Polynomial Time Approximation Schemes for

MAX-BISECTION on Planar and Geometric Graphs

Klaus Jansen * Marek Karpinski T Andrzej Lingas ¢ Eike Seidel }

Abstract

We present a unified framework for constructing polynomial time approximation
schemes (PTASs) for the problems of Max-Bisection on planar and geometric intersec-
tion graphs.

*Institut fur Informatik und Praktische Mathematik, Christian-Albrechts-Universitat zu Kiel, 24098 Kiel.
Email: kj@informatik.uni-kiel.de.

TDepartment of Computer Science, University of Bonn, 53117 Bonn. Email: marek@cs.uni-bonn.de.

{Department of Computer Science, Lund University, 22100 Lund. Email: Andrzej.Lingas@cs.lth.se.

§Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Universitit zu Kiel, 24098 Kiel.
Email: ese@informatik.uni-kiel.de.

1 Introduction

The max-bisection and min-bisection problems, i.e., the problems of constructing a halving
of the vertex set of a graph that respectively maximizes or minimizes the number of edges
across the partition, belong to the basic combinatorial optimization problems.

The best known approximation algorithm for max-bisection yields a solution whose size is
at least 0.701 times the optimum [16] whereas the best known approximation algorithm for
min-bisection achieves “solely” a log-square approximation factor [11]. The former factor
for max-bisection is considerably improved for regular graphs to 0.795 in [10] whereas the
latter factor for min-bisection is improved for graphs excluding any fixed minor (e.g., planar
graphs) to a logarithmic one in [11]. For dense graphs, Arora, Karger and Karpinski give
polynomial time approximation schemes for max- and min-bisection in [2].

In this paper, we study the max-bisection and min-bisection problems on bounded treewidth
graphs and on planar graphs. Both graph families are known to admit exact polynomial time
algorithms for max-cut, i.e., for finding a bi-partition that maximizes the number of edges
with endpoints in both sets in the partition [9, 14].

Our first main result are exact polynomial time algorithms for finding a partition of a
bounded treewidth graph into two sets of a priori given cardinalities, respectively maximizing
or minimizing the number of edges with endpoints in both sets. Thus, in particular, we ob-
tain polynomial time algorithms for max-bisection and min-bisection on bounded treewidth
graphs.

The complexity and approximability status of max-bisection on planar graphs have been
long-standing open problems. Contrary to the status of planar max-cut, planar max-bisection
has been proven recently to be NP-hard in exact setting by Jerrum [17]. Karpinski et al.
observed in [18] that the max-bisection problem for planar does not fall directly into the
Khanna-Motwani’s syntactic framework for planar optimization problems [19]. On the other
hand, they provided a polynomial time approximation scheme (PTAS) for max-bisection in
planar graphs of sublinear maximum degree. (In fact, their method implies that the size
of max-bisection is very close to that of max-cut in planar graphs of sublinear maximum
degree.)

Our second main result is the first polynomial time approximation scheme for the max-
bisection problem for arbitrary planar graphs. It is obtained by combining (via tree-typed
dynamic programming) the original Baker’s method of dividing the input planar graph
into families of k-outerplanar graphs [4] with our method of finding maximum partitions
of bounded treewidth graphs.

Note that the NP-hardness of exact planar max-bisection makes our PTAS result best pos-
sible under usual assumptions.

Interestingly, our PTAS for planar max-bisection can be easily modified to a PTAS for the

problem of min-bisection on planar graphs in the very special case where the min-bisection
is relatively large, i.e., cuts Q(nloglogn/logn) edges.

Unit disk graphs are another important class of graphs defined by the geometric conditions
on a plane. An undirected graph is a unit disk graph if its vertices can be put in one to
one correspondence with disks of equal radius in the plane in such a way that two vertices
are joined by an edge if and only if the corresponding disks intersect. Tangent disks are
considered to intersect.

Our third main result is the first polynomial time approximation scheme for the max-
bisection problem on unit disk graphs. The scheme can be easily generalized to include
other geometric intersection graphs. It is obtained by combining (again via tree-typed dy-
namic programming) the idea of Hunt et al. of dividing the input graph defined by plane
conditions into families of subgraphs [15] with the aforementioned known methods of finding
maximum partitions of dense graphs [2].

The structure of our paper is as follows. The next section complements the introduction with
basic definitions and facts. In Section 3, the algorithms for optimal partitions of bounded
treewidth graphs are given. Section 4 presents the PTAS for planar max-bisections. In
Section 5, we make several observations on the approximability of planar min-bisection.
Finally, Section 6 describes the PTAS for max-bisection on unit disk graphs. In conclusion
we notice that same technique can be applied also for other geometric intersection graphs.

2 Preliminaries
We start with formulating the underlying optimal graph partition problems.

Definition 2.1 A partition of a set of vertices of an undirected graph G into two sets X, Y
is called an (| X|,|Y]|)-partition of G. The edges of G with one endpoint in X and the other
in'Y are said to be cut by the partition. The size of an (I, k)-partition is the number of edges
which are cut by it. An (I, k)-partition of G is said to be a maximum ([, k)-partition of G if
it has the largest size among all (1, k)-partitions of G. An (I, k)-partition of G is a bisection if
[= k. A bisection of GG is a max bisection or a min bisection of GG if it respectively maximizes
or minimizes the number of cut edges. An (l,k)-partition of GG is a max cut of G if it has
the largest size among all (I, K')-partitions of Gi. The max-cut problem is to find a max cut
of a graph. Analogously, the max-bisection problem is to find a max bisection of a graph.
The min-cut problem and the min-bisection problem are defined analogously.

The notion of treewidth of a graph was originally introduced by Robertson and Seymour
[21]. It has turned out to be equivalent to several other interesting graph theoretic notions,
e.g., the notion of partial k-trees [1, 5].

Definition 2.2 A tree-decomposition of a graph G = (V, E) is a pair ({X; | 1 € [},T =
(I, F)), where {X; | 1 € I} is a collection of subsets of V., and T = (I, F) is a tree, such that
the following conditions hold:

]. UiEIXi - V

2. For all edges (v,w) € E, there exists a node i € I, with v,w € X.

3. For every vertex v € V, the subgraph of T', induced by the nodes {i € [| v € X;} is
connected.

The treewidth of a tree-decomposition ({X; | 1 € I}, T = (I, F)) is max;er | X;| — 1. The
treewidth of a graph is the minimum treewidth over all possible tree-decompositions of the
graph. A graph which has a tree-decomposition of treewidth O(1) is called a bounded treewidth
graph.

Fact 1[6]: For a bounded trecwidth graph, a tree decomposition of minimum treewidth can
be found in linear time.

To state our approximation results on max-bisection we need the following definition.

Definition 2.3 A real number o is said to be an approximation ratio for a mazximization
problem, or equivalently the problem is said to be approximable within a ratio «, if there is
a polynomial time algorithm for the problem which always produces a solution of size at least
a times the optimum. If a problem is approximable for arbitrary o < 1 then it is said to
admit a polynomial time approximation scheme (a PTAS for short).

An approximation ratio and a PTAS for a minimization problem are defined analogously.

2.1 Optimal partitions for graphs of bounded treewidth

Let GG be a graph admitting a tree-decomposition T' = (I, F) of treewidth at most k, for
some constant k. By [9], one can easily modify T, without increasing its treewidth, such
that one can see T' as a rooted tree, with root r € I, fullfiling the following conditions:

1. T is a binary tree.

2. If anode 1 € [has two children j; and j;, then X; = X; = X,.

3. If a node ¢ € I has one child j, then either X; C X, and |X; — X;| =1, or X; C X
and |XJ — XZ| = 1.

We will assume in the remainder that such a modified tree-decomposition T' of G is given.

For each node 7 € I, let Y; denote the set of all vertices in a set X; with 7 =7 or jis a
descendant of ¢ in the rooted tree T'. Our algorithm is based upon computing for each node
1 € I a table maxc;. For each subset S of X;, there is an entry in the table maxc;, fulfilling

. —_— / [R— /
mazxc;(S) sy ML Hv,w)e EJves, weY;— S5}

In other words, for S C X;, maxe;(S) denotes the maximum number of cut edges for a
partition of Y;, such that all vertices in .S are in one set in the partition, and all vertices in
X, \ S are in the other set in the partition.

Our algorithm computes for each i € I, an array mazp; with O(2*|Y;|) entries. For each
[€{0,1,...,|Y:|} and each subset S of X;, the entry maxp;(l,5) is set to

maxg/cy; |s'=t,5'nx;=s |1 (v,w) € Elv € 8" & w € Y;\ 5'}|. In other words, maxp;(l,S) is set
to the maximum number of cut edges in an (/, |Y;| —{)-partition of ¥; where S and X;\ S are
in the different sets of the partition and the set including S is of cardinality [. For convention,
if such a partition is impossible, maxp;({,S) will be set to —oc.

The entries of the array are computed following the levels of the tree-decomposition 7" in a
bottom-up manner. The following lemma shows how the array can be determined efficiently.

Lemma 2.1

o Let i be a leaf in T. Then for all | € {0,1,....|X:|} and S C X, where |S| = [,
maxp;(l,5) = {(v,w) € Elv € S,w € X;\ S}|. The remaining entries of maxp; are
set to —o0.

o Let i be a node with one child j in T. If X; C X, then for all | € {0,1,...,|Y|} and
S C X;, maxpi(l, S) = maxgcx, sinx,=s mazxp;(l,5).

o Let i be a node with one child j in T. If X; U{v} = X, where v ¢ X; then for all
[€ {0,1,..,]Y]} and S C X;, if v € S then maxp;({,5) = maxp;({ — 1,5\ {v}) +
{(v.5)]s € X\ 8} else mazpi(l, S) = mazp;(1,$) + |{(v, s € 53]

o Let 1 be a node with two children j1, 72 in T, with X; = X; = X;,. For all | €
{0,1,,|K|} and S Q Xi7 ma:z;pi(l,S) == maxll+12—|5|:l&llZ|S|&122|S| ma:z;pjl(ll,S) +
maxpj,(la, S) — [{(v,w) € Elv € S;w e X; \ S}

It follows that computing an array mazp; on the basis of the arrays computed for the
preceding level of T' can be done in time O(2%|Y;|?). Consequently, one can compute the
array maxp, for the root r of T' in cubic time.

Theorem 2.1 All maximum (I,n — [)-partitions of a graph on n nodes given with a tree-
decomposition of treewidth k can be computed in time O(2%n?).

By substituting min for max, we can analogously compute all minimum (I, n — [)-partitions
of a graph with constant treewidth.

Theorem 2.2 All minimum (I,n — l)-partitions of a graph on n nodes given with a tree-
decomposition of treewidth k can be computed in time O(2%n?).

By Fact 1 we obtain the following corollary.

Corollary 2.1 All maximum and minimum (I, n—1)-partitions of a bounded treewidth graph
on n vertices can be computed in time O(n?).

Since a tree-decomposition of a planar graph on n vertices with treewidth O(y/n) can be
found in polynomial time by the planar separator theorem [7], we obtain also the following
corollary.

Corollary 2.2 All maximum and minimum (I,n — [)-partitions of a planar graph on n
vertices can be computed in time 200/

3 A PTAS for max-bisection of an arbitrary planar
graph

The authors of [18] observed that the requirements of the equal size of the vertex subsets in a
two partition yielding a max bisection makes the max-bisection problem hardly expressible as
a maximum planar satisfiability formula. For this reason we cannot directly apply Khanna-
Motwani’s [19] syntactic framework yielding PTASs for several basic graph problems on
planar graphs (e.g., max cut). Instead, we combine the original Baker’s method [4] with our
algorithm for optimal maximum partitions on graphs of bounded treewidth via tree-type
dynamic programming in order to derive the first PTAS for max-bisection of an arbitrary
planar graph.

Algorithm 1

input: a planar graph GG = (V, E') on n vertices and a positive integer k;

output: (1 — ﬁ)—approximations of all maximum (I, n — [)-partitions of G

1. Construct a plane embedding of G

2. Set the level of a vertex in the embedding as follows: the vertices on the outer boundary
have level 1, the vertices on the outer boundary of the subgraph obtained by deleting
the vertices of level 1 — 1 have level ¢, for convention extend the levels by k& empty ones

numbered —k 4+ 1, —k + 2, ..., 0;

3. For each level j in the embedding construct the subgraph H; of GG induced by the
vertices on levels 7,7 + 1,...,7 + k;

4. For each level j in the embedding set n’; to the number of vertices in H; and compute
all maximum (I, n’, — [)-partitions of H};

5. For each ¢, 0 <1 <k, set (; to the union of the subgraphs H; where 7 mod k+1 = 1;

6. For each 1, 0 <1 < k, set n; to the number of vertices in (¢; and compute all maximum
(I,n; —l)-partitions of ¢; by dynamic programming in a tree fashion, i.e., first compute
all maximum partitions for pairs of “consecutive” H; where j mod £+ 1 =1, then for
quadruples of such H; etc.;

7. For each [, 1 <[< n, output the largest among the maximum (/,n — [)-partitions of

G 0<i<k.

Lemma 3.1 For each l, 1 <1 < n, Algorithm 1 outputs an (I,n — l)-partition of G within
k/(k+ 1) of the mazimum.

Proof: Let P be a maximum ([, n — [)-partition of GG. For each edge e in P, there is at most
one 1, 0 < ¢ < k, such that ¢ is not an edge of G;. Consequently, there is ¢/, 0 < ¢/ < k,
such that GGy does not include at most |P|/(k + 1) edges of P. It follows that a maximum
(I,n —)-partition of such a G cuts at least k|P|/(k + 1) edges. Algorithm 1 outputs an
(I,n — [)-partition of G cutting at least so many edges as a maximum (I, n — [)-partition of

GZ'/. O

Lemma 3.2 Algorithm I runs in O(k2%*~1n3) time.

Proof: The time complexity of the algorithm is dominated by that of step 4 and 6.

The subgraphs H; of GG are so called k-outerplanar graphs and have bounded treewidth
3k — 1 [7]. Hence, for a given i, 0 <4 < k, all maximum (/,n; — [)-partitions of H; where
7 mod k+1 = 7 can be computed in time O(2**~11%) by Lemma 2.1, the pairwise disjointness
of the subgraphs and j < n. It follows that the whole step 4 can be implemented in time
O(k23%=1n3).

In step 6, a maximum (I, n; — [)-partition of the union of 29! “consecutive” H;’s satisfying
jmod k + 1 =1 can be determined on the basis of appropriate maximum partitions of its

7

two halves, each being the union of 27 of the H;’s, in time O(n). Hence, since [< n; and the
number of nodes in the dynamic programming tree is O(n), the whole step 6 takes O(kn?)
time. O

Theorem 3.1 Algorithm 1 yields a PTAS for all maximum (I,n — [)-partitions of a planar
graph.

Corollary 3.1 The problem of maz-bisection on planar graphs admits a PTAS.

4 Observations on min-bisection for planar graphs

We can easily obtain an analogous PTAS for min-bisection of planar graphs in the very
special case when the size of min-bisection is Q(n). Simply, at least one of the subgraphs
G of GG misses at most |F|/(k + 1) edges of (. Therefore, the number of edges cut by a
min-bisection of such a &; can increase at most by |E|/(k+1) in G. By picking k sufficiently
large we can guarantee an arbitrarily close approximation of min-bisection in .

In fact, we can obtain even a slightly stronger result on min-bisection for planar graphs
by observing that our method runs in polynomial time even for non-constant & (up to
O(log n)) provided that a tree-decomposition of graphs with treewidth equal to such a k can
be determined in polynomial time. At present, the best tree-decomposition algorithms have
the leading term k* [8] so we can set k to O(logn/loglogn) keeping the polynomial time
performance of our method. In this way, we obtain the following theorem.

Theorem 4.1 The min-bisection problem on planar graphs in which the size of min-bisection

is Q(nloglogn/logn) admits a PTAS.

Observe that the presence of large degree vertices in a planar graph can cause the large
size of min-bisection, e.g., in a star graph. For bounded-degree planar graphs the size of
min-bisection is O(y/n) by the following argument.

For a planar graph of maximum degree d construct a separator tree by applying the planar
separator theorem [20] recursively. Next, find a path in the tree from the root down to the
median leaf. By deleting the edges incident to the vertex separators along the path and
additionally O(1) edges, we can easily halve the set of vertices of the graph such that none
of the remaining edges connects a pair of vertices from the opposite halves. The number of
deleted edges is clearly O(d+/n). In fact, we do not have to construct the whole separator
tree, but just the path, and this can be easily done in time O(nlogn) [20].

Theorem 4.2 For a planar graph on n vertices and mazximum degree d, a bisection of size

O(dr\/n) can be found in time O(nlogn).

Clearly, if a graph has an O(1)-size bisection, it can be found by exhaustive search in poly-
nomial time. We conclude that at present we have efficient methods for at least O(1)-
approximation of min-bisection in planar graphs if it is size is either Q(nloglogn/logn) or
O(1), or O(y/n) and the maximum degree is constantly bounded. These observations suggest
that a substantial improvement of the logarithmic approximation factor for min-bisection on
planar graphs given in [11] might be possible.

5 PTAS for max-bisection of a unit disk graph

In this section we design a PTAS for max-bisection of unit disk graphs, another important
class of graphs defined by the geometric conditions on a plane.

Recall that an undirected graph G is a unit disk graph if its vertices can be put in one to
one correspondence with disks of equal radius in the plane in such a way that two vertices
are joined by an edge if and only if the corresponding disks intersect. Tangent disks are
considered to intersect. We may assume w.l.o.g that the radius of each disk is one. Since the
recognition problem for unit disk graph is NP-hard, we shall also assume that a geometric
representation of the graph is given as input.

Our technique works in a similar way as in the case for planar graphs. The input graph G
is divided into families of subgraphs H, ; using the ideas of Hunt et al. given in [15]. Next,
approximative solution to all (I, n, ; —[)-partitions of every subgraph H, ;, where n; ; denotes
the number of vertices in H, ;, are computed by the methods given in [2]. Via a tree-type
dynamic programming these solutions are used to obtain an overall solution for G.

In order to divide the graph G, we impose a grid of horizontal and vertical lines on the plane,
that are 2 apart of each other. The v-th vertical line, —oc < v < o0, 1s at * = 2v. The h-th
horizontal line, —co < v < oo, i1s at y = 2h. We say, that the v-th vertical line has index v
and that the i horizontal line has index h. Further we denote the vertical strip between the
v-th and the (v +1)-th vertical line as the strip with index v and analogue for the horizontal
strip between the h-th and the (h + 1)-th horizontal line.

Each vertical strip is left closed and right open, each horizontal strip is closed at the top and
open at the bottom. A disk is said to lie in a given strip if its center lies in that strip. Note
that every disk lies in exactly one horizontal and vertical strip.

For a fixed k consider the subgraph H;; of GG, —oco < 1,7 < oo, induced by the disks
that lie in the intersection of the horizontal strips 7,2 + 1,...,7 4+ k and the vertical strips
3,0+ 1,...,7+ k. Let n; ; be the number of vertices of H; ;. By a packing argument it can
be shown that for fixed k& > 0, the size of a maximum independent set of such a subgraph is
at most 2(k + 3)27'['.

Lemma 5.1 There is a positive constant ¢ such that if n;; > clogn then the subgraph H; ;

of G is dense.

Proof: Partition the vertex-set of H; ; successively into maximal independent sets by deter-
mining a maximal independent set [;, remove its vertices and again determine a maximal
independent set [, and so on. As described above the number of independent sets is at
least n, ;/2(k + 3)27'['. Since each [; is maximal there is at least one edge from a vertex of
I; to every [;, j < j'. If we understand the set of independent sets as a complete graph on
n; ;/2(k + 3)*m vertices it follows that H;; has Q(n?.) edges and hence H;; is dense. O

]

Corollary 5.1 If n;; > clogn then the size of a maximum bisection of H;; is Q(n? ;).

Proof: Partition the vertex-set of H;; as before and use the maximum independent sets to
build up the sets of the bisection. Since all independent sets are maximal there are Q(n?)

]
edges between the sets of bisection. O
Consequently the techniques given in [2] are applicable to the subgraph H; ;.
Algorithm 2

input: a unit disk graph G = (V, E) specified by a set V of disks in the plane and the
coordinates of their centers and a positive integer k;

output: (1 — k_l%lz)(l — §)-approximations of maximum bisection of G

1. Divide the plane by imposing a grid of width two;
2. Construct the subgraphs H; ; of G as described above;

3. For each i and each j set n! . to the number of vertices in H; ; and compute all ([, n] ;—1)-
partitions of H; ; either approximatively or optimal if n} . = O(logn);

4. For each r and s, 0 < r,s < k, set (G, ; to the union of the subgraphs H;; where 1
(mod k+1)=randj (modk+1)=s;

5. For each r and s, 0 < r,s < k, set n, , to the number of vertices in G, ; and compute
a bisection of (7, s within (1 — §) of its maximum by dynamic programming in a tree
fashion. Therefore enumerate the subgraphs in increasing order of the sum 7 4+ 5 and
compute all partitions of pairs of “consecutive” H; ; respectively to this ordering on
the basis of the computed partitions, then for quadruples of such H; ; etc.;

6. Output the largest bisection of G, 5, 0 < r,s < k.

10

If n; ; < clogn we can solve the maximum bisection problem for the subgraph H; ; optimal by
enumerating all possibilities. Otherwise the problem is solvable approximatively by solving
the following polynomial integer program:

mazrimize Z{i,j}eE(Hi,J) (L —a;) + a;(1 —ay) (1)
subject to Y =1, (2)
T € {071} 1= (L"'vniJ) (3)

This program can be solved by the use of Theorem 1.10 given in [2] within an error of at most

enij, which also satisfies the linear constraint (2) of the program within an additive error of

O(ey/n; jlogn; ;). In order to get a subset of size [we move at most €,/n; ;logn, ; in or out.

This affects the number of edges included in the partition by at most €\/n;;logn;; < en? ..

Hence we can compute a maximum (I, n,; ; — [)-partition of a subgraph H,; that has more
than clogn vertices within an additive error of 26n?7j of the maximum.

Lemma 5.2 Algorithm 2 outputs an bisection of G within (1— ;?)2(1—5) of the maximum.

Proof: Let P be a maximum bisection of (. For each edge e € P and a fixed r, 0 < r <k,
there is at most one s, 0 < s < k, such that e crosses a vertical line whose index modulo
k + 1 is s. Analoguosly, there is for each e € P and a fixed s, 0 < s < k, at most one r,
0 <r <k, such that e crosses a horizontal line whose index modulo k+ 1 is r. Consequently
there is a pair (r,s), 0 < r,s < k, such that a maximum ({/,n — [)-partition of G, s cuts at

least (1 — H%)2|P| edges.

By Corollary 5.1, the size of maximum bisection of the subgraph G | of G, ; that consists of
all H;; with more than clogn verticesis 32, sciogn Q(nf]) Consequently, the err(/)r caused

by the solutions of the polynomial integer programs for the subgraphs H;; of ¢
most a § = 2¢ fraction of an optimum solution of maximum bisection for G .. Since the

are at

r,8

partitions for each H;; with at most clogn vertices are computed optimally, we obtain a
bisection of G, ; within (1 — §) of the maximum.
Thus algorithm 2 outputs a bisection of ¢ within (1 — ki—l)z(l — §) of the maximum. O

Theorem 5.1 The problem of max-bisection on unit disk graphs admits a PTAS.

The same approach can be used to obtain a PTAS for the maximum bisection problem in
geometric intersection graphs both of other regular polygons and also of regular geometric
objects in higher dimensions.

6 Acknowledgments

We thank Hans Bodlaender, Uri Feige, Mark Jerrum, Miroslaw Kowaluk, Mike Langberg,

and Monique Laurent for many stimulating remarks and discussions.

11

References

[1]

[2]

S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decom-
posability — A survey, BIT, 25 (1985), pp. 2 — 23.

S. Arora, D. Karger and M. Karpinski. Polynomial Time Approximation Schemes for Dense
Instances of NP-hard Problems, Proceedings 27th ACM STOC, pp. 284-293, 1995.

A.A. Ageev and M.I. Sviridenko. Approximation algorithms for Maximum Coverage and Max
Cut with cardinality constraints. Proceedings of IPCO99, Lecture Notes in Computer Science
1610, pp. 17-30, 1999.

B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Proceed-
ings of the 24th IEEE FOCS, 1983, pp. 265-273.

H.L. Bodlaender, A tourist guide through treewidth. Acta Cybernetica, 11 (1993), pp. 1 — 23.

H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Computing, 25 (1996), pp. 1305 — 1317.

H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Available at
http://www.cs.ruu.nl/ hansb/index.html .

H.L. Bodlaender, Personal communication, August, 2000.

H.L. Bodlaender and K. Jansen. On the complexity of the Maximum Cut problem. Nordic
Journal of Computing, vol. 7, pp. 14-31, 2000.

U. Feige, M. Karpinski and M. Langberg. A Note on Approximating MAX-BISECTION on
Regular Graphs. ECCC (http://www.eccc.uni-trier.de/eccc/), TR00-043 (2000).

U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection.
To appear in Proceedings FOCS’2000.

A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and MAX
BISECTION. Algorithmica 18, pp. 67-81, 1997.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of ACM, 42, pp. 1115-
1145, 1995.

F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. STAM J. Comput.
Vol. 4, No. 3, pp. 221-225, 1975.

H.B. Hunt, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.S. Rosenkrantz, R.E. Stearns.
NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Proc.
2nd Annual European Symposium on Algorithms, (ESA), LNCS 855, pp. 468-477, Springer
Verlag, June, 1994

E. Halperin and U. Zwick, Improved approximation algorithms for maximum graph bisection
problems, Manuscript, 2000.

12

[17] M. Jerrum, Personal communication, August, 2000.

[18] M. Karpinski, M. Kowaluk and A. Lingas. Approximation Algorithms for Max-Bisection on
Low Degree Regular Graphs and Planar Graphs. ECCC (http://www.eccc.uni-trier.de/eccc/),
TRO0-051 (2000).

[19] S. Khanna and R. Motwani. Towards a Syntactic Characterization of PTAS. Proceedings of
the 28th ACM STOC, 1996, pp. 329-337.

[20] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. STAM J. Appl. Math.
Vol. 36 (1979), pp. 177-189.

[21] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal
of Algorithms, 7 (1986), pp. 309-322.

[22] Y. Ye, A 0.699 - approximation algorithm for Max-Bisection, Submitted to Math Program-
ming, available at URL http://dollar.biz.uiowa.edu/col/ye, 1999

13

