
Polynomial Time Approximation of DenseWeighted Instances of MAX-CUT(Revised Version)�W. Fernandez de la Vegay Marek KarpinskizAbstractWe give the �rst polynomial time approximability characterization of dense weightedinstances of MAX-CUT, and some other dense weighted NP-hard problems in terms oftheir empirical weight distributions. This gives also the �rst almost sharp characterizationof inapproximability of unweighted 0,1 MAX-BISECTION instances in terms of theirdensity parameter.Key words: Randomized Algorithms, Approximation Schemes, MAX-CUT, MAX-BISECTION, Approximation Hardness, Density Classes
�To appear in Random Structures and Algorithms, 2000.yLaboratoire de Recherche en Informatique, CNRS, Universit�e de Paris-Sud, 91405 Orsay. Research par-tially supported by the ESPRIT BR Grants 7097 and EC-US 030, and by the PROCOPE grant. Email:lalo@lri.lri.frzDept. of Computer Science, University of Bonn, 53117 Bonn. Research partially supported by the Inter-national Computer Science Institute, Berkeley, California, by the DFG grant KA 673/4-1, by the ESPRIT BRGrants 7079 and EC-US 030, and by the Max{Planck Research Prize. Email: marek@cs.bonn.edu1



1 IntroductionSigni�cant results concerning polynomial time approximation schemes (PTASs) for "dense"instances of several NP-hard problems such as MAX-CUT, MAX-k-SAT, BISECTION,DENSE-k-SUBGRAPH, and others have been obtained recently in Arora, Karger and Karpin-ski [AKK95], Fernandez de la Vega [FV96], Arora, Frieze and Kaplan [AFK96], Frieze andKannan [AK97]. Still more recently, the approximability of dense instances of NP-hardproblems has been investigated from the point of view of the query complexity. Goldreich,Goldwasser and Ron [GGR96] show that a constant size sample is su�cient to test whethera graph has a cut of a certain size. Frieze and Kannan [AK97], obtain quick approximationsfor all dense MAX-SNP problems. Recall that a PTAS for a given optimization problem isa family (A�) of algorithms indexed by a parameter � 2 (0;1) where each algorithm runs inpolynomial time and, for each �, the algorithm A� has approximation ratio 1 � � (or 1 + �for a minimization problem). In most cases, the instances are graphs, and a dense graph isde�ned as a graph with �(n2) edges where n is the number of vertices. (In some cases, thealgorithms apply only to graphs with minimum degree �(n).) Some of the problems consid-ered in the papers mentioned above, such as MAX-CUT, are MAX-SNP-hard, and thus, ifP 6= NP , have no PTASs when the set of instances is not restricted. Let us also mention thatthe PTASs in [FV96], [AK97] and [GGR96] are e�cient in the sense of Cesati and Trevisan[CS97].The natural instances of optimization problems (see, e.g., [GJ79]) involve weights while theresults mentioned above deal mainly with the 0,1 case. The purpose of this paper is to examinehow these results can be extended to the weighted case. We want to de�ne a concept of densityfor the weighted case which ensures that our algorithms, possibly with minor modi�cations,work in the corresponding dense classes of instances and such that the non-dense classes arenot approximable under a standard intractability assumption. For the sake of simplicity, weconcentrate here on MAX-CUT. In fact, for technical reasons, we start by considering MAX-BISECTION, which is MAX-CUT restricted to cuts with equal sides. (MAX-BISECTION isalso called MAX-50/50-CUT or MAX-EQUI-CUT.) Our results extend easily to other MAX-SNP-hard problems such as MAX-2SAT or MAXIMUM ACYCLIC SUBGRAPH. We remarkin passing that the methods of [AKK95] and [FV96] give a PTAS for MAX-BISECTION.We note that weight problems have been brie
y considered in [GGR96] and [AK97]. In bothpapers, the authors evaluate the increase of the computation time of their algorithms whenone allows weights belonging to some �xed interval [0; a] instead of 0,1 weights. Weightproblems are also considered in a recent paper [TR97].2 OverviewWe de�ne �rst in sections 2 and 3 our dense classes of weighted instances via classes ofdistribution functions (d.f.'s for short) of the weights. They clearly grasp the intuitive, andstandard notions of dense instances of combinatorial optimization. We prove in section 5 thatMAX-CUT has a PTAS in any dense class of weighted instances according to our de�nition.Then, we should ideally prove that both MAX-BISECTION and MAX-CUT are MAX-SNPhard on any �xed set of weighted instances which is not dense. Please note that we aimat characterizing the inherent inapproximability of optimization problems in their density2



parameter only, and in the 0,1 case, the following issue is not clear on how fast the densitiesof our instances should tend to 0:Hardness of MAX-CUT on a non-dense set of 0,1 instances: Let (dn)n=0;1::: be asequence of rational numbers tending to 0 as n ! 1. Is it always true that MAX-CUT isMax-SNP-hard when restricted to the set of all graphs whose densities belong to (dn)?The answer is of course yes, if we replace the sequence (dn) by any interval [do; 0[. It can benegative if the denominators of the dn's are huge (see section 7) and, to our annoyance, wecould only �nd a rather lengthy proof that the answer is yes subject to a further conditionon the rate of decrease of the dn's (see section 7, Theorem 6).The rest of section 6 is devoted to the proof of the MAX-SNP hardness of MAX-BISECTIONand MAX-CUT on non-dense sets of weighted instances, using reductions to non-dense 0,1instances. The last section contains a summary and open problems.3 Dense Families of Instances3.1 De�nition of a Dense familyIn as much as density requirements come in, any given instance is a set of non-negative realnumbers (the weights) or rather a multiset. Let us associate to this instance the empiricaldistribution function of the weights:F (x) = 2n(n � 1) Xxi�xmi; x 2 R+where mi denotes the multiplicity of the weight xi in the instance and n is the number ofvertices.We de�ne our density classes in terms of families of weight distribution functions. Moreprecisely:(i) To each d.f. F with support in R+, we associate the set IF of all weighted graphs whoseempirical weight distribution coincides with F .(ii) To each set F of d.f.'s we associate the set of instancesIF = [F2F IFThus, we shall de�ne below dense sets of d.f.'s having in mind the sets of instances to whichthey correspond according to (i) and (ii).Stated in di�erent words, our setting of density classes in terms of weight d.f.'s, amountsexactly to saying that, with any �xed instance belonging to a density class, we also includein this class, all the instances which have the same weight distribution. This assumption isof course very natural.Clearly, our d.f.'s need to have �nite discrete support and rational individual probabilities.(We don't dwell here about the nature of the values in the support. For de�nitness, let us saythat they are also rational.) We call such d.f.'s representable. Conversely, the set of instancescorresponding to a representable d.f. F with individual probabilities having smallest commondenominator D, say, is given by IF = [fn:2Djn(n�1)gGn3



where Gn is the set of weighted graphs on n vertices whose empirical weight distributioncoincides with F . Notice that IF is in�nite for any representable F . For convenience, whenrepresentativity is not essential, we state on various occasions our theorems in terms of arbi-trary d.f.'s. (not necessarily having �nite or even discrete ranges).We can assume that the mean of the weights in each instance is equal to 1, since, when wedivide all the weights by their mean, saym, we also divide the values of the objective functionbym so that the approximation ratios are una�ected. (We assume that the weights are not all0.) We shall say that a familly with all expectations equal to 1 is standardized. We considermostly, but not always standardized families. (Here and all along the paper, we speak withsome abuse of language, of the expectation of a d.f. F meaning the expectation of a randomvariable with d.f. F .)We can now state our de�nition of a dense family of d.f.'s.De�nition 1 (Dense families of standardized d.f.'s) Let F = (Fj)j2J family of integrabled.f.'s with supports contained in R+ and all expectations equal to 1. For each j 2 J and eachk 2 N, de�ne Mj;k = 1k kXi=1Xj;iwhere the Xj;i are independent r.v.'s each with d.f. Fj .We say that the family F is dense if and only if, for each j 2 J , the sequence (Mj;k)k=1;2;::converges in probability to 1, and moreover, this convergence is uniform for j 2 J .In other words, F is dense i� there exists a function n�=n(�) : (0; 1] ! N such that theinequalities Pr [jMj;k � 1j � �] � (1� �); k � n� (1)hold for each � and simultaneously for all j, with an n� which depends only on � (and not onj).De�nition 2 A family F of standardized d.f.'s which is not dense is called a non-dense familyDe�nitions 1 and 2 are extended in the obvious way to non-standardized families: a familyof distributions is dense (resp. non-dense) i� the corresponding standardized family is dense(resp. non-dense).In the next section we identify some natural dense families of d.f.'s.3.2 Some Dense FamiliesRecall the law of large numbers: IfX has a �nite meanEX , then the means of the partial sumsof a sequence of independent random variables each distributed as X converges in probabilityto EX . This implies immediately the next proposition.Proposition 1 Any �nite set of standardized integrable d.f.'s) with support in R+ is a densefamilyThe following assertion can easily be checked.Proposition 2 The family of all integrable d.f.'s is not denseIn the 0,1 case, which plays a key role in our proofs, we can represent a family F = fFi : i =0; 1; :::g by the set, say D = fdo; d1; :::g of the densities (in the standard sense of this word) ofthe corresponding instances. (Notice that, because of our scaling, Fi puts probability 1� di4



on 0 and probability di on the point d�1i .) It is easy to see that F is dense in the sense ofde�nition 1 i� D is bounded away from 0. (The converse statement posed serious problemsto us, see section 6.1.) Thus, the corresponding set of instances is also dense in the standardsense. Note that this is the same as saying that the variances of the F 0i 's are bounded fromabove.. This leads to the following more general class of dense families.Proposition 3 For each s � 0 the familyFs = �FX : VarX(EX)2 � s�is dense.PROOF The proof is straightforward by using Chebyshev's inequality. 2The last example can be generalized as follows.Proposition 4 For each pair (r; C) where r 2 (1;+1) and C 2 R+, the family of standardizedd.f.'s fFXg satisfying each 1(EX)r Z 10 xrdFX(x) � C (2)is dense.REMARK. Since our r.v.'s are generally discrete, integrals of the formZ f(x)dF (x)are interpreted as Riemann-Stielges integrals.PROOF Fix r 2 (1;+1] and C 2 R+ and let F be the corresponding family of d.f.'s de�nedin proposition 4 where we can suppose EX = 1 for every X . The inequality (2) givesimmediately, for any t 2 R+, 1� F (t) = Z 1t dF (x) � Ct�r;We have thus t(1� F (t)) � Ct1�rwhose right hand side tends to 0 when t ! 1, uniformly for F 2 F . Anticipating ourcharacterization of the dense families (see Theorem 1 in the next section), we deduce that Fis dense. 23.3 Some Non-Dense Families of d.f.'sWe present in this section some examples of non-dense families of d.f.'s. We begin with the0,1 case which plays a key role in our proofs. Assume now that F is not dense, i.e. the set Dis not bounded away from 0. Then, since MAX-CUT is MAX-SNP-hard and is approximableon dense sets, one would anticipate that MAX-CUT is also MAX-SNP-hard when restrictedto the set of instances corresponding to D. (The MAX-SNP-hardness of MAX-CUT tell usonly that MAX-CUT is MAX-SNP-hard for any set of densities D containing an interval5



(0; �]; � > 0.) We only have a partial answer to this question (see theorem 6). For instance,we do not know the answer for the family F which corresponds to the set of densitiesD = �2�22i : i = 0; 1; :::�Let us give an example of a non-dense family F corresponding to weighted instances. It maynot seem very natural but it exampli�es the role of the tail in the non-density condition.Proposition 5 Let X and Y be non-negative and have distributions FX and FY and meansEX < 1 and EY > 1. For each k � 1 let Yk have the d.f. FYk de�ned by FYk (t) =FY (k�1t); t 2 R+. (Thus Yk is distributed as Y with the scaling factor k.) Put�k = kEY � 1kEY �EX ; �k = 1� �k = 1� EXkEY �EXDe�ne for k=1,..., Fk by Fk(t) = �kFX(t) + �kFYk(t); t 2 R+. Then, the family F = fFk :k = 1; ::g is not densePROOF Note �rst that the expectations of the Fk are all equal to one. Anticipating againthe characterization of the non-dense families given in the next section just after theorem 1,we have to �nd an � > 0 such that, for any arbitrary large x 2 R+, there is a k such thatx(1� Fk(x)) � �.By the de�nition of Fk, we have1� Fk(x) � �k(1� FY (k�1x)) = (1� FY (k�1x))(1�EX)kEY � EX :Fix any z > 0 with FY (z) < 1, say FY (z) = 1� a. Then, for x = kz, we havex(1� Fk(x)) = kz(1� FY (z)) � kz(1�EX)kEY � EXThe last expression is asymptotic to z(1�EX)EY . This concludes the proof with � = z(1�EX)2EY ,say. 224 Characterization of the Dense FamiliesThe following theorem characterizes the dense families. Once again, this theorem, alikeDe�nition 1, is stated in terms of arbitrary (not necessarily representable) d.f.'s.Theorem 1 Let F = (Fj)j2J be a family of non-negative integrable d.f.'s and assume allexpectations equal to 1.The family F is dense in the sense of De�nition 1 if and only if one of the following conditions(i) and (ii) holds:(i) For each j and each x 2 R+, de�ne �j(x) = x(1�Fj(x)). There is a function �o(x) tendingto 0 as x!1 and such that the inequalities�j(x) � �o(x) (3)6



hold for each pair (j; x).(ii) For each j and each x 2 R+, de�nesj(x) = Z 1x ydFj(y): (4)There is a function so(x) tending to 0 as x!1 and such that the inequalitiessj(x) � so(x) (5)hold for each pair (j; x).Stated in other words, letting Xj denote a random variable with d.f. Fj , condition (ii) saysthat the Xj are uniformly integrable.We shall also use occasionally the following characterization of the non-dense families.Assume that F is not dense and that all expectations are equal to 1. Then there is an � > 0such that, for any arbitrary large y 2 R+, there is an F 2 F withy(1� F (y)) � �: (6)To see this, note that the contrary would state:8� > 0 9y(�) 2 R+ s:t: y(�)(1� Fj(y(�)))< �for every Fj 2 FThen, putting yk = y(2�k), we could de�ne an �o for F by �o(x) = 2�k for yk � x < yk+1,which contradicts the assumption that F is not dense.PROOF (of Theorem 1). Let us see �rst that ii) implies i). Indeed, assume that ii) holdswith some function so(:). Now we have clearly �j(x) � sj(x) for all j and x. Thus, conditioni) holds by choosing �o(x) � so(x). Now it su�ces to show that (ii) is necessary and (i)su�cient.The fact that condition (i) implies that the family F is dense in the sense of De�nition 1 canbe established easily by adapting the proof of the law of large numbers in order to get ane�ective bound on the sample size. Actually, we will adapt a proof of Feller (see [Fe]) that heuses to show the convergence of the means of sums of independent r.v.'s to a not necessaryconstant speci�ed function. The speed of convergence is governed by the function � . Let uswrite Sn = X1 + :::+Xnwhere the Xi are independent with the common d.f. F with expectation 1. Let us de�ne newr.v.'s X 0i by truncation at level n:X 0i = Xi if Xi � n; X 0i = 0 if Xi > n:Put S 0n = X 01 + :::+X 0n; m0n = E(S0n) = nE(X 01):Then, P [jSn �m0nj > t] � P [jS 0n �m0nj > t] + P [Sn 6= S 0n]:7



Putting t = n� and applying Chebyshev's inequality to the �rst term on the right, we getPr [jS0n �m0nj > t] � 1n�2E(X 021 ) + nP [X1 > n] (7)Put �(t) = Z t0 x2dF (x):Then, an integration by parts gives�(n) = �n�(n) + 2 Z x0 �(x)dx� 2 Z x0 �(x)dx:(Recall that �(x) = x(1� F (x)).) We have thus, for each n,Pr �����Snn �EX 01���� � �� � 2n�2 Z x0 �(x)dx+ �(n)Since EX 01 tends to EX1 = 1 uniformly for F 2 F as n!1, this impliesPr �����Snn � 1���� � 2�� � 2 R x0 �(x)dxn�2 + �(n) (8)for su�ciently large n. In order to prove that the right side tends to 0 again uniformlywhenever �(t) � �o(t) with a �o(t)! 0, it su�ces to prove that we have thenZ n0 �(x)dx = o(n):For this, choose an arbitrary small � and put t = ��1o (�) Then,Z n0 �(x)dx � Z t0 �(x)dx+ �(n� t) � 2�nfor su�ciently large n and we are done. This concludes the proof of the su�ciency of condition(i).For the only if direction, suppose that F does not satisfy to condition 5. Thus there exists,for an arbitrarily large y, an F 2 F withZ 1y xdF (x) = �y; (9)say, where � � �y � 1. This implies of course F (y) � 1� �yy�1. We claim that sample sizen = y��1y does not su�ce in order to estimate the expectation. This will conclude the proofsince y is arbitrarily large.Let us thus �x n = y��1y . With probabilityF (y)n = (1� �yy ) y�y � e�1:1; (10)8



(for su�ciently large y), all the points in the sample lie on the left-side of y. Now let Z bedistributed as X conditioned by X � y. Then,EZ = 1� �F (y) � 1� 9�10 ; (11)for su�ciently large n. Let M denote the mean of the sample and let Mc denote the mean ofn independent r.v.'s each distributed as Z. Set p = P[Mc � 1 � �=10]. The inequality (11)implies clearly 1� 9�10 � (1� p)(1� �10):This implies p � 4�5 . Then, using (10), we obtainP[M � 1� �=10] � 4�e�1:15> �10 :Our claim follows clearly from the last inequality. 25 A PTAS for Dense Weighted Instances of MAX-BISECTION and MAX-CUTIn [AKK95] and [FV96] the following Theorem was proved.Theorem 2. 0,1 dense MAX-CUT does have a PTAS.The following more general result can be proved in a similar way.Theorem 3. Assume the weights in each instance in the set I have mean equal to 1, andmoreover assume that the weights are bounded above by an absolute constant. Then MAX-CUT and MAX-BISECTION on I both have PTASs.The crux of the methods of [AKK95] and [FV96] relies on so-called sampling lemmas whichwork when the dispersion of the weights is of comparable magnitude to that of their means.This is guaranteed by the assumptions of Theorem 3.The following Theorem will be easily deduced from Theorem 3.Theorem 4. Let the family of representable d.f.'s F be dense (i.e. each F 2 F has a �nitesupport and rational probabilities and, moreover, F satis�es to the conditions of Theorem 1).Then MAX-CUT, and MAX-BISECTION both have PTASs when restricted to the instancescorresponding to F .PROOF We �rst need some notation. Given an underlying vertex set V = Vn of size n andany subset S � V we denote by �(S) (= �(V � S)) the set of unordered pairs uv of verticeswith u 2 S; v 2 V � S: Thus �(S) is the cut de�ned by S in the complete graph with vertexset Vn.For any instance I and any subset S of the corresponding graph, we denote by val(I; S) thevalue of the cut de�ned by S: val(I; S) := �e2�(S)w(e)9



Here w(e) is the weight of the edge e. If the instance is a graph, we write more simplyval(G; S) for val(I; S). Hence we haveval(G; S) = j�(S) \E(G)jwhere E(G) denotes the edge set of G. Turning to the proof of Theorem 4, let F be dense,�x an � > 0 and let mo be the minimum real number such that the inequalityso(mo) � �2is satis�ed. Here so(:) is the function corresponding to F in condition (i) of Theorem 1. Nowlet I be an instance whose weight distribution coincides with some F 2 F). In order toapproximate the maximum cut of I within 1� � we can proceed as follows.� We replace by 0 all the weights exceeding mo. Let I 0 denote the new entry.� Since I 0 has bounded weights after standardisation, we can according to Theorem 3, �ndin polynomial time a cut �(S) whose value val(I 0; S) approximates that of a maximum cut of(I 0) within 1� �=2, say.Now, to see that �(S) solves MAX-CUT within 1� � on the original instance I , observe thatthe total weight annihilated when going from I to I 0 does not exceed �n2�:�=2. Thus, if Opt(I)is the maximum value of a cut of I , we have certainlyval(I 0; S)Opt(I) � val(I 0; S)Opt(I 0) :Opt(I 0)Opt(I) :� (1� �=2)2 � 1� �where we have used in the last derivation the inequality Opt(I) � 12�n2�. This concludes theproof for MAX-CUT. The proof for MAX-BISECTION is exactly the same. 26 Hardness of MAX-BISECTION on a Non-Dense Set of Un-weighted InstancesThe strict converse of Theorem 4 which would state that MAX-BISECTION and MAX-CUTare MAX-SNP-hard on any non-dense set F does not hold. To see this, let us recall �rst thebest time bound for dense MAX-CUT.Theorem 5 [GGR96]. For any �xed d > 0 and relative accuracy requirement �, there is analgorithm which solves MAX-CUT on unweighted instances of density at least d in time atmost C1n2 C2d�2 (12)where C1 and C2 are absolute constantsNow let F = (Fi)i=1;2;::: be a non-dense family of d.f's where Fi corresponds to the 0,1instances with density di, say, and the sequence (di) tends to 0. (We always assume thatthe sequence (di) decreases.) Let NiDi = di be the shortest fraction expressing di. Then Didivides �ni2 � where ni is the smallest order of a graph on which Fi can be represented. Thuswe certainly have ni � pDi. Assume Di � 2 �di for some �xed � > 0 and all i. Then, the10



order n of any graph on which Fi is representable satis�es the inequality n � 2 �2di . Thus,according to (12), the time complexity T (n) for computing MAX-CUT within 1� � on sucha graph satis�es T (n) � C1n2 C2di�2 � C1n1+ 2C2��2 ;i.e. we have a PTAS for F with exponent 1 + 2C2��2 .We thus need an upper bound for the denominators of the di's to obtain an inapproximabilityresult in the 0,1 case and we will assume that the Di's are bounded above by a polynomialfunction of the inverse of the density. We shall use a similar condition in the general weightedcase (see Theorem 7). Besides these small denominators conditions, the proofs of the inap-proximability results that we present require another condition which, in the 0,1 case, saysroughly speaking, that the sequence of densities (di) does not decrease too fast (albeit it maydecrease as fast as a double exponential). Let us now state these results.Theorem 6 (MAX-SNP-hardness of MAX-BISECTION and MAX-CUT in the non-dense0,1 case) Assume that the sequence of rational densities (di) tends to 0 and, moreover, thatit satis�es to the inequalities di+1 � dhi ; i = 1; 2; ::: (13)where h is a positive constant. Assume moreover that the denominators Di of the di satisfyDi � p(d�1i ) (14)where p(:) is a �xed polynomial.Then, MAX-BISECTION and MAX-CUT are both MAX-SNP-hard on the set of 0,1 instanceswhose densities belong to (di).Theorem 7 (MAX-SNP-hardness of MAX-BISECTION in the non-dense weighted case) LetF = (Fi)i=1;2;::: be a non-dense family of representable d.f.'s each with mean 1, and, foreach i, let Di denote the smallest common denominator of the individual probabilities of thedistribution Fi. Assume that there exist reals � > 0 and h > 1; and a sequence of numbers(ti)i=1;2;::: tending to in�nity, s.t. the following three conditions hold for all i 2 N:ti(1� Fi(ti)) � �; (15)Di � p(ti) (16)and ti+1 � thi : (17)Then, MAX-BISECTION is MAX-SNP-hard on the set of instances corresponding to F .Theorem 8 (MAX-SNP-hardness of MAX-CUT in the non-dense weighted case) Let F =(Fi)i=1;2;::: be a non-dense family of representable d.f.'s each with mean 1, and assume thatF ful�lls the conditions of Theorem 7. Then, MAX-CUT is MAX-SNP-hard on the set ofinstances corresponding to F . 11



6.1 Proof of Theorem 6The main step of the proof of theorem 6 is a reduction from the case of graphs with �xedaverage degree on which both MAX-BISECTION and MAX-CUT are Max-SNP hard as wasproved by Papadimitriou and Yanakakis. In fact, and this will be important for us, Papadim-itriou and Yanakakis prove that there is a set of graphs GPY with the following properties:� The optimum values of MAX-CUT and MAX-BISECTION coincide on each graph in GPY .� MAX-CUT is MAX-SNP-hard on GPY .(This implies of course that MAX-BISECTION is also MAX-SNP-hard on GPY .)Moreover, we can assume that the valencies of the graphs in GPY are bounded. Speci�cally,if � denotes the average degree of a graph in GPY , we will assume the inequalities 1 � � � Dwhere D is a �xed number.De�nition(Asymptotically equal sides condition): Let G = [n2L Gn be a family of graphswhere the graphs in Gn have n vertices. We say that G satis�es to the asymptotically equalsides condition, AES condition for short, i� each G 2 Gn has an optimum cut A;B whosesides satisfy jjAj � jBjj = o(n).We need several lemmas. We denote by G(n; d) the set of graphs with n vertices and averagedegree d.Lemma 3 Let an integer h and a family of graphs G = fGi : i 2 Jg be given. For eachi, let Hi denote the join of Gi with an independent set of size h (i.e. we make h replicasof each vertex of Gi and each edge of Gi gives a complete bipartite graph between the twocorresponding sets of replicas). Let H = fHi : i 2 Jg Then, the problems of approximatingMAX-BISECTION in G and H are mutually L-reducible one to the other.PROOF Let A be an algorithm for MAX-BISECTION with approximation ratio � on H.For each vertex x 2 V (Gi), its h replicas are equivalent. It follows easily that, given anequi-cut (A;B) and two vertices x; y 2 V (Gi), which both have replicas in A and B, it isalways possible either to move a copy of x from A to B and a copy of y from B to A orto move a copy of x from B to A and a copy of y from A to B without lessening the valueof the bisection. We can thus assume that, except for at most one exception, the replicasof each �xed vertex of Gi all go to the same side of the equi-cut A(Hi). We can moreoverassume that this exceptional vertex, if any, has minimum degree in Gi. Thus A translateswith minor modi�cations into an algorithm for MAX-BISECTION on G with approximationratio (1 � O(1=n))� on instances of size n. This proves the L-reducibility in one direction.The other direction is straightforward. 2Lemma 4 Let � be a su�ciently large real number and let �0 > �. MAX-BISECTION andMAX-CUT are MAX-SNP-hard on any set of graphsH = [n2NG(n; dn)where the dn's satisfy � � dn � �0 for each n 2 N.PROOF Let G be a graph with n vertices and average degree �; 1 � � � D. Consider a�xed sequence (dn) and assume that it satis�es to the condition of the lemma. Put h = bdn� c.12



Denote by G0 the join of G with an independent set of size h. G0 has average degree greaterthan dn � �. Then, by adding less than (1=2)�n arbitrary edges to G0, we obtain a graphG" with average degree dn (which belongs to H). Fix an arbitrarily small positive � andlet (V1"; V2") be a partition of V (G") which approximates MAX-BISECTION within 1� �.Then, (V1"; V2") approximates MAX-BISECTION within 1����=(2�) on G0. Using Lemma3, we deduce immediately from (V1"; V2") a partition (V1; V2) which approximates MAX-BISECTION on G within 1 � � � �� , say. This clearly contradicts the MAX-SNP-hardnessof MAX-BISECTION if � is su�ciently small and � su�ciently large. Now, by restrictingG to belong to GPY we see that H contains a subset H0, say, which is MAX-SNP-hard forMAX-BISECTION and with the property that MAX-CUT and MAX-BISECTION coincidewithin 1 + o(1) on H0. This implies clearly that MAX-CUT is also MAX-SNP-hard on H0.2Lemma 5 Let � be a su�ciently large real number and let �0 > �. Assume that the sequence(nk)k=1;::: satis�es for any su�ciently large k to the inequalitynk+1 � nhk (18)where h is a �xed number greater than 1. Then, there exists a set K of graphs MAX-SNP-hardfor bisection and with the following properties� The average degree of each graph in K belongs to the interval [�;�0]� The vertex set sizes belong to (nk),� The graphs in K satisfy to the AES condition.Note that the last assertion of the Lemma implies that the set K is also MAX-SNP-hard forMAX-CUT.PROOF Let K be the set of graphs in H0, (de�ned in the proof of Lemma 4) whose vertexset sizes belong to (nk). Assume for a contradiction that for any � � 0, there exists aninteger k such that 0,1 MAX-BISECTION is (1 � �)-approximable in time poly(nk) on K.by some algorithm A. Set for each n, m = m(n) = minfnj : nj � n� g = nq , say. We havem � nh+1 for su�ciently large n. Let � = bmn c and associate to each instance I of size n thejoin J of � copies of I . Eventually add isolated vertices to obtain an instance J 0 of order m.Clearly, an approximate solution of J 0 is also an approximate solution of J and by Lemma3, we can deduce in polynomial time from an approximate solution of J 0 an approximatesolution of I with the same approximation ratio. Thus the algorithm A can be used withtrivial modi�cations to approximate MAX-BISECTION for any instance of size n in H0 intime nkh. This contradicts the MAX-SNP-hardness of MAX-BISECTION in H0. K satis�esto the AES condition simply because because H0 does. 2We are now well prepared for the proof of Theorem 6.Proof of Theorem 6Let the sequence of densities D = (di) satisfy to the conditions of the Theorem. Fix anarbitrary small � > 0 and de�ne from D a new family D0 where for each i, di is replaced by a�i satisfying (1� �)di � �i � di (19)and having a shortest fractional expression, say �i = PiQi , with d1�e � Pi � d2�e. Let us show�rst that MAX-BISECTION is hard to approximate on D0. which will clearly imply that13



it is hard to approximate on D. Because of Lemma 5 we need only an in�nite sequence ofsizes (nk) such that, for each k, the average degrees �k of the graphs on nk vertices and withdensity �k in D0 belong to some �xed interval [�;�0] with � su�ciently large. We shall take�0 = �:d2�e. For a graph on nk vertices with density �k we have�k = (nk � 1)�k = (nk � 1): PkQkThus, if we choose nk = �Qk + 1, we get �k = �Pk implying � � �k � �0 as desired. Itremains to observe that (13) implies the inequality�i+1 � �h+1ifor all su�ciently large i. 2Let GD stand for the graphs whose densities belong to the set D and let H" = GD \ GPY .Of course, we can carry over the above proof starting with the subset H" � GD and endingwith the conclusion that this set is MAX-SNP-hard for MAX-BISECTION (and MAX-CUT).We shall use the set H" in the proof of Theorem 8. For ease of reference, let us restate itsproperties in a separate Lemma.Lemma 6 Assume that the sequence of rational positive numbers (di) tends to 0 and, more-over, that it satis�es to the inequalities di+1 � dhi ; i = 1; 2; ::: where h is a positive constant.Assume moreover that the denominators Di of the di satisfyDi � p(d�1i ) (20)where p(:) is a �xed polynomial. There is then a set H" of graphs whose densities belongto the sequence (di) which satis�es to the AES condition and which is MAX-SNP-hard forMAX-BISECTION (and MAX-CUT)Proof 27 Proof of Theorem 7The following Lemma asserts broadly speaking that putting random weights with mean 1 onthe edges of a (not too sparse) graph G does not change signi�cantly the maximum value ofa cut of G.Lemma 7 (Averaging Lemma) Let (Gn) be a sequence of graphs where Gn has n verticesand m = m(n) edges and n = o(m) and let (Fn) be a dense sequence of distributions. Assumethat for each n the edges of Gn are given random non-negative weights picked from Fn. LetG0n denote this weighted graph.The quantity 1m maxS jval(G0n; S)� val(Gn; S)j;where S ranges over all subsets of V (G), tends to 0 in probability when n!1.PROOF We �rst get rid of the extreme values of F . De�ne � = �(�) byZ 1� sdF (s) = �24 ; (21)14



and note for future use that 5 implies that there is a function f(:) such that the inequality� � f(�)holds for every n. Then the expectation of the total weight of the edges with weights � � isequal to m�24 : Thus by Markov inequality, this weight does not exceed m�2 , with probability atleast 1� �2 . This implies clearlyPr[maxS jval(G0n; S)� val(G00n; S)j � �m=2] � 1� �=2 : (22)where Gn" denotes the subgraph of G0n spanned by the edges with weights less than �.To proceed now with Gn", call F 0 the distribution obtained from F by replacing the values� �n by 0. Thus the weights of the edges of Gn" are distributed according to F 0. Let usdenote by E0 the expectation of F 0 : E 0 = 1� �2=4.Let us �x a cut �(S) with val(Gn; S) = j�(S) \ E(Gn)j = q, say, Now, since val(Gn"; S) isthe sum of q independent r.v.'s with the common distribution F 0 each bounded above by �,the Cherno�-Hoe�ding bound (see [HOE63]) givesPr[jval(Gn"; S)� qE 0nj � �m3 ] � 2 exp ��2m29�2q !� 2 exp ��2m9�2 ! :We have val(Gn; S) = q and E 0 � 1� �=3. The preceding inequality gives, with (22),Pr[jval(Gn"; S)� val(Gn; S)j � 2�m3 ] � 2 exp ��2m9�2 ! :Since the total number of cuts is bounded above by 2n, we obtainPr[maxS jval(Gn"; S)� val(Gn; S)j � 2�m3 ] � 2n+1 exp ��2m9�2 !� �2for su�ciently large n by our assumption on m = m(n) and the inequality � � f(�). Nowinequality (22) impliesPr[maxS jval(G0n; S)� val(Gn; S)j � �m] � 1� �;and the theorem, since � is arbitrary. 27.1 End of the Proof of Theorem 7Our strategy for obtaining an hardness result for the general (weighted) case of MAX-BISECTION is to reduce it to the 0,1 case. 15



Theorem 9 Assume that F = (Fi) satis�es to the conditions of Theorem 7 with parameters� and h. Then, approximating MAX-BISECTION on F L-reduces to approximating MAX-BISECTION on a non-dense set of 0,1 instances.PROOF Let the sequences (ti) and (Di) satisfy to the conditions of Theorem 7 and let�i = 1� F (ti). We have ti � ��i . Thus (16) impliesDi � q(��1i ) (23)where q is another polynomial. Also, it is not hard to show that (17) implies the existence ofa subsequence (j(i)) of the natural integers with�j(i+1) � (�j(i))h+1:We can thus assume by renaming that we have�i+1 � �h+1i (24)for every i 2 N.We proceed now to transform each instance in an instance with only two distinct weightswith the help of the Averaging Lemma.For a �xed i, set F � Fi; t = ti and de�ne� = �i = 11� F (t) Z 1t sdF (s)and � = �i = 1F (t) Z t0 sdF (s):For n = 2�Di; � 2 N, set m = �i�n2�, (m is an integer because Fi is representable on a graphwith n vertices), and use k to index the �(n2)m � distinct subgraphs Gk of Kn having m edges.We de�ne for each k a partial instance Jk by giving to the edges of Gk random weightsempirically distributed according to the d.f.G(s) = F (s)� F (t)1� F (t) ; s � t:We de�ne also a partial instance Lk by putting on the edges in the set KnnGk random weightson [0; t] empirically distributed according to the d.f. H(s) = F (s)=F (t); s � t. We denote byIk the instance obtained by sticking together Jk and Lk. Clearly, by the choice of G(:) andH(:), the empirical distribution of the weights in Ik coincides with F .Assume that one can �nd in polynomial time a bisection �(So) with value val(Ik; So) �(1� �)Opt(Ik). Let I 0k denote the instance obtained by replacing the weights in Jk (resp. inLk) by their mean �, (resp. �).We can apply the averaging Lemma separately to Jk and Lk, which implies that the maximumvalue of a bisection in I 0k does not di�er from val(I 0k; So) by more than a 1� o(1) factor.Now let Ik" denote the instance obtained from I 0k by substracting � from each weight. (ThusIk" has weights all equal to � � � on the edges of Gk and zero weights elsewhere.) For anybisection �(S) we have clearlyval(I 0k; S) = val(I"k; S) + �n(n� 1)4 : (25)16



Note that we have �(1� F (t) � � and since we have�(1� F (t)) + �F (t) = 1;while F (t) = Fi(ti) tends to 1 with i, we deduce that � has an upper bound strictly smallerthan 1. Since the maximum value of a bisection of Ik is at least n(n � 1)=4, this implies forS = So that the ratio val(I"k; So)val(I 0k; So)is bounded below by a strictly positive constant so that �(So) is also an approximate solutionfor MAX-BISECTION on I"k. Thus, approximating MAX-BISECTION on F enables us toapproximate 0,1 MAX-BISECTION on the graphs with densities �i and orders Di, underconditions (23) and (24.) This clearly contradicts Theorem 6. 28 Proof of Theorem 8In order to prove Theorem 8, we proceed as in the proof of Theorem 7. However, equality (25)is no longer true since we can by no means guarantee that the maximum cut is a bisection.To cure this, we restrict the graphs Gk to belong to the set H" as de�ned in Lemma 6 andcorresponding to the �0is and D0is of Theorem 7 and Theorem 8, which satis�es to the AEScondition. For this restricted set, the maximum cut of the whole instance Ik" is also (almost)a bisection and, by using the same reasoning as for the proof of Theorem 7, we deduce that�nding an approximately maximum cut of Ik" allows one to �nd an approximately maximumbisection of Jk which is not possible by Theorem 6. Theorem 8 follows. 29 Summary and ConclusionsWith the aim of separating as sharply as possible the approximable from the inapproximablefamilies of weighted instances of MAX-CUT, we have introduced a notion of dense families ofinstances or, more precisely, a notion of dense families of weight distributions. We have shownthat the corresponding families of instances have the (intended) approximability property forMAX-CUT.In the other direction, we have shown inapproximability only when the densities in the set ofinstances do not decrease too fast, and we believe that this condition is not necessary. Thisis our �rst question.A second question is: Does our density de�nition capture the approximability of all MAX-SNP-hard problems in the weighted case? We know by [AKK95] that all these problems areapproximable in the dense unweighted case.AcknowledgementWe thank Sanjeev Arora, Martin Dyer, Alan Frieze and Colin MacDiarmid for helpful dis-cussions. 17
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