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1 IntroductionThe max-bisection and min-bisection problems, i.e., the problems of constructing a halvingof the vertex set of a graph that respectively maximizes or minimizes the number of edgesacross the partition, belong to the basic combinatorial optimization problems.The best known approximation algorithm for max-bisection yields a solution whose size isat least 0:701 times the optimum [16] whereas the best known approximation algorithm formin-bisection achieves \solely" a log-square approximation factor [11]. The former factorfor max-bisection is considerably improved for regular graphs to 0:795 in [10] whereas thelatter factor for min-bisection is improved for graphs excluding any �xed minor (e.g., planargraphs) to a logarithmic one in [11]. For dense graphs, Arora, Karger and Karpinski givepolynomial time approximation schemes for max- and min-bisection in [2].In this paper, we study the max-bisection and min-bisection problems on bounded treewidthgraphs and on planar graphs. Both graph families are known to admit exact polynomial timealgorithms for max-cut, i.e., for �nding a bi-partition that maximizes the number of edgeswith endpoints in both sets in the partition [9, 14].Our �rst main result are exact polynomial time algorithms for �nding a partition of abounded treewidth graph into two sets of a priori given cardinalities, respectively maximizingor minimizing the number of edges with endpoints in both sets. Thus, in particular, we ob-tain polynomial time algorithms for max-bisection and min-bisection on bounded treewidthgraphs.The complexity and approximability status of max-bisection on planar graphs have beenlong-standing open problems. Contrary to the status of planar max-cut, planar max-bisectionhas been proven recently to be NP-hard in exact setting by Jerrum [17]. Karpinski et al.observed in [18] that the max-bisection problem for planar does not fall directly into theKhanna-Motwani's syntactic framework for planar optimization problems [19]. On the otherhand, they provided a polynomial time approximation scheme (PTAS) for max-bisection inplanar graphs of sublinear maximum degree. (In fact, their method implies that the sizeof max-bisection is very close to that of max-cut in planar graphs of sublinear maximumdegree.)Our second main result is the �rst polynomial time approximation scheme for the max-bisection problem for arbitrary planar graphs. It is obtained by combining (via tree-typeddynamic programming) the original Baker's method of dividing the input planar graphinto families of k-outerplanar graphs [4] with our method of �nding maximum partitionsof bounded treewidth graphs.Note that the NP-hardness of exact planar max-bisection makes our PTAS result best pos-sible under usual assumptions.Interestingly, our PTAS for planar max-bisection can be easily modi�ed to a PTAS for the2



problem of min-bisection on planar graphs in the very special case where the min-bisectionis relatively large, i.e., cuts 
(n log log n= log n) edges.Unit disk graphs are another important class of graphs de�ned by the geometric conditionson a plane. An undirected graph is a unit disk graph if its vertices can be put in one toone correspondence with disks of equal radius in the plane in such a way that two verticesare joined by an edge if and only if the corresponding disks intersect. Tangent disks areconsidered to intersect.Our third main result is the �rst polynomial time approximation scheme for the max-bisection problem on unit disk graphs. The scheme can be easily generalized to includeother geometric intersection graphs. It is obtained by combining (again via tree-typed dy-namic programming) the idea of Hunt et al. of dividing the input graph de�ned by planeconditions into families of subgraphs [15] with the aforementioned known methods of �ndingmaximum partitions of dense graphs [2].The structure of our paper is as follows. The next section complements the introduction withbasic de�nitions and facts. In Section 3, the algorithms for optimal partitions of boundedtreewidth graphs are given. Section 4 presents the PTAS for planar max-bisections. InSection 5, we make several observations on the approximability of planar min-bisection.Finally, Section 6 describes the PTAS for max-bisection on unit disk graphs. In conclusionwe notice that same technique can be applied also for other geometric intersection graphs.2 PreliminariesWe start with formulating the underlying optimal graph partition problems.De�nition 2.1 A partition of a set of vertices of an undirected graph G into two sets X; Yis called an (jXj; jY j)-partition of G: The edges of G with one endpoint in X and the otherin Y are said to be cut by the partition. The size of an (l; k)-partition is the number of edgeswhich are cut by it. An (l; k)-partition of G is said to be a maximum (l; k)-partition of G ifit has the largest size among all (l; k)-partitions of G: An (l; k)-partition of G is a bisection ifl = k: A bisection of G is a max bisection or a min bisection of G if it respectively maximizesor minimizes the number of cut edges. An (l; k)-partition of G is a max cut of G if it hasthe largest size among all (l0; k0)-partitions of G: The max-cut problem is to �nd a max cutof a graph. Analogously, the max-bisection problem is to �nd a max bisection of a graph.The min-cut problem and the min-bisection problem are de�ned analogously.The notion of treewidth of a graph was originally introduced by Robertson and Seymour[21]. It has turned out to be equivalent to several other interesting graph theoretic notions,e.g., the notion of partial k-trees [1, 5]. 3



De�nition 2.2 A tree-decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T =(I; F )), where fXi j i 2 Ig is a collection of subsets of V , and T = (I; F ) is a tree, such thatthe following conditions hold:1. Si2I Xi = V .2. For all edges (v;w) 2 E, there exists a node i 2 I, with v;w 2 Xi.3. For every vertex v 2 V , the subgraph of T , induced by the nodes fi 2 I j v 2 Xig isconnected.The treewidth of a tree-decomposition (fXi j i 2 Ig; T = (I; F )) is maxi2I jXij � 1. Thetreewidth of a graph is the minimum treewidth over all possible tree-decompositions of thegraph. A graph which has a tree-decomposition of treewidth O(1) is called a bounded treewidthgraph.Fact 1[6]: For a bounded treewidth graph, a tree decomposition of minimum treewidth canbe found in linear time.To state our approximation results on max-bisection we need the following de�nition.De�nition 2.3 A real number � is said to be an approximation ratio for a maximizationproblem, or equivalently the problem is said to be approximable within a ratio �, if there isa polynomial time algorithm for the problem which always produces a solution of size at least� times the optimum. If a problem is approximable for arbitrary � < 1 then it is said toadmit a polynomial time approximation scheme (a PTAS for short).An approximation ratio and a PTAS for a minimization problem are de�ned analogously.2.1 Optimal partitions for graphs of bounded treewidthLet G be a graph admitting a tree-decomposition T = (I; F ) of treewidth at most k, forsome constant k. By [9], one can easily modify T; without increasing its treewidth, suchthat one can see T as a rooted tree, with root r 2 I, full�ling the following conditions:1. T is a binary tree.2. If a node i 2 I has two children j1 and j2, then Xi = Xj1 = Xj2 .3. If a node i 2 I has one child j, then either Xj � Xi and jXi �Xj j = 1, or Xi � Xjand jXj �Xij = 1. 4



We will assume in the remainder that such a modi�ed tree-decomposition T of G is given.For each node i 2 I, let Yi denote the set of all vertices in a set Xj with j = i or j is adescendant of i in the rooted tree T . Our algorithm is based upon computing for each nodei 2 I a table maxci. For each subset S of Xi, there is an entry in the table maxci, ful�llingmaxci(S) = maxS0�Yi ; S0\Xi=S jf(v;w) 2 E j v 2 S0; w 2 Yi � S 0gj.In other words, for S � Xi, maxci(S) denotes the maximum number of cut edges for apartition of Yi, such that all vertices in S are in one set in the partition, and all vertices inXi n S are in the other set in the partition.Our algorithm computes for each i 2 I, an array maxpi with O(2k jYij) entries. For eachl 2 f0; 1; :::; jYijg and each subset S of Xi, the entry maxpi(l; S) is set tomaxS0�Yi;jS0j=l;S0\Xi=S jf(v;w) 2 Ejv 2 S0 & w 2 Yi n S0gj: In other words, maxpi(l; S) is setto the maximum number of cut edges in an (l; jYij� l)-partition of Yi where S and Xi nS arein the di�erent sets of the partition and the set including S is of cardinality l: For convention,if such a partition is impossible, maxpi(l; S) will be set to �1:The entries of the array are computed following the levels of the tree-decomposition T in abottom-up manner. The following lemma shows how the array can be determined e�ciently.Lemma 2.1� Let i be a leaf in T: Then for all l 2 f0; 1; :::; jXijg and S � Xi where jSj = l;maxpi(l; S) = jf(v;w) 2 Ejv 2 S;w 2 Xi n Sgj: The remaining entries of maxpi areset to �1:� Let i be a node with one child j in T: If Xi � Xj then for all l 2 f0; 1; :::; jYijg andS � Xi; maxpi(l; S) = maxS0�Xj;S0\Xi=S maxpj(l; S0):� Let i be a node with one child j in T: If Xj [ fvg = Xi where v =2 Xj then for alll 2 f0; 1; :::; jYijg and S � Xi; if v 2 S then maxpi(l; S) = maxpj(l � 1; S n fvg) +jf(v; s)js 2 Xi n Sgj else maxpi(l; S) = maxpj(l; S) + jf(v; s)js 2 Sgj:� Let i be a node with two children j1; j2 in T; with Xi = Xj1 = Xj2 : For all l 2f0; 1; :::; jYijg and S � Xi; maxpi(l; S) = maxl1+l2�jSj=l&l1�jSj&l2�jSjmaxpj1(l1; S) +maxpj2(l2; S)� jf(v;w) 2 Ejv 2 S;w 2 Xi n Sgj:It follows that computing an array maxpi on the basis of the arrays computed for thepreceding level of T can be done in time O(2kjYij2): Consequently, one can compute thearray maxpr for the root r of T in cubic time.5



Theorem 2.1 All maximum (l; n � l)-partitions of a graph on n nodes given with a tree-decomposition of treewidth k can be computed in time O(2kn3):By substituting min for max, we can analogously compute all minimum (l; n� l)-partitionsof a graph with constant treewidth.Theorem 2.2 All minimum (l; n � l)-partitions of a graph on n nodes given with a tree-decomposition of treewidth k can be computed in time O(2kn3):By Fact 1 we obtain the following corollary.Corollary 2.1 All maximum and minimum (l; n�l)-partitions of a bounded treewidth graphon n vertices can be computed in time O(n3):Since a tree-decomposition of a planar graph on n vertices with treewidth O(pn) can befound in polynomial time by the planar separator theorem [7], we obtain also the followingcorollary.Corollary 2.2 All maximum and minimum (l; n � l)-partitions of a planar graph on nvertices can be computed in time 2O(pn):3 A PTAS for max-bisection of an arbitrary planargraphThe authors of [18] observed that the requirements of the equal size of the vertex subsets in atwo partition yielding a max bisection makes the max-bisection problem hardly expressible asa maximum planar satis�ability formula. For this reason we cannot directly apply Khanna-Motwani's [19] syntactic framework yielding PTASs for several basic graph problems onplanar graphs (e.g., max cut). Instead, we combine the original Baker's method [4] with ouralgorithm for optimal maximum partitions on graphs of bounded treewidth via tree-typedynamic programming in order to derive the �rst PTAS for max-bisection of an arbitraryplanar graph.Algorithm 1input: a planar graph G = (V;E) on n vertices and a positive integer k;output: (1 � 1k+1 )-approximations of all maximum (l; n� l)-partitions of G1. Construct a plane embedding of G; 6



2. Set the level of a vertex in the embedding as follows: the vertices on the outer boundaryhave level 1, the vertices on the outer boundary of the subgraph obtained by deletingthe vertices of level i� 1 have level i; for convention extend the levels by k empty onesnumbered �k + 1; �k + 2; ...; 0;3. For each level j in the embedding construct the subgraph Hj of G induced by thevertices on levels j; j + 1; :::; j + k;4. For each level j in the embedding set n0j to the number of vertices in Hj and computeall maximum (l; n0j � l)-partitions of Hj ;5. For each i; 0 � i � k; set Gi to the union of the subgraphs Hj where j mod k + 1 = i;6. For each i; 0 � i � k; set ni to the number of vertices in Gi and compute all maximum(l; ni� l)-partitions of Gi by dynamic programming in a tree fashion, i.e., �rst computeall maximum partitions for pairs of \consecutive" Hj where j mod k + 1 = i; then forquadruples of such Hj etc.;7. For each l; 1 � l < n; output the largest among the maximum (l; n� l)-partitions ofGi, 0 � i � k:Lemma 3.1 For each l; 1 � l < n; Algorithm 1 outputs an (l; n� l)-partition of G withink=(k + 1) of the maximum.Proof: Let P be a maximum (l; n� l)-partition of G: For each edge e in P; there is at mostone i; 0 � i � k; such that e is not an edge of Gi: Consequently, there is i0; 0 � i0 � k;such that Gi0 does not include at most jP j=(k + 1) edges of P: It follows that a maximum(l; n � l)-partition of such a Gi0 cuts at least kjP j=(k + 1) edges. Algorithm 1 outputs an(l; n� l)-partition of G cutting at least so many edges as a maximum (l; n� l)-partition ofGi0 : 2Lemma 3.2 Algorithm 1 runs in O(k23k�1n3) time.Proof: The time complexity of the algorithm is dominated by that of step 4 and 6.The subgraphs Hj of G are so called k-outerplanar graphs and have bounded treewidth3k � 1 [7]. Hence, for a given i; 0 � i � k; all maximum (l; n0j � l)-partitions of Hj wherej mod k+1 = i can be computed in timeO(23k�1n3) by Lemma 2.1, the pairwise disjointnessof the subgraphs and j � n: It follows that the whole step 4 can be implemented in timeO(k23k�1n3):In step 6, a maximum (l; ni � l)-partition of the union of 2q+1 \consecutive" Hj 's satisfyingj mod k + 1 = i can be determined on the basis of appropriate maximum partitions of its7



two halves, each being the union of 2q of the Hj 's, in time O(n): Hence, since l � ni and thenumber of nodes in the dynamic programming tree is O(n), the whole step 6 takes O(kn3)time. 2Theorem 3.1 Algorithm 1 yields a PTAS for all maximum (l; n� l)-partitions of a planargraph.Corollary 3.1 The problem of max-bisection on planar graphs admits a PTAS.4 Observations on min-bisection for planar graphsWe can easily obtain an analogous PTAS for min-bisection of planar graphs in the veryspecial case when the size of min-bisection is 
(n): Simply, at least one of the subgraphsGi of G misses at most jEj=(k + 1) edges of G: Therefore, the number of edges cut by amin-bisection of such a Gi can increase at most by jEj=(k+1) in G: By picking k su�cientlylarge we can guarantee an arbitrarily close approximation of min-bisection in G:In fact, we can obtain even a slightly stronger result on min-bisection for planar graphsby observing that our method runs in polynomial time even for non-constant k (up toO(log n)) provided that a tree-decomposition of graphs with treewidth equal to such a k canbe determined in polynomial time. At present, the best tree-decomposition algorithms havethe leading term kk [8] so we can set k to O(log n= log log n) keeping the polynomial timeperformance of our method. In this way, we obtain the following theorem.Theorem 4.1 The min-bisection problem on planar graphs in which the size of min-bisectionis 
(n log log n= log n) admits a PTAS.Observe that the presence of large degree vertices in a planar graph can cause the largesize of min-bisection, e.g., in a star graph. For bounded-degree planar graphs the size ofmin-bisection is O(pn) by the following argument.For a planar graph of maximum degree d construct a separator tree by applying the planarseparator theorem [20] recursively. Next, �nd a path in the tree from the root down to themedian leaf. By deleting the edges incident to the vertex separators along the path andadditionally O(1) edges, we can easily halve the set of vertices of the graph such that noneof the remaining edges connects a pair of vertices from the opposite halves. The number ofdeleted edges is clearly O(dpn): In fact, we do not have to construct the whole separatortree, but just the path, and this can be easily done in time O(n log n) [20].Theorem 4.2 For a planar graph on n vertices and maximum degree d; a bisection of sizeO(dpn) can be found in time O(n log n): 8



Clearly, if a graph has an O(1)-size bisection, it can be found by exhaustive search in poly-nomial time. We conclude that at present we have e�cient methods for at least O(1)-approximation of min-bisection in planar graphs if it is size is either 
(n log log n= log n) orO(1), or O(pn) and the maximumdegree is constantly bounded. These observations suggestthat a substantial improvement of the logarithmic approximation factor for min-bisection onplanar graphs given in [11] might be possible.5 PTAS for max-bisection of a unit disk graphIn this section we design a PTAS for max-bisection of unit disk graphs, another importantclass of graphs de�ned by the geometric conditions on a plane.Recall that an undirected graph G is a unit disk graph if its vertices can be put in one toone correspondence with disks of equal radius in the plane in such a way that two verticesare joined by an edge if and only if the corresponding disks intersect. Tangent disks areconsidered to intersect. We may assume w.l.o.g that the radius of each disk is one. Since therecognition problem for unit disk graph is NP-hard, we shall also assume that a geometricrepresentation of the graph is given as input.Our technique works in a similar way as in the case for planar graphs. The input graph Gis divided into families of subgraphs Hi;j using the ideas of Hunt et al. given in [15]. Next,approximative solution to all (l; ni;j� l)-partitions of every subgraph Hi;j, where ni;j denotesthe number of vertices in Hi;j, are computed by the methods given in [2]. Via a tree-typedynamic programming these solutions are used to obtain an overall solution for G.In order to divide the graph G; we impose a grid of horizontal and vertical lines on the plane,that are 2 apart of each other. The v-th vertical line, �1 < v <1, is at x = 2v. The h-thhorizontal line, �1 < v < 1, is at y = 2h. We say, that the v-th vertical line has index vand that the h horizontal line has index h. Further we denote the vertical strip between thev-th and the (v+1)-th vertical line as the strip with index v and analogue for the horizontalstrip between the h-th and the (h+ 1)-th horizontal line.Each vertical strip is left closed and right open, each horizontal strip is closed at the top andopen at the bottom. A disk is said to lie in a given strip if its center lies in that strip. Notethat every disk lies in exactly one horizontal and vertical strip.For a �xed k consider the subgraph Hi;j of G, �1 < i; j < 1, induced by the disksthat lie in the intersection of the horizontal strips i; i + 1; : : : ; i + k and the vertical stripsj; j + 1; : : : ; j + k. Let ni;j be the number of vertices of Hi;j . By a packing argument it canbe shown that for �xed k > 0, the size of a maximum independent set of such a subgraph isat most 2(k + 3)2�.Lemma 5.1 There is a positive constant c such that if ni;j > c log n then the subgraph Hi;j9



of G is dense.Proof: Partition the vertex-set of Hi;j successively into maximal independent sets by deter-mining a maximal independent set I1, remove its vertices and again determine a maximalindependent set I2 and so on. As described above the number of independent sets is atleast ni;j=2(k + 3)2�. Since each Ij is maximal there is at least one edge from a vertex ofIj to every Ij0, j < j0. If we understand the set of independent sets as a complete graph onni;j=2(k + 3)2� vertices it follows that Hi;j has 
(n2i;j) edges and hence Hi;j is dense. 2Corollary 5.1 If ni;j > c log n then the size of a maximum bisection of Hi;j is 
(n2i;j).Proof: Partition the vertex-set of Hi;j as before and use the maximum independent sets tobuild up the sets of the bisection. Since all independent sets are maximal there are 
(n2i;j)edges between the sets of bisection. 2Consequently the techniques given in [2] are applicable to the subgraph Hi;j.Algorithm 2input: a unit disk graph G = (V;E) speci�ed by a set V of disks in the plane and thecoordinates of their centers and a positive integer k;output: (1 � 1k+12)(1 � �)-approximations of maximum bisection of G1. Divide the plane by imposing a grid of width two;2. Construct the subgraphs Hi;j of G as described above;3. For each i and each j set n0i;j to the number of vertices inHi;j and compute all (l; n0i;j�l)-partitions of Hi;j either approximatively or optimal if n0i;j = O(log n);4. For each r and s, 0 � r; s � k, set Gr;s to the union of the subgraphs Hi;j where i(mod k + 1) = r and j (mod k + 1) = s;5. For each r and s, 0 � r; s � k, set nr;s to the number of vertices in Gr;s and computea bisection of Gr;s within (1 � �) of its maximum by dynamic programming in a treefashion. Therefore enumerate the subgraphs in increasing order of the sum i + j andcompute all partitions of pairs of \consecutive" Hi;j respectively to this ordering onthe basis of the computed partitions, then for quadruples of such Hi;j etc.;6. Output the largest bisection of Gr;s, 0 � r; s � k.10



If ni;j � c log n we can solve the maximumbisection problem for the subgraph Hi;j optimal byenumerating all possibilities. Otherwise the problem is solvable approximatively by solvingthe following polynomial integer program:maximize Pfi;jg2E(Hi;j) xi(1� xj) + xj(1 � xi) (1)subject to Pxi = l; (2)xi 2 f0; 1g i = (1; : : : ; ni;j) (3)This program can be solved by the use of Theorem 1.10 given in [2] within an error of at most�n2i;j, which also satis�es the linear constraint (2) of the program within an additive error ofO(�qni;j log ni;j). In order to get a subset of size l we move at most �qni;j log ni;j in or out.This a�ects the number of edges included in the partition by at most �qni;j log ni;j � �n2i;j.Hence we can compute a maximum (l; ni;j � l)-partition of a subgraph Hi;j that has morethan c log n vertices within an additive error of 2�n2i;j of the maximum.Lemma 5.2 Algorithm 2 outputs an bisection of G within (1� 1k+1)2(1��) of the maximum.Proof: Let P be a maximum bisection of G. For each edge e 2 P and a �xed r, 0 � r � k,there is at most one s, 0 � s � k, such that e crosses a vertical line whose index modulok + 1 is s. Analoguosly, there is for each e 2 P and a �xed s, 0 � s � k, at most one r,0 � r � k, such that e crosses a horizontal line whose index modulo k+1 is r. Consequentlythere is a pair (r; s), 0 � r; s � k, such that a maximum (l; n � l)-partition of Gr;s cuts atleast (1 � 1k+1 )2jP j edges.By Corollary 5.1, the size of maximum bisection of the subgraph G0r;s of Gr;s that consists ofall Hi;j with more than c log n vertices is Pni;j>c logn 
(n2i;j). Consequently, the error causedby the solutions of the polynomial integer programs for the subgraphs Hi;j of G0r;s are atmost a � = 2� fraction of an optimum solution of maximum bisection for G0r;s. Since thepartitions for each Hi;j with at most c log n vertices are computed optimally, we obtain abisection of Gr;s within (1� �) of the maximum.Thus algorithm 2 outputs a bisection of G within (1� 1k+1)2(1� �) of the maximum. 2Theorem 5.1 The problem of max-bisection on unit disk graphs admits a PTAS.The same approach can be used to obtain a PTAS for the maximum bisection problem ingeometric intersection graphs both of other regular polygons and also of regular geometricobjects in higher dimensions.6 AcknowledgmentsWe thank Hans Bodlaender, Uri Feige, Mark Jerrum, Miroslaw Kowaluk, Mike Langberg,and Monique Laurent for many stimulating remarks and discussions.11



References[1] S. Arnborg, E�cient algorithms for combinatorial problems on graphs with bounded decom-posability | A survey, BIT, 25 (1985), pp. 2 { 23.[2] S. Arora, D. Karger and M. Karpinski. Polynomial Time Approximation Schemes for DenseInstances of NP-hard Problems, Proceedings 27th ACM STOC, pp. 284-293, 1995.[3] A.A. Ageev and M.I. Sviridenko. Approximation algorithms for Maximum Coverage and MaxCut with cardinality constraints. Proceedings of IPCO99, Lecture Notes in Computer Science1610, pp. 17-30, 1999.[4] B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Proceed-ings of the 24th IEEE FOCS, 1983, pp. 265-273.[5] H.L. Bodlaender, A tourist guide through treewidth. Acta Cybernetica, 11 (1993), pp. 1 { 23.[6] H.L. Bodlaender, A linear time algorithm for �nding tree-decompositions of small treewidth.SIAM J. Computing, 25 (1996), pp. 1305 { 1317.[7] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Available athttp://www.cs.ruu.nl/ hansb/index.html .[8] H.L. Bodlaender, Personal communication, August, 2000.[9] H.L. Bodlaender and K. Jansen. On the complexity of the Maximum Cut problem. NordicJournal of Computing, vol. 7, pp. 14-31, 2000.[10] U. Feige, M. Karpinski and M. Langberg. A Note on Approximating MAX-BISECTION onRegular Graphs. ECCC (http://www.eccc.uni-trier.de/eccc/), TR00-043 (2000).[11] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection.To appear in Proceedings FOCS'2000.[12] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and MAXBISECTION. Algorithmica 18, pp. 67-81, 1997.[13] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cutand satis�ability problems using semide�nite programming. Journal of ACM, 42, pp. 1115-1145, 1995.[14] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput.Vol. 4, No. 3, pp. 221-225, 1975.[15] H.B. Hunt, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.S. Rosenkrantz, R.E. Stearns.NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Proc.2nd Annual European Symposium on Algorithms, (ESA), LNCS 855, pp. 468-477, SpringerVerlag, June, 1994[16] E. Halperin and U. Zwick, Improved approximation algorithms for maximum graph bisectionproblems, Manuscript, 2000. 12



[17] M. Jerrum, Personal communication, August, 2000.[18] M. Karpinski, M. Kowaluk and A. Lingas. Approximation Algorithms for Max-Bisection onLow Degree Regular Graphs and Planar Graphs. ECCC (http://www.eccc.uni-trier.de/eccc/),TR00-051 (2000).[19] S. Khanna and R. Motwani. Towards a Syntactic Characterization of PTAS. Proceedings ofthe 28th ACM STOC, 1996, pp. 329-337.[20] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math.Vol. 36 (1979), pp. 177-189.[21] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journalof Algorithms, 7 (1986), pp. 309-322.[22] Y. Ye, A O.699 - approximation algorithm for Max-Bisection, Submitted to Math Program-ming, available at URL http://dollar.biz.uiowa.edu/col/ye, 1999

13


