the distance matrix obey the triangle inequality and the o�-diagonal en-tries in the distance matrix are integers between 1 and B. (1,B)-TSP is thespecial case of (1,B)-ATSP where the distance matrix is symmetric.2 The hardness of (1,B)-ATSPWe reduce, similarly to Papadimitriou and Vempala [9], from H�astad's lowerbound for E3-Lin mod 2 [7]. In fact, our gadgets for the (1,B)-ATSP caseare syntactically identical to those of Papdimitriou and Vempala [9] but weuse a slightly di�erent accounting method. The construction consists of acircle of equation gadgets testing odd parity. This is no restriction sincewe can easily transform a test for even parity into a test for odd parity by
ipping a literal. Three of the edges in the equation gadget correspond tothe variables involved in the parity check. These edges are in fact gadgets,so called edge gadgets, themselves. Edge gadgets from di�erent equationgadgets are connected to ensure consistency among the edges representinga literal. This requires the number of negative occurrences of a variable tobe equal to the number of positive occurrences. This is no restriction sincewe can duplicate every equation a constant number of times and 
ip literalsto reach this property. 3



A BFigure 1. The gadget for equations of the form x + y + z = 0. There isa Hamiltonian path from A to B only if zero or two of the ticked edges aretraversed.De�nition 2.1. E3-Lin mod 2 is the following problem: Given an instanceof n variables and m equations over Z2 with exactly three unknowns in eachequation, �nd an assignment to the variables that satis�es as many equationsas possible.Theorem 2.2 [7]. There exists instances of E3-Lin mod 2 with 2m equa-tions such that, for any constant � > 0, it is NP-hard to decide if at most�m or at least (1� �)m equations are left unsatis�ed by the optimal assign-ment. Each variable in the instance occurs a constant number of times, halfof them negated and half of them unnegated.To describe an instance of (1,B)-ATSP, it is enough to specify the edges ofweight one. We do this by constructing an unweighted directed graph Gand then let the (1,B)-ATSP instance have the nodes of G as cities. For twonodes u and v in G, let `(u; v) be the length of the shortest path from u to vin G. The distance between two cities u and v is the (1,B)-ATSP instanceis then de�ned to be minfB; `(u; v)g.2.1 The gadgetsThe equation gadget for equations of the form x + y + z = 0 is shown inFig. 1. The key property of this gadget is that there is a Hamiltonian paththrough the gadget only if zero or two of the ticked edges are traversed. Toform the circle of equation gadgets, vertex A in one gadget coincides withvertex B in another gadget.The ticked edges in Fig. 1 are gadgets themselves. This gadget is shownin Fig. 2. Each of the bridges, i.e., the pairs of undirected edges in thegadget, is shared between two di�erent edge gadgets, one corresponding4



Figure 2. The edge gadget consists of �ve bridges|each of the bridges areshared between two di�erent edge gadgets.Figure 3. A traversed edge gadget represents the value 1.to a positive occurrence of the literal and one corresponding to a negativeoccurrence. The precise coupling is provided by a perfect matching in a 5-regular bipartite multigraph with the following property: For any partitionof the left k vertices into subsets S1, U1 and T1 and any partition of theright k vertices into subsets S2, U2 and T2 such that there are no edges fromU1 to U2, jS1j+ jS2j � k and jU1j+ jT2j � jT1j+ jU2j, the total number ofedges from vertices in T1 to vertices in T2 is greater than12 minfjU1j+ jT2j; k� jS1j � jS2jg:(We sketch the proof that such graphs exist in Sec. 2.3.) The purpose of thisconstruction is to ensure that it is always optimal for the tour to traversethe graph in such a way that all variables are given consistent values. Theedge gadget gives an assignment to an occurrence of a variable by the wayit is traversed.De�nition 2.3. We call an edge gadget where all bridges are traversed fromleft to right in Fig. 2 traversed and an edge gadget where all bridges aretraversed from right to left untraversed. All other edge gadgets are calledsemitraversed.2.2 Proof of correctnessIf we assume that the tour behaves nicely, i.e., that the edge gadgets areeither traversed or untraversed, it is straightforward to establish a corre-5



Figure 4. An untraversed edge gadget represents the value 0.spondence between the length of the tour and the number of unsatis�edequations.Lemma 2.4. The only way to traverse the equation gadget in Fig. 1 with atour of length 4|if the edge gadgets count as length one for the moment|isto traverse an odd number of edge gadgets. All other locally optimal traver-sals have length 5.Proof. It is easy to see that any tour traversing two ticked edges and leavingthe third one untraversed has length 4. Any tour traversing one ticked edgeand leaving the other two ticked edges untraversed has length at least 5.Strictly speaking, it is impossible to have three traversals since this does notresult in a tour. However, we can regard the case when the tour leaves theedge gadget by jumping directly to the exit node of the equation gadget asa tour with three traversals; such a tour gives a cost of 5. 2Lemma 2.5. In addition to the length 1 attributed to the edge gadget above,the length of a tour traversing an edge gadget in the intended way is 15.Proof. Each bridge has length 2 and every bridge must have one of theoutgoing edge traversed. Thus, the total cost is 5 � (2 + 1) = 15. 2Lemma 2.6. Suppose that there are 2m equations in the E3-Lin mod 2 in-stance. If the tour is shaped in the intended way, i.e., every edge gadgetis either traversed or untraversed, the length of the tour is 53m+ u, whereu is the number of unsatis�ed equations resulting from the assignment rep-resented by the tour.Proof. The length of the tour on an edge gadgets is 15. There are threeedge gadgets corresponding to every equation and every bridge in the edgegadget is shared between two equation gadgets. Thus, the length of the touron the edge gadgets is 2m � 3 � 15=2 = 45m. The length of the tour on anequation gadgets is 4 if the equation is satis�ed and 5 otherwise. Thus, thetotal length is 53m+ u. 26



The main challenge now is to prove that the above correspondence betweenthe length of the optimum tour and the number of unsatis�ed equation holdsalso when we drop the assumption that the tour is shaped in the intendedway.To count the excessive cost due to traversed edges of weight more thanone, we note that every traversed edge of weight w > 1 corresponds toa path of length minfw;Bg on edges of weight one. To ease the analysisof the impact of such tours, we reroute every such tour its correspondingpath if w � B; if w > B we make the tour follow the �rst B=2 and lastB=2 edges of the path and then pretend that the tour does a jump of zerocost between these two vertices. For clarity we color these new traversalsred. This produces something which is not a tour|we call it a pseudo-tour|since some edges are traversed more than once and some vertices areconnected to more than two traversed edges. From now on, most of thereasoning concerns this pseudo-tour. The following sequence of lemmas givea lower bound on the extra cost, not counting the \normal" cost of 15 peredge gadget and 4 per equation gadget, that results from a non-standardbehavior of the tour.We have already seen that an unsatis�ed equation adds an extra costof 1. Edge gadgets that are either traversed or untraversed do not add anyextra cost, except for the case when two traversed equation gadgets sharea bridge; this results in a bridge being traversed in both directions by thepseudo-tour. A pseudo-tour resulting from a proper TSP tour can neverresult in two untraversed edge gadgets sharing a bridge; this would imply acycle containing three vertices in the original TSP tour.Lemma 2.7. Two traversed edge gadgets that share a bridge give an extracost of 2 to the length of the tour.Proof. If two traversed edge gadgets are connected, there must be a bridgethat is traversed in both directions. Such a bridge gives an extra cost of 2.2So far we have dealt with the traversed and the untraversed edge gadgets.What remains is the di�cult case|the semitraversed edge gadgets.Lemma 2.8. Suppose that B � 6. Then every semitraversed edge gadgetadds an extra cost of at least one to the length of the tour.Proof sketch. We call a bridge balanced with respect to a pseudo-tour ifthere is at least one edge of the pseudo-tour adjacent to each endpoint ofthe bridge. Note that an unbalanced bridge always gives an extra cost of7



Figure 5. A traversed edge gadget that shares a bridge with another tra-versed edge gadget..Figure 6. An unbalanced bridge always gives an extra cost of 2.two, since the bridge must be traversed in both directions by the pseudo-tour. Thus, we always obtain an extra cost of two if any of the bridgesare unbalanced. This cost can be divided between two semitraversed edgegadgets, resulting in a cost of at least one per semitraversed edge gadget.We show one such case in Fig. 6, the other cases are handled similarly.Now assume that all bridges are balanced. Since the edge gadget issemitraversed, all bridges cannot be traversed in the same direction. Thus,there are two adjacent bridges that are traversed in di�erent directions.When B � 6 this gives an extra cost of two that may be shared by twodi�erent semitraversed edge gadgets. We show one such case in Fig. 7, theother cases are handled similarly. 2Lemma 2.9. Suppose that there are 2k occurrences of the variable x. Thenat most k of the equation gadgets corresponding to x can be semitraversed.Proof. Assume that there are e semitraversed edge gadgets correspondingto x. Then it is possible to change the length of the tour by making all edgeFigure 7. A balanced bridge always gives an extra cost of 2.8



gadgets corresponding to x either traversed or untraversed|whatever sat-is�es the largest number of equations. This transformation itself decreasesthe length of the tour by at least e, but since we may introduce up to k un-satis�ed equations in the process, we may also get an increase of at most k.Summing up, the length of the tour decreases by at least e�k. This numberis positive when e > k. 2Lemma 2.10. There exists a coupling of the equation gadgets with the prop-erty that there can never be advantageous to have inconsistently traversedequation gadgets.Proof. For any variable x, the number of semitraversed occurrences is atmost k. Consider now the bipartite graph with occurrences of x at one sideand occurrences of �x on the other side. Each vertex in this graph can belabeled as T , U or S, depending on whether it is traversed, untraversedor semitraversed. Let T1 be the set of traversed positive occurrences andT2 be the set of traversed negative occurrences. De�ne U1, U2, S1, and S2similarly. We can assume that jU1j + jT2j � jU2j+ jT1j|otherwise we justchange the indexing convention.We now consider a modi�ed tour where the positive occurrences aretraversed and the negative occurrences are untraversed. This decreases thecost of tour by at least jS1j+ jS2j+ 2j(T1; T2)j, where j(T1; T2)j denotes thenumber of edges between T1 and T2, and increases it by minfk; jS1j+ jS2j+jU1j+ jT2jg. But the bipartite graph has the property that2j(T1; T2)j � minfjU1j+ jT2j; k� jS1j � jS2jg;which implies that the cost of tour decreases by this transformation. Thus,we can assume that x is given a consistent assignment by the tour. 2Theorem 2.11. For any constant � > 0, it is NP-hard to approximate(1,6)-ATSP within 54=53� �.Proof. Given an instance of E3-Lin mod 2 with 2m equations where everyvariable occurs a constant number of times, we construct the correspondinginstance of (1,6)-ATSP. This can be done in polynomial time. By the abovelemma, we can assume that all edge gadgets are traversed consistently inthis instance. The assignment obtained from this traversal satis�es 2m� uequations if the length of the tour is 53m + u. If we could decide if thelength of the optimum tour is at most (53+ �1)m or at least (54� �2)m, wecould decide if at most �1m or at most (1 � �2)m of the equations are letunsatis�ed by the corresponding assignment. But to decide this is NP-hardby Theorem 2.2. 29



2.3 The bipartite graphIn this section we sketch the proof that there exist bipartite graphs withgood enough expansion properties for the particular set of parameters wehave in our case. The exact statement on all parameters involved is givenin Theorem 2.12 below.Theorem 2.12. For d � 5 and a large enough constant k, there existsa bipartite d-regular multigraph on 2k vertices with the following property:For any partition of the left k vertices into subsets S1, U1 and T1 and anypartition of the right k vertices into subsets S2, U2 and T2 such that there areno edges from U1 to U2, jS1j+ jS2j � k and jU1j+ jT2j � k� (jS1j+ jS2j)=2,the total number of edges from vertices in T1 to vertices in T2 is greater than12 minfjU1j+ jT2j; k� jS1j � jS2jg:We view a d-regular bipartite graph as a perfect matching on a dk � dkbipartite graph|every node in the d-regular graph corresponds to d nodesin the larger graph. We select a matching uniformly at random and want toestimate the probability of failure. To do this, we upper bound the numberof \bad" matchings and divide by (dk)!, the total number of matchings.First note that for any choice of s1; t1; u1; s2; t2; u2 such that s1 + t1 +u1 = k and s2 + t2 + u2 = k, there are less than 9k ways to partition thenodes of the d-regular bipartite graph into sets S1; T1; U1; S2; T2; U2 withsizes s1; t1; u1; s2; t2; u2, respectively. Given such a partition, there areP (s1; t1; u1; s2; t2; u2; es1s2 ; et1t2)=  ds1es1s2! ds2es1s2!(es1s2)! dt1et1t2! dt2et1t2!(et1t2)!�(d(k � u1 � u2)� et1t2 � es1s2))!(du1)!(du2)!di�erent matchings such that there are es1s2 edges from S1 to S2 and et1t2edges from T1 to T2. Thus, we can bound the probability of failure by9k(dk)!XP (s1; t1; u1; s2; t2; u2; es1s2 ; et1t2):Since the number of terms in the above sum is polynomial in k, we canapproximate the bound bypoly(k) 9k(dk)!P (s1; t1; u1; s2; t2; u2; es1s2 ; et1t2);10



where the parameters are chosen to maximize P . Since ds1es1s2! ds2es1s2!(es1s2)! dt1et1t2! dt2et1t2!(et1t2)!is at most d(s1 + t1)es1s2 + et1t2! d(s2 + t2)es1s2 + et1t2!(es1s2 + et1t2)!;it su�ces to consider P (0; t1; u1; 0; t2; u2; 0; et1t2). Furthermore, s1 = s2 = 0implies t1 = t2 ^ u1 = u2, which, in turn, implies that et1t2 = d(t1 � u2) =d(t2�u1). Thus, it su�ces to consider P (0; k�u; u; 0; k�u; u; 0; d(k� 2u))for all u. Write u = �k, then the probability of failure can be bound fromabove bypoly(k)9k � d(1��)kd(1�2�)k�2(d(1� 2�)k)!((d�)!)2(dk)!which is equal topoly(k)9k (d(1� �)k)!(d(1� �)k)!(d(1� 2�)k)!(dk)! :By Stirling's formula, this can be written aspoly(k)� dp9(1� �)2(1��)(1� 2�)1�2��dk:The latter quantity is strictly less than one for large enough k ifdp9(1� �)2(1��)(1� 2�)1�2� < 1:When d � 5 this is true for 2� � 1�1=(2d), which translates into et1t2 � k=2.3 The hardness of (1,B)-TSPTo adapt the construction from the previous section for the symmetric casewe need to change some of the gadgets. Most changes in the equation gadgetsare minor|the main change being that we test odd instead of even parity forequations with three variables (Fig. 8). There is a more substantial changein the edge gadget; it is changed according to Fig. 9.If we assume that the tour behaves nicely, it is straightforward to provea correspondence between the length of a tour and the number of equationsleft unsatis�ed by the corresponding assignment.11



A BFigure 8. The gadget for equations of the form x+ y + z = 1. There is aHamiltonian path from A to B only if one or three of the ticked edges aretraversed.Figure 9. To transform the edge gadget from Fig. 2 into a gadget that canbe used in the symmetric case, all occurrences of the structure to the leftabove are replaced with the structure to the right above.Lemma 3.1. The only way to traverse the equation gadget in Fig. 8 with atour of length 5|if the edge gadgets count as length one for the moment|isto traverse an odd number of edge gadgets. All other locally optimal traver-sals have length 6.Proof. It is easy to see that any tour traversing either one or three of theticked edges and leaving the third one untraversed has length 5. Any tourtraversing zero or two ticked edges end up on the wrong side of the gadgetand needs an extra cost of at least one to get back to the other side. 2Lemma 3.2. In addition to the length 1 attributed to the edge gadget above,the length of a tour traversing an edge gadget in the intended way is 48.Proof. The total cost is 5 � (7 + 1) = 40. 2Lemma 3.3. Suppose that there are 2m equations in the E3-Lin instance.If the tour is shaped in the intended way, i.e., every edge gadget is eithertraversed or untraversed, the length of the tour is 130m+ u, where u is thenumber of unsatis�ed equations resulting from the assignment representedby the tour.Proof. The length of the tour on the edge gadgets is 18. There are threeedge gadgets corresponding to every equation and every bridge in the edge12



gadget is shared between two equation gadgets. Thus, the length of the touron the edge gadgets is 2m � 3 � 40=2 = 120m. The length of the tour in theequation gadgets is 5 if the equation is satis�ed and 6 otherwise. Thus, thetotal length is 130m+ u. 2In the same way as in the asymmetric case, it can be shown that the tourcan be assumed to behave in the intended way. This gives the followinglemma (we omit the proof):Lemma 3.4. Two traversed edge gadgets that share a bridge give an extracost of at least 2 to the length of the tour.Suppose that B � 6. Then every semitraversed edge gadget adds an extracost of at least one to the length of the tour.Suppose that there are 2k occurrences of the variable x. Then at most kof the equation gadgets corresponding to x can be semitraversed.There exists a coupling of the equation gadgets with the property thatthere can never be advantageous to have inconsistently traversed equationgadgets.Given the above lemma, the main theorem follows in exactly the same wayas in the asymmetric case.Theorem 3.5. For any constant � > 0, it isNP-hard to approximate (1,6)-TSP within 131=130� �.Proof. Given an instance of E3-Lin mod 2 with 2m equations where everyvariable occurs a constant number of times, we construct the correspondinginstance of (1,6)-TSP. This can be done in polynomial time. By the abovelemma, we can assume that all edge gadgets are traversed consistently inthis instance. The assignment obtained from this traversal satis�es 2m� uequations if the length of the tour is 130m + u. If we could decide if thelength of the optimum tour is at most (130 + �1)m or at least (131� �2)m,we could decide if at most �1m or at most (1� �2)m of the equations are letunsatis�ed by the corresponding assignment. But to decide this is NP-hardby Theorem 2.2. 24 The hardness of (1,2)-ATSPTo prove a lower bound for (1,2)-ATSP we apply the construction used byBerman and Karpinski [2], a reduction from systems of linear equationsmod 2 with exactly three unknowns in each equation to a problem called13



Hybrid, to prove hardness results for instances of several combinatorial op-timization problems where the number of occurrences of every variable isbounded by some constant.De�nition 4.1. Hybrid is the following maximization problem: Given asystem of linear equations mod 2 containing n variables, m2 equations withexactly two unknowns, and m3 equations exactly with three unknowns, �ndan assignment to the variables that satis�es as many equations as possible.Theorem 4.2 [2]. There exists instances of Hybrid with 42� variables,60� equations with two variables, and 2� equations with three variables suchthat:1. Each variable occurs exactly three times.2. For any constant � > 0, it is NP-hard to decide if at most �� or atleast (1� �)� equations are left unsatis�ed.Since we adopt the construction of Berman and Karpinski [2], we can partlyrely on their main technical lemmas, which simpli�es our proof of correct-ness.On a high level, the (1,2)-ATSP instance in our reduction consists of a cir-cle formed by equation gadgets representing equations of the form x+y+z =0 and x+y = 1. These gadgets are coupled in a way ensuring that the threeoccurrences of a variable are given consistent values. In fact, the instances ofHybrid produced by the Berman-Karpinski construction have a very specialstructure. Every variable occurs in at least two equations with two un-knowns, and those equations are all equivalences, i.e., equations of the formx + y = 0. Since our gadget for equations with two unknowns tests oddparity, we have to rewrite those equations as x + �y = 1 instead. Similarly,the equations of the form x+ y+ z = 1 must be rewritten with one variablenegated since our gadgets for equations with three unknowns only test evenparity. Turning to the coupling needed to ensure consistency, we have threeoccurrences of every variable. Since we do not have any gadgets testing oddparity for three variables or even parity for two variables, we may have tonegate some of the occurrences. We now argue that there are either one ortwo negated occurrences of every variable. The Hybrid instance produced bythe Berman-Karpinski construction can be viewed as a collection of wheelswhere the nodes correspond to variables and edges to equations. The edgeswithin a wheel all represent equations with two unknowns, while the equa-tions with three unknowns are represented by hyperedges connecting threedi�erent wheels. Figure 10 gives an example of one such wheel. The equa-14



Figure 10. The Hybrid instance produced by the Berman-Karpinski con-struction can be viewed as a collection of wheels where the nodes correspondto variables and edges to equations.tions corresponding to the edges forming the perimeter of the wheel can bewritten as x1 + �x2 = 1, x2 + �x3 = 1, . . . , xk�1 + �xk = 1, and xk + �x1 = 1,which implies that there is at least one negated and at least one unnegatedoccurrence of each variable.Corollary 4.3. There are instances of Hybrid with 42� variables, 60� equa-tions of the form x+ �y = 1 mod 2, and 2� equations of the form x+ y+ z =0 mod 2 or x+ y + �z = 0 mod 2 such that:1. Each variable occurs exactly three times.2. There is at least one positive and at least one negative occurrence ofeach variable.3. For any constant � > 0, it is NP-hard to decide if at most �� or atleast (1� �)� equations are left unsatis�ed.To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybridof the form described in Corollary 4.3 to instances of (1,2)-ATSP and provethat, given a tour in the (1,2)-ATSP instance, it is possible to construct anassignment to the variables in the original Hybrid instance with the propertythat the number of unsatis�ed equations in the Hybrid instance is relatedto the length of the tour in the (1,2)-ATSP instance.To describe a (1,2)-TSP instance, it is enough to specify the edges ofweight one. We do this by constructing a graph G and then let the (1,2)-TSP instance have the nodes of G as cities. The distance between two citiesu and v is de�ned to be one if (u; v) is an edge in G and two otherwise. To15



A BFigure 11. The gadget for equations of the form x + y = 1. There is aHamiltonian path from A to B only if one of the ticked edges is traversed.compute the weight of a tour, it is enough to study the parts of the tourtraversing edges of G. In the asymmetric case G is a directed graph.De�nition 4.4. We call a node where the tour leaves or enters G an end-point. A node with the property that the tour both enters and leaves G inthat particular node is called a double endpoint and counts as two endpoints.If c is the number of cities and 2e is the total number of endpoints, theweight of the tour is c+ e since every edge of weight two corresponds to twoendpoints.4.1 The gadgetsThe equation gadget for equations of the form x + y + z = 0 is shown inFig. 1|the same gadget as in the (1,B) case. However, the ticked edgesnow represent a di�erent structure.The equation gadget for equations of the form x + y = 1 is shown inFig. 11. The key property of this gadget is that there is a Hamiltonian paththrough the gadget only if one of the ticked edges is traversed.The ticked edges in the equation gadgets are syntactic sugar for a con-struction ensuring consistency among the three occurrences of each variable.As we noted above, either one or two of the occurrences of a variable arenegated. The construction in Fig. 12 ensures that the occurrences are givenconsistent values, i.e., that either x = 0 and �x = 1, or x = 1 and �x = 0. Ifthere is one negated occurrence of a variable, the upper part of the gadgetconnects with that occurrence and the lower part connects with the twounnegated occurrences. If there are two negated occurrences, the situationis reversed.4.2 Proof of correctnessWe want to prove that every unsatis�ed equation has an extra cost of oneassociated with it. At �rst, it would seem that this is very easy|the gadgetin Fig. 1 is traversed by a path of length four if the equation is satis�ed anda path of length at least �ve otherwise; the gadget in Fig. 11 is traversed16



Figure 12. The gadget ensuring consistency for a variable. If there are twopositive occurrences of the variable, the ticked edges corresponding to thoseoccurrences are represented by the parts enclosed in the dotted curves andthe ticked edge corresponding to the negative occurrence is represented bythe part enclosed in the dashed curve. If there are two negative occurrences,the rôles are reversed.by a path of length one if the equation is satis�ed and a path of lengthat least two otherwise; and the gadget in Fig. 12 ensures consistency and istraversed by a tour of length six, not counting the edges that were accountedfor above. Unfortunately, things are more complicated than this. Due tothe consistency gadgets, the tour can leave a ticked edge when it is half-waythrough it, which forces us to be more careful in our analysis.We count the number of endpoints that occur within the gadgets; eachendpoint gives an extra cost of one half. We say that an occurrence of aliteral is traversed if both of its connected edges are traversed, untraversedif none of its connecting edges are traversed, and semitraversed otherwise.To construct an assignment to the literals, we use the convention that aliteral is true if it is either traversed or semitraversed. We need to show thatthere are two endpoints in gadgets that are traversed in such a way thatthe corresponding assignment to the literals makes the equation unsatis�ed.The following lemmas are easy, but tedious, to verify by case analysis:Lemma 4.5. It is locally optimal to traverse both bridges, i.e., both pairsof undirected edges, in the consistency gadget.Proof. By case analysis. 2Lemma 4.6. Every semitraversed occurrence introduces at least one end-point.Proof. By case analysis on traversed connection edges. 2Lemma 4.7. It is always possible to change a semitraversed occurrence intoa traversed one without introducing any endpoints in the consistency gadget.Proof. By case analysis on traversed connection edges. 217



Given the above lemmas, the following two lemmas prove the properties weneed regarding the equation gadgets.Lemma 4.8. A \satisfying traversal" of the gadget in Fig. 11 has length 1,all other locally optimal traversals have length at least 2, i.e., contain at leasttwo endpoints within the gadget.Proof. If one of the ticked edges is traversed and the other is untraversed,the gadget is traversed by a tour of length 1. It is suboptimal to have onesemitraversed and one untraversed edge, in this case it is possible to shortenthe tour by transforming the semitraversed edge into a traversed one.Two untraversed edges give a total cost of at least 2. It is impossible tohave either two traversed edges or one traversed and one semitraversed tickededge, since that gives a traversal which is not a tour. Two semitraversededges give an extra cost of ½ each, giving a total cost of at least 2. 2Lemma 4.9. A \satisfying traversal" of the gadget in Fig. 1 has length 4,all other locally optimal traversals have length at least 5, i.e., contain at leasttwo endpoints within the gadget.Proof. It is easy to see that any tour traversing two ticked edges and leavingthe third one untraversed has length 4. The case with two semitraversedoccurrences and one untraversed is suboptimal since a shorter tour can beproduced in this way: Make the semitraversed occurrences traversed andthen adjust the tour on the non-ticked edges to get a tour of length 4.Similarly, the case with one traversed and one semitraversed occurrence canbe transformed into two semitraversed occurrences.Any tour traversing one ticked edge and leaving the other two tickededges untraversed has length at least 5. A tour semitraversing one tickededge and leaving the other ticked edges untraversed can be transformed intoa tour with one traversal and two non-traversals. It is impossible to havethree traversals since this does not result in a tour. The case with twotraversals and one semitraversal gives a cost of 5, and so does case with onetraversal and two semitraverals, since each semitraversal has an extra costof ½ associated with it. 2When the above lemmas have been proven, we only need to prove that thegadget we use for consistency actually implements consistency.Lemma 4.10. The gadget in Fig. 12 ensures consistency and is traversedby a tour of length 6, not counting the edges or endpoints that were accountedfor in the above lemmas. 18



Proof. If there are no semitraversed occurrences, the gadget implementsconsistency correctly.Suppose that the upper occurrence in Fig. 12 is semitraversed in such away that the leftmost connecting edge is traversed but the rightmost is not.Then it is possible to have the lower left occurrence untraversed and thelower right occurrence traversed. Since a semitraversed occurrence is alwayspart of an unsatis�ed equation gadget, the following procedure produces atour with equal cost: Make the upper occurrence untraversed and the lowerleft occurrence traversed. This makes the equation gadget that the upperoccurrence is connected to satis�ed and may make the equation gadget thatthe lower left occurrence is connected to unsatis�ed.Suppose that the lower left occurrence in Fig. 12 is semitraversed in sucha way that the leftmost connecting edge is traversed but the rightmost is not.Then it is possible to have the lower right occurrence untraversed and theupper occurrence semitraversed. Since a semitraversed occurrence is alwayspart of an unsatis�ed equation gadget, the following procedure produces atour with equal cost: Make the upper occurrence untraversed and the lowerright occurrence traversed. This makes the equation gadget that the upperoccurrence is connected to satis�ed and may make the equation gadget thatthe lower right occurrence is connected to unsatis�ed.With similar arguments it can be shown that the lemma holds for allother possible cases. 2By combining the above lemmas, we have shown the following connectionbetween the length of an optimum tour and the number of unsatis�ed equa-tions in the corresponding instance of Hybrid.Theorem 4.11. Suppose that we are given an arbitrary instance of Hybridwith n variables, m2 equations of the form x+�y = 1 mod 2, and m3 equationsof the form x+ y + z = 0 mod 2 or x+ y + �z = 0 mod 2 such that:1. Each variable occurs exactly three times.2. There is at least one positive and at least one negative occurrence ofeach variable.Then we can construct an instance of (1,2)-ATSP with the property that atour of length 6n + m2 + 4m3 + u corresponds to an assignment satisfyingall but u of the equations in the Hybrid instance.Corollary 4.12. For any constant � > 0, it is NP-hard to approximate(1,2)-ATSP within 321=320� �. 19



A BFigure 13. The gadget for equations of the form x + y = 1. There is aHamiltonian path from A to B only if one of the ticked edges is traversed.Proof. We connect Theorem 4.11 with Corollary 4.3 and obtain an instanceof (1,2)-ATSP with the property that a tour of length6n+m2 + 4m3 + u = 6 � 42� + 60� + 4 � 2� + u = 320� + ucorresponds to an assignment satisfying all but u of the equations in theHybrid instance. Since, for any constant �0 > 0, it is NP-hard to distinguishthe cases u � �0 and u � 1 � �0, it is NP-hard to approximate (1,2)-ATSPwithin 321=320� � for any constant � > 0. 25 The hardness of (1,2)-TSPIt is possible to adapt the above construction for (1,2)-ATSP to prove a lowerbound also for (1,2)-TSP. The equation gadget for equations containing threevariables is changed in the same way as in the (1,B) case, the consistencygadget is change in a similar way.5.1 The gadgetsThe equation gadget for equations of the form x+y = 1 is shown in Fig. 13.The key property of this gadget is that there is a Hamiltonian path throughthe gadget only if one of the ticked edges is traversed.The equation gadget for equations of the form x+ y+ z = 1 is shown inFig. 8|the same gadget as in the (1,B) case.The ticked edges in the equation gadgets are syntactic sugar for a con-struction ensuring consistency among the three occurrences of each variable.As we noted above, either one or two of the occurrences of a variable arenegated. The construction in Fig. 14 ensures that the occurrences are givenconsistent values, i.e., that either x = 0 and �x = 1, or x = 1 and �x = 0. Ifthere is one negated occurrence of a variable, the upper part of the gadgetconnects with that occurrence and the lower part connects with the twounnegated occurrences. If there are two negated occurrences, the situationis reversed. 20



Figure 14. The gadget ensuring consistency for a variable. If there are twopositive occurrences of the variable, the ticked edges corresponding to thoseoccurrences are represented by the parts enclosed in the dotted curves andthe ticked edge corresponding to the negative occurrence is represented bythe part enclosed in the dashed curve. If there are two negative occurrences,the rôles are reversed.5.2 Proof of correctnessIn the same way as in the asymmetric case, it can be shown that the tourcan be assumed to behave in the intended way. When this result is com-bined with the lower bound on the approximability of Hybrid, we obtain thefollowing theorem:Theorem 5.1. Suppose that we are given an instance of Hybrid with n vari-ables, m2 equations of the form x + �y = 1 mod 2, and m3 equations of theform x+ y + z = 0 mod 2 or x + y + �z = 0 mod 2 such that:1. Each variable occurs exactly three times.2. There is at least one positive and at least one negative occurrence ofeach variable.Then we can construct an instance of (1,2)-TSP with the property that atour of length 16n+m2 + 5m3 + u corresponds to an assignment satisfyingall but u of the equations in the Hybrid instance.Theorem 5.2. For any constant � > 0, it isNP-hard to approximate (1,2)-TSP within 743=742� �.Proof. We connect Theorem 5.1 with Corollary 4.3 and obtain an instanceof (1,2)-TSP with the property that a tour of length16n+m2 + 5m3 + u = 16 � 42nu+ 60� + 5 � 2� + u = 742� + ucorresponds to an assignment satisfying all but u of the equations in theHybrid instance. Since, for any constant �0 > 0, it is NP-hard to distinguish21



the cases u � �0 and u � 1 � �0, it is NP-hard to approximate (1,2)-TSPwithin 743=742� � for any constant � > 0. 26 The unbounded metric caseFinally, we note that the equation gadget in Fig. 8 can be used to improvethe bound given by Papadimitriou and Vempala [9] for the symmetric TSPwith graph metric. Their construction has the property that the cost of astandard tour that corresponds to an assignment satisfying all but K equa-tions is4(8 + 1) � 3n2 + 10n+K;where the �rst term corresponds to the cost of traversing the edge gadgetsand the other two terms correspond to the cost of traversing the equationgadgets [9]. By removing the center node in every bridge in the edge gadgetsand replacing the equation gadget with our gadget from Fig. 8, the costbecomes4(7 + 1) � 3n2 + 5n+K = 53n+K;which gives a lower bound of 107=106+ �.7 ConclusionsIt should be possible to improve the reduction by eliminating the verticesthat connect the equation gadgets for x + y + z = f0; 1g with each other.This reduces the cost of those equation gadgets by one, which improves ourbounds|but only by a miniscule amount. The big bottleneck, especiallyin the (1,2) case, is the consistency gadgets. If, for the asymmetric case,we were able to decrease the cost of them to four instead of six, we wouldimprove the bound to 237=236��; if we could decrease the cost to three, thebound would become 195=194� �. We conjecture that some improvementfor the (1,2) case is still possible along these lines.AcknowledgmentsWe thank Santosh Vempala for many clarifying discussions on the subjectof this paper. 22
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