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1 Introduction

Significant results concerning polynomial time approximation schemes (PTASs) for ”dense”
instances of several A/P-hard problems such as MAX-CUT, MAX-k-SAT, BISECTION,
DENSE-k-SUBGRAPH, and others have been obtained recently in Arora, Karger and Karpin-
ski [AKK95], Fernandez de la Vega [F'V96], Arora, Frieze and Kaplan [AFK96], Frieze and
Kannan [AK97]. Still more recently, the approximability of dense instances of NP-hard
problems has been investigated from the point of view of the query complexity. Goldreich,
Goldwasser and Ron [GGRI6] show that a constant size sample is sufficient to test whether
a graph has a cut of a certain size. Frieze and Kannan [AK97], obtain quick approximations
for all dense MAX-SNP problems. Recall that a PTAS for a given optimization problem is
a family (A.) of algorithms indexed by a parameter ¢ € (0, 00) where each algorithm runs in
polynomial time and, for each ¢, the algorithm A, has approximation ratio 1 — ¢ (or 1+ ¢
for a minimization problem). In most cases, the instances are graphs, and a dense graph is
defined as a graph with ©(n?) edges where n is the number of vertices. (In some cases, the
algorithms apply only to graphs with minimum degree ©(n).) Some of the problems consid-
ered in the papers mentioned above, such as MAX-CUT, are MAX-SNP-hard, and thus, if
P # NP, have no PTASs when the set of instances is not restricted. Let us also mention that
the PTASs in [FV96], [AK97] and [GGR96] are efficient in the sense of Cesati and Trevisan
[CS97].

The natural instances of optimization problems (see, e.g., [GJ79]) involve weights while the
results mentioned above deal mainly with the 0,1 case. The purpose of this paper is to examine
how these results can be extended to the weighted case. We want to define a concept of density
for the weighted case which ensures that our algorithms, possibly with minor modifications,
work in the corresponding dense classes of instances and such that the non-dense classes are
not approximable under a standard intractability assumption. For the sake of simplicity, we
concentrate here on MAX-CUT. In fact, for technical reasons, we start by considering MAX-
BISECTION, which is MAX-CUT restricted to cuts with equal sides. (MAX-BISECTION is
also called MAX-50/50-CUT or MAX-EQUI-CUT.) Our results extend easily to other MAX-
SNP-hard problems such as MAX-2SAT or MAXIMUM ACYCLIC SUBGRAPH. We remark
in passing that the methods of [AKK95] and [F'V96] give a PTAS for MAX-BISECTION.

We note that weight problems have been briefly considered in [GGR96] and [AK97]. In both
papers, the authors evaluate the increase of the computation time of their algorithms when
one allows weights belonging to some fixed interval [0,a] instead of 0,1 weights. Weight
problems are also considered in a recent paper [TR97].

2 Overview

We define first in sections 2 and 3 our dense classes of weighted instances via classes of
distribution functions (d.f.’s for short) of the weights. They clearly grasp the intuitive, and
standard notions of dense instances of combinatorial optimization. We prove in section 5 that
MAX-CUT has a PTAS in any dense class of weighted instances according to our definition.

Then, we should ideally prove that both MAX-BISECTION and MAX-CUT are MAX-SNP
hard on any fixed set of weighted instances which is not dense. Please note that we aim
at characterizing the inherent inapproximability of optimization problems in their density



parameter only, and in the 0,1 case, the following issue is not clear on how fast the densities
of our instances should tend to 0:

Hardness of MAX-CUT on a non-dense set of 0,1 instances: Let (d,),=0,1.. be a
sequence of rational numbers tending to 0 as n — oco. Is it always true that MAX-CUT is
Max-SNP-hard when restricted to the set of all graphs whose densities belong to (d,,)?

The answer is of course yes, if we replace the sequence (d,) by any interval [d,, 0[. It can be
negative if the denominators of the d,’s are huge (see section 7) and, to our annoyance, we
could only find a rather lengthy proof that the answer is yes subject to a further condition
on the rate of decrease of the d,,’s (see section 7, Theorem 6).

The rest of section 6 is devoted to the proof of the MAX-SNP hardness of MAX-BISECTION
and MAX-CUT on non-dense sets of weighted instances, using reductions to non-dense 0,1
instances. The last section contains a summary and open problems.

3 Dense Families of Instances

3.1 Definition of a Dense family

In as much as density requirements come in, any given instance is a set of non-negative real
numbers (the weights) or rather a multiset. Let us associate to this instance the empirical
distribution function of the weights:
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where m; denotes the multiplicity of the weight z; in the instance and n is the number of
vertices.
We define our density classes in terms of families of weight distribution functions. More
precisely:

(i) To each d.f. F' with support in RT, we associate the set I of all weighted graphs whose
empirical weight distribution coincides with F.

(ii) To each set F of d.f.’s we associate the set of instances

Ir =Uper Ir

Thus, we shall define below dense sets of d.f.’s having in mind the sets of instances to which
they correspond according to (i) and (ii).

Stated in different words, our setting of density classes in terms of weight d.f.’s, amounts
exactly to saying that, with any fixed instance belonging to a density class, we also include
in this class, all the instances which have the same weight distribution. This assumption is
of course very natural.

Clearly, our d.f.’s need to have finite discrete support and rational individual probabilities.
(We don’t dwell here about the nature of the values in the support. For definitness, let us say
that they are also rational.) We call such d.f.’s representable. Conversely, the set of instances
corresponding to a representable d.f. I’ with individual probabilities having smallest common
denominator D, say, is given by

IF - U{n:2D|n(n—1)}gn



where G, is the set of weighted graphs on n vertices whose empirical weight distribution
coincides with F. Notice that Iz is infinite for any representable F'. For convenience, when
representativity is not essential, we state on various occasions our theorems in terms of arbi-
trary d.f.’s. (not necessarily having finite or even discrete ranges).

We can assume that the mean of the weights in each instance is equal to 1, since, when we
divide all the weights by their mean, say m, we also divide the values of the objective function
by m so that the approximation ratios are unaffected. (We assume that the weights are not all
0.) We shall say that a familly with all expectations equal to 1 is standardized. We consider
mostly, but not always standardized families. (Here and all along the paper, we speak with
some abuse of language, of the expectation of a d.f. F meaning the expectation of a random
variable with d.f. F.)

We can now state our definition of a dense family of d.f.’s.

Definition 1 (Dense families of standardized d.f.’s) Let F = (F}) ;e family of integrable
d.f.’s with supports contained in BT and all expectations equal to 1. For each j € J and each
k € N, define

1 k
My = > X
=1

where the X;,; are independent r.v.’s each with d.f. F;.
We say that the family F is dense if and only if, for each j € J, the sequence (M;y)r=12,.

converges in probability to 1, and moreover, this convergence is uniform for j € J.

In other words, F is dense iff there exists a function n.=n(¢) : (0,1] — N such that the
inequalities

PriiMje—1[<e>(1—¢€), k>ne (1)
hold for each € and simultaneously for all j, with an n. which depends only on ¢ (and not on
J)-
Definition 2 A family F of standardized d.f.’s which is not dense is called a non-dense family
Definitions 1 and 2 are extended in the obvious way to non-standardized families: a family

of distributions is dense (resp. non-dense) iff the corresponding standardized family is dense
(resp. non-dense).

In the next section we identify some natural dense families of d.f.’s.

3.2 Some Dense Families

Recall the law of large numbers: If X has a finite mean FX, then the means of the partial sums
of a sequence of independent random variables each distributed as X converges in probability
to FX. This implies immediately the next proposition.

Proposition 1 Any finite set of standardized integrable d.f.’s) with support in R* is a dense
Sfamily

The following assertion can easily be checked.

Proposition 2 The family of all integrable d.f.’s is not dense

In the 0,1 case, which plays a key role in our proofs, we can represent a family F = {F} : i =
0,1,...} by the set, say D = {d,, dy, ...} of the densities (in the standard sense of this word) of
the corresponding instances. (Notice that, because of our scaling, F; puts probability 1 — d;



on 0 and probability d; on the point d;l.) It is easy to see that F is dense in the sense of
definition 1 iff D is bounded away from 0. (The converse statement posed serious problems
to us, see section 6.1.) Thus, the corresponding set of instances is also dense in the standard
sense. Note that this is the same as saying that the variances of the F!’s are bounded from
above.. This leads to the following more general class of dense families.

Proposition 3 For each s > 0 the family

VarX
Fs=1< Fx : <
{ X = S}
s dense.
PROOF The proof is straightforward by using Chebyshev’s inequality. |

The last example can be generalized as follows.

Proposition 4 For each pair (r,C) where r € (1,+00) and C' € RY, the family of standardized

d.f.’s {Fx} satisfying each
1 oo

1s dense.

REMARK. Since our r.v.’s are generally discrete, integrals of the form

[ f@are)

are interpreted as Riemann-Stielges integrals.

PROOF Fix r € (1,4+00] and C' € BT and let F be the corresponding family of d.f.’s defined
in proposition 4 where we can suppose FX = 1 for every X. The inequality (2) gives
immediately, for any t € RT,

= F(t) = / dF(z) < Ct",
t
We have thus
t(1—Ft) <ct=r

whose right hand side tends to 0 when ¢ — oo, uniformly for F € F. Anticipating our
characterization of the dense families (see Theorem 1 in the next section), we deduce that F
is dense. O

3.3 Some Non-Dense Families of d.f.’s

We present in this section some examples of non-dense families of d.f.’s. We begin with the
0,1 case which plays a key role in our proofs. Assume now that F is not dense, i.e. the set D
is not bounded away from 0. Then, since MAX-CUT is MAX-SNP-hard and is approximable
on dense sets, one would anticipate that MAX-CUT is also MAX-SNP-hard when restricted
to the set of instances corresponding to D. (The MAX-SNP-hardness of MAX-CUT tell us
only that MAX-CUT is MAX-SNP-hard for any set of densities D containing an interval



(0,a], a > 0.) We only have a partial answer to this question (see theorem 6). For instance,
we do not know the answer for the family F which corresponds to the set of densities

D= {2—221 =01, }

Let us give an example of a non-dense family F corresponding to weighted instances. It may
not seem very natural but it examplifies the role of the tail in the non-density condition.

Proposition 5 Let X and Y be non-negative and have distributions Fx and Fy and means
EX < 1 and EY > 1. For each k > 1 let Yy have the d.f. Fy, defined by Fy, (1) =
Fy (k='t), t € RT. (Thus Yy is distributed as'Y with the scaling factor k.) Put

_ kEY -1 G _ 1-EX
TREY —EX' FT T T LEY ZEX

873

Define for k=1,..., Fy by Fi(t) = axFx (t) + BpFy, (t), t € RY. Then, the family F = {F}, :
k=1,..} is not dense

PROOF Note first that the expectations of the Fj are all equal to one. Anticipating again
the characterization of the non-dense families given in the next section just after theorem 1,
we have to find an 1 > 0 such that, for any arbitrary large € R™, there is a & such that
e(1 = Fi(z)) = .

By the definition of F}, we have

(1 - Fy (k~'2))(1 = EX)

1= Fy(2) > Br(1 = Fy (k') = kEY — EX

Fix any z > 0 with Fy (z) < 1, say Fy(z) =1 — a. Then, for # = kz, we have

kz(1 - EX)

_ = _ > DA T A

21— Fp(x) =kz(1 - Fy(2)) > BV " EX
The last expression is asymptotic to Z(lggX). This concludes the proof with n = %,
say. O

a

4 Characterization of the Dense Families

The following theorem characterizes the dense families. Once again, this theorem, alike
Definition 1, is stated in terms of arbitrary (not necessarily representable) d.f.’s.

Theorem 1 Let F = (F});eq be a family of non-negative integrable d.f.’s and assume all
expectations equal to 1.

The family F is dense in the sense of Definition 1 if and only if one of the following conditions
(i) and (ii) holds:

(i) For each j and each v € R*, define 7j(z) = x(1— Fj(x)). There is a function 7,(x) tending
to 0 as © — oo and such that the inequalities

7i(x) < 7o() (3)



hold for each pair (j,z).
(ii) For each j and each x € RY, define

s(0) = [ ydFi(y). ¢
There is a function s,(x) tending to 0 as x — oo and such that the inequalities

sj (@) < so() (5)

hold for each pair (j,z).
Stated in other words, letting X; denote a random variable with d.f. F}, condition (ii) says
that the X; are uniformly integrable.

We shall also use occasionally the following characterization of the non-dense families.

Assume that F is not dense and that all expectations are equal to 1. Then there is an n > 0
such that, for any arbitrary large y € R, there is an F € F with

y(1 = F(y)) > n. (6)
To see this, note that the contrary would state:

Vi >0 3y(n) € RY st y(n)(1- F(y(n)) <n
for every F; € F

Then, putting yr = y(27%), we could define an 7, for F by 7,(x) = 27% for yp < = < ypt1,
which contradicts the assumption that F is not dense.

PROOF (of Theorem 1). Let us see first that ii) implies i). Indeed, assume that ii) holds
with some function s,(.). Now we have clearly 7;(z) < s;(z) for all j and z. Thus, condition
i) holds by choosing 7,(z) = s,(z). Now it suffices to show that (ii) is necessary and (i)
sufficient.

The fact that condition (i) implies that the family F is dense in the sense of Definition 1 can
be established easily by adapting the proof of the law of large numbers in order to get an
effective bound on the sample size. Actually, we will adapt a proof of Feller (see [Fe]) that he
uses to show the convergence of the means of sums of independent r.v.’s to a not necessary
constant specified function. The speed of convergence is governed by the function 7. Let us
write

where the X; are independent with the common d.f. F' with expectation 1. Let us define new
r.v.’s X/ by truncation at level n:

XZ(:XiiinSn, X{:OifX¢>n.

Put
Sl =X{+ ..+ X/, m!, = E(S)) = nE(X]).

Then,

PlIS, —ml,| > 1] < Pl|S, = ml,| > ] + P[S, # S,].



Putting ¢t = ne and applying Chebyshev’s inequality to the first term on the right, we get
Pr IS} —ml ] > ] < — B(XP) + nPLX; > o (7
Put .
o(t) = /0 w2dF(z),
Then, an integration by parts gives
on) = —nr(n)+ Q/Oxr(x)dac
< Q/Oxr(ac)dx.

(Recall that 7(2) = 2(1 — F(2)).) We have thus, for each n,

Pr H& - EX]
n

> e] < % xr(w)dx—l—r(n)

— ne 0

Since K X| tends to EX; = 1 uniformly for F' € F as n — oo, this implies

J

for sufficiently large n. In order to prove that the right side tends to 0 again uniformly
whenever 7(t) < 7,(t) with a 7,(¢t) — 0, it suffices to prove that we have then

%—1‘226]§2ﬁ;#+7(n) (8)

For this, choose an arbitrary small 5 and put ¢t = 7,°1(5) Then,

t

/Onr(x)dw < /0 T(z)dz 4+ n(n—1t) < 2nn

for sufficiently large n and we are done. This concludes the proof of the sufficiency of condition
(i).

For the only if direction, suppose that F does not satisfy to condition 5. Thus there exists,
for an arbitrarily large y, an F € F with

/y " 2dF(2) =y, (9)

say, where 7 < 7, < 1. This implies of course F(y) > 1 — 5,5~ 1. We claim that sample size
n= yny_l does not suffice in order to estimate the expectation. This will conclude the proof
since y is arbitrarily large.

Let us thus fix n = yny_l. With probability

Fly)" = (1 - Ly > e, (10)



(for sufficiently large y), all the points in the sample lie on the left-side of y. Now let Z be
distributed as X conditioned by X < y. Then,

11— 9

EZ=— 1<y 20 (11)

F(y) 10
for sufficiently large n. Let M denote the mean of the sample and let M. denote the mean of
n independent r.v.’s each distributed as Z. Set p = P[M. < 1 — 5/10]. The inequality (11)
implies clearly

9n i
1—-—>1-p)(1-—=).

This implies p > 4?77. Then, using (10), we obtain

4 —1.1
PIM < 1-n/10] > =5
Ui
> 0

Our claim follows clearly from the last inequality.

5 A PTAS for Dense Weighted Instances of MAX-
BISECTION and MAX-CUT

In [AKK95] and [FV96] the following Theorem was proved.
Theorem 2. 0,1 dense MAX-CUT does have a PTAS.
The following more general result can be proved in a similar way.

Theorem 3. Assume the weights in each instance in the set I have mean equal to 1, and
moreover assume that the weights are bounded above by an absolute constant. Then MAX-

CUT and MAX-BISECTION on I both have PTASSs.

The crux of the methods of [AKK95] and [FF'V96] relies on so-called sampling lemmas which
work when the dispersion of the weights is of comparable magnitude to that of their means.
This is guaranteed by the assumptions of Theorem 3.

The following Theorem will be easily deduced from Theorem 3.

Theorem 4. Let the family of representable d.f.’s F be dense (i.e. each F' € F has a finite
support and rational probabilities and, moreover, F satisfies to the conditions of Theorem 1).
Then MAX-CUT, and MAX-BISECTION both have PTASs when restricted to the instances

corresponding to F.

PROOF We first need some notation. Given an underlying vertex set V = V,, of size n and
any subset S C V we denote by 6(5) (= §(V — 5)) the set of unordered pairs uv of vertices
with w € S, v € V — 5. Thus 6(5) is the cut defined by S in the complete graph with vertex
set V,,.
For any instance [ and any subset S of the corresponding graph, we denote by val(I,S) the
value of the cut defined by S:

val(I,S) == Y.ess5yw(e)

9



Here w(e) is the weight of the edge e. If the instance is a graph, we write more simply

val(G, S) for val(1,S). Hence we have
val(G,5) = |8(5) N E(G)]

where F/(() denotes the edge set of (. Turning to the proof of Theorem 4, let F be dense,
fix an € > 0 and let m, be the minimum real number such that the inequality

€
[ o<_
s,(mo) < 5

is satisfied. Here s,(.) is the function corresponding to F in condition (i) of Theorem 1. Now

let I be an instance whose weight distribution coincides with some ' € F). In order to
approximate the maximum cut of I within 1 — ¢ we can proceed as follows.

e We replace by 0 all the weights exceeding m,. Let I’ denote the new entry.

e Since I’ has bounded weights after standardisation, we can according to Theorem 3, find

in polynomial time a cut §(5) whose value val(I’,S) approximates that of a maximum cut of
(I") within 1 — €/2, say.

Now, to see that §(5) solves MAX-CUT within 1 — ¢ on the original instance I, observe that
the total weight annihilated when going from I to I’ does not exceed (}).¢/2. Thus, if Opt([)
is the maximum value of a cut of I, we have certainly

val(l’,5) val(l’,5) Opt(l')
Opt(I) = Opt(I') Opt(1)"
> (1-¢/2)*>1—¢

where we have used in the last derivation the inequality Opt(/) > %(;) This concludes the
proof for MAX-CUT. The proof for MAX-BISECTION is exactly the same. O

6 Hardness of MAX-BISECTION on a Non-Dense Set of Un-
weighted Instances

The strict converse of Theorem 4 which would state that MAX-BISECTION and MAX-CUT
are MAX-SNP-hard on any non-dense set F does not hold. To see this, let us recall first the
best time bound for dense MAX-CUT.

Theorem 5 [GGRI6]. For any fized d > 0 and relative accuracy requirement €, there is an
algorithm which solves MAX-CUT on unweighted instances of density at least d in time at
most
L2
Cin2ae (12)
where Cy and Cy are absolute constants

Now let F = (F})i=1,2,.. be a non-dense family of d.f’s where F; corresponds to the 0,1
instances with density d;, say, and the sequence (d;) tends to 0. (We always assume that
the sequence (d;) decreases.) Let % = d; be the shortest fraction expressing d;. Then D;

divides (")) where n; is the smallest order of a graph on which F; can be represented. Thus

A
we certainly have n; > +/D;. Assume D; > 24 for some fixed A\ > 0 and all . Then, the

10



B
order n of any graph on which F; is representable satisfies the inequality n > 224 . Thus,

according to (12), the time complexity 7'(n) for computing MAX-CUT within 1 — ¢ on such
a graph satisfies

C2 2Cy

T(n) < Cyn24 < Cyn' 52,
i.e. we have a PTAS for F with exponent 1+ %

We thus need an upper bound for the denominators of the d;’s to obtain an inapproximability
result in the 0,1 case and we will assume that the D);’s are bounded above by a polynomial
function of the inverse of the density. We shall use a similar condition in the general weighted
case (see Theorem 7). Besides these small denominators conditions, the proofs of the inap-
proximability results that we present require another condition which, in the 0,1 case, says
roughly speaking, that the sequence of densities (d;) does not decrease too fast (albeit it may
decrease as fast as a double exponential). Let us now state these results.

Theorem 6 (MAX-SNP-hardness of MAX-BISECTION and MAX-CUT in the non-dense
0,1 case) Assume that the sequence of rational densities (d;) tends to 0 and, moreover, that
it satisfies to the inequalities

digp >dl, i=1,2, ... (13)

where h is a positive constant. Assume moreover that the denominators D; of the d; satisfy
D; < p(dih) (14)

where p(.) is a fized polynomial.
Then, MAX-BISECTION and MAX-CUT are both MAX-SNP-hard on the set of 0,1 instances

whose densities belong to (d;).

Theorem 7 (MAX-SNP-hardness of MAX-BISECTION in the non-dense weighted case) Let
F = (F)i=1,2,.. be a non-dense family of representable d.f.’s each with mean 1, and, for
each 1, let D; denote the smallest common denominator of the individual probabilities of the
distribution F;. Assume that there exist reals n > 0 and h > 1, and a sequence of numbers
(ti)i=1,2,.. tending to infinity, s.t. the following three conditions hold for all i € N:

t(1 = Fi(t)) >, (15)
D; < p(t;) (16)

and
tipgy <t (17)

Then, MAX-BISECTION is MAX-SNP-hard on the set of instances corresponding to F.

Theorem 8 (MAX-SNP-hardness of MAX-CUT in the non-dense weighted case) Let F =
(Fy)i=12,.. be a non-dense family of representable d.f.’s each with mean 1, and assume that
F fulfills the conditions of Theorem 7. Then, MAX-CUT is MAX-SNP-hard on the set of

instances corresponding to F.

11



6.1 Proof of Theorem 6

The main step of the proof of theorem 6 is a reduction from the case of graphs with fixed
average degree on which both MAX-BISECTION and MAX-CUT are Max-SNP hard as was
proved by Papadimitriou and Yanakakis. In fact, and this will be important for us, Papadim-
itriou and Yanakakis prove that there is a set of graphs Gpy with the following properties:

e The optimum values of MAX-CUT and MAX-BISECTION coincide on each graph in Gpy.

o MAX-CUT is MAX-SNP-hard on Gpy.
(This implies of course that MAX-BISECTION is also MAX-SNP-hard on Gpy .)

Moreover, we can assume that the valencies of the graphs in Gpy are bounded. Specifically,
if & denotes the average degree of a graph in Gpy, we will assume the inequalities 1 <& < D
where D is a fixed number.

Definition(Asymptotically equal sides condition): Let G = U,¢r, G, be a family of graphs
where the graphs in G,, have n vertices. We say that G satisfies to the asymptotically equal
sides condition, AES condition for short, iff each G € G, has an optimum cut A, B whose
sides satisfy ||A| — |B|| = o(n).

We need several lemmas. We denote by G(n,d) the set of graphs with n vertices and average

degree d.

Lemma 3 Let an integer h and a family of graphs G = {G; : i € J} be given. For each
i, let H; denote the join of G; with an independent set of size h (i.e. we make h replicas
of each vertex of G; and each edge of G; gives a complete bipartite graph between the two
corresponding sets of replicas). Let H = {H; : i € J} Then, the problems of approximating
MAX-BISECTION in G and ‘H are mutually L-reducible one to the other.

PROOF Let A be an algorithm for MAX-BISECTION with approximation ratio p on #.
For each vertex & € V(G;), its h replicas are equivalent. It follows easily that, given an
equi-cut (A, B) and two vertices x,y € V(G;), which both have replicas in A and B, it is
always possible either to move a copy of z from A to B and a copy of y from B to A or
to move a copy of z from B to A and a copy of y from A to B without lessening the value
of the bisection. We can thus assume that, except for at most one exception, the replicas
of each fixed vertex of (7; all go to the same side of the equi-cut A(H;). We can moreover
assume that this exceptional vertex, if any, has minimum degree in ;. Thus A translates
with minor modifications into an algorithm for MAX-BISECTION on G with approximation
ratio (1 — O(1/n))p on instances of size n. This proves the L-reducibility in one direction.
The other direction is straightforward.

O

Lemma 4 Let A be a sufficiently large real number and let A" > A. MAX-BISECTION and
MAX-CUT are MAX-SNP-hard on any set of graphs

H =Upen G(n,d,)

where the d,,’s satisfy A < d, <A’ for each n € N.

PROOF Let G be a graph with n vertices and average degree ¢, 1 < § < D. Consider a

fixed sequence (d,) and assume that it satisfies to the condition of the lemma. Put h = [%].

12



Denote by G’ the join of G with an independent set of size h. G’ has average degree greater
than d,, — . Then, by adding less than (1/2)dn arbitrary edges to G, we obtain a graph
G” with average degree d,, (which belongs to 7). Fix an arbitrarily small positive ¢ and
let (V1”,V5”) be a partition of V(G”) which approximates MAX-BISECTION within 1 — e.
Then, (V17,V3”) approximates MAX-BISECTION within 1 —€—6/(2A) on G'. Using Lemma
3, we deduce immediately from (V17,V3”) a partition (Vi,V,) which approximates MAX-
BISECTION on G within 1 — € — %, say. This clearly contradicts the MAX-SNP-hardness
of MAX-BISECTION if ¢ is sufficiently small and A sufficiently large. Now, by restricting
G to belong to Gpy we see that H contains a subset H’, say, which is MAX-SNP-hard for
MAX-BISECTION and with the property that MAX-CUT and MAX-BISECTION coincide
within 14 o(1) on H'. This implies clearly that MAX-CUT is also MAX-SNP-hard on #'.
O

Lemma 5 Let A be a sufficiently large real number and let A’ > A. Assume that the sequence
(ng)k=1,... satisfies for any sufficiently large k to the inequality

Ngt1 < nz (18)

where h is a fired number greater than 1. Then, there exists a set K of graphs MAX-SNP-hard
for bisection and with the following properties

e The average degree of each graph in K belongs to the interval [A, A']
o The vertex set sizes belong to (ny),
o The graphs in K satisfy to the AES condition.

Note that the last assertion of the Lemma implies that the set K is also MAX-SNP-hard for
MAX-CUT.

PROOF Let K be the set of graphs in H'; (defined in the proof of Lemma 4) whose vertex
set sizes belong to (ng). Assume for a contradiction that for any e > 0, there exists an
integer k such that 0,1 MAX-BISECTION is (1 — €)-approximable in time poly(ny) on K.
by some algorithm A. Set for each n, m = m(n) = min{n; : n; > 2} = n,, say. We have
m < nP*! for sufficiently large n. Let A = |2 and associate to each instance I of size n the
join J of A copies of I. Eventually add isolated vertices to obtain an instance J’ of order m.
Clearly, an approximate solution of .J’ is also an approximate solution of J and by Lemma
3, we can deduce in polynomial time from an approximate solution of .J’ an approximate
solution of I with the same approximation ratio. Thus the algorithm A can be used with
trivial modifications to approximate MAX-BISECTION for any instance of size n in H' in
time n*". This contradicts the MAX-SNP-hardness of MAX-BISECTION in H’. K satisfies

to the AES condition simply because because H' does. O
We are now well prepared for the proof of Theorem 6.
Proof of Theorem 6

Let the sequence of densities D = (d;) satisfy to the conditions of the Theorem. Fix an
arbitrary small ¢ > 0 and define from D a new family D’ where for each i, d; is replaced by a
d; satisfying

(1—e)d; <6; < d; (19)

and having a shortest fractional expression, say ¢; = g, with [H <P < [%1 Let us show
first that MAX-BISECTION is hard to approximate on D’. which will clearly imply that

13



it is hard to approximate on D. Because of Lemma 5 we need only an infinite sequence of
sizes (ny) such that, for each k, the average degrees J;, of the graphs on ny vertices and with
density &5 in D’ belong to some fixed interval [A, A’] with A sufficiently large. We shall take
A’ = A.[2]. For a graph on ny, vertices with density §; we have

- P
Sr = (ng — 1) = (ng — 1).—~
@k
Thus, if we choose n;, = AQj + 1, we get 6 = AP, implying A < 6, < A’ as desired. It
remains to observe that (13) implies the inequality

Sip1 > 1!

for all sufficiently large «¢.
O

Let Gp stand for the graphs whose densities belong to the set D and let H” = Gp N Gpy.
Of course, we can carry over the above proof starting with the subset H” C Gp and ending
with the conclusion that this set is MAX-SNP-hard for MAX-BISECTION (and MAX-CUT).
We shall use the set H” in the proof of Theorem 8. For ease of reference, let us restate its
properties in a separate Lemma.

Lemma 6 Assume that the sequence of rational positive numbers (d;) tends to 0 and, more-
over, that it satisfies to the inequalities d;y1 > dP, i = 1,2, ... where h is a positive constant.
Assume moreover that the denominators D; of the d; satisfy

D; < p(dit) (20)

where p(.) is a fized polynomial. There is then a set H” of graphs whose densities belong
to the sequence (d;) which satisfies to the AES condition and which is MAX-SNP-hard for
MAX-BISECTION (and MAX-CUT)

Proof O

7 Proof of Theorem 7

The following Lemma asserts broadly speaking that putting random weights with mean 1 on
the edges of a (not too sparse) graph GG does not change significantly the maximum value of
a cut of G.

Lemma 7 (Averaging Lemma) Let (G,) be a sequence of graphs where G, has n vertices
and m = m(n) edges and n = o(m) and let (F,) be a dense sequence of distributions. Assume
that for each n the edges of GG}, are given random non-negative weights picked from F, . Let
G! denote this weighted graph.

The quantity

1 !
— max lval (G, S) — val(G,, 9)|,

where S ranges over all subsets of V(G), tends to 0 in probability when n — oo.
PROOF We first get rid of the extreme values of F. Define § = 6(¢) by

/0 sdP(s) = (21)

14



and note for future use that 5 implies that there is a function f(.) such that the inequality

0 < f(e)

holds for every n. Then the expectation of the total weight of the edges with weights > 6 is

m452 . Thus by Markov inequality, this weight does not exceed ¢, with probability at

least 1 — 5. This implies clearly

equal to

Pr[mgx|val(G;,S) —val (G S)| <em/2] > 1—¢/2. (22)

where (G,,” denotes the subgraph of G/, spanned by the edges with weights less than 6.

To proceed now with G,,”, call F’ the distribution obtained from F' by replacing the values
> #, by 0. Thus the weights of the edges of G, are distributed according to F’. Let us
denote by E' the expectation of F': E' =1 — /4.

Let us fix a cut 6(5) with val(G,,S) = [6(5) N E(G,)| = q, say, Now, since val(G,,”,5) is
the sum of ¢ independent r.v.’s with the common distribution I’ each bounded above by 8,

the Chernoff-Hoeffding bound (see [HOE63]) gives

2,2
Prllval(G).”, S) — ¢F,,| > %] < 2exp (— 690?(])

< ( ezm)
< 2exp|—— 1.
96?2

We have val(G,,, S) = ¢ and E' > 1 — ¢/3. The preceding inequality gives, with (22),

2
Pr{jval(G,), S) — val(G,, S)| > %Tm] < 2exp (—69777;) .

Since the total number of cuts is bounded above by 2", we obtain

2
Primazs|val (G, S) — val(G,, S)| > %Tm] < 2"Hlexp (—69777;)

€

< =

- 2

for sufficiently large n by our assumption on m = m(n) and the inequality 8 < f(e¢). Now
inequality (22) implies

Pr[1r1r1§L>(|val(G%7 S) —wval(G,, )| < em] > 1 —¢,

and the theorem, since ¢ is arbitrary.

7.1 End of the Proof of Theorem 7

Our strategy for obtaining an hardness result for the general (weighted) case of MAX-
BISECTION is to reduce it to the 0,1 case.
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Theorem 9 Assume that F = (F}) satisfies to the conditions of Theorem 7 with parameters
n and h. Then, approzimating MAX-BISECTION on F L-reduces to approzimating MAX-
BISECTION on a non-dense set of 0,1 instances.

PROOF Let the sequences (¢;) and (D;) satisfy to the conditions of Theorem 7 and let
pi =1— F(t;). We have ¢; > -L. Thus (16) implies

D < q(p7h) (23)

where ¢ is another polynomial. Also, it is not hard to show that (17) implies the existence of
a subsequence (j(7)) of the natural integers with

Hii+1) 2 (Hj(i))h+1-

We can thus assume by renaming that we have
piyy > pftt (24)

for every ¢ € N.

We proceed now to transform each instance in an instance with only two distinct weights
with the help of the Averaging Lemma.

For a fixed ¢, set F' = F;, t = t; and define

1 o0
a:ai:m/t sdF(s)

and

1 ¢
ﬁ:ﬁi:m/o sdF(s).

For n =2AD;, A € N,set m = y; (;), (m is an integer because I} is representable on a graph

with n vertices), and use k to index the ((TZ;L)) distinct subgraphs G, of K, having m edges.
We define for each k a partial instance J; by giving to the edges of G random weights
empirically distributed according to the d.f.

F(s) - F(t)

) ==

, § > 1.

We define also a partial instance L by putting on the edges in the set K, \G}\ random weights
on [0, ¢] empirically distributed according to the d.f. H(s) = F(s)/F(t), s <t. We denote by
Ii the instance obtained by sticking together .J; and Lj. Clearly, by the choice of G/(.) and
H(.), the empirical distribution of the weights in ) coincides with F'.

Assume that one can find in polynomial time a bisection 6(S,) with value val(Iy, S,) >
(1 —€)Opt(I). Let I denote the instance obtained by replacing the weights in J;, (resp. in
L) by their mean «, (resp. f3).

We can apply the averaging Lemma separately to Ji and Lg, which implies that the maximum
value of a bisection in I} does not differ from val(1},S,) by more than a 1 — o(1) factor.
Now let [,” denote the instance obtained from I] by substracting § from each weight. (Thus

I,” has weights all equal to o — 3 on the edges of G and zero weights elsewhere.) For any
bisection 6(5) we have clearly

Su(n 1)

val (I}, S) = val (1"}, S) + 1

(25)
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Note that we have a(1 — F(t) > 1 and since we have
o1~ F(1) + BF(1) = 1,

while F'(t) = F;(t;) tends to 1 with ¢, we deduce that § has an upper bound strictly smaller
than 1. Since the maximum value of a bisection of [} is at least n(n — 1)/4, this implies for
S = S, that the ratio

val (1", S,)

val(1], S,)

is bounded below by a strictly positive constant so that §(.S,) is also an approximate solution
for MAX-BISECTION on I”. Thus, approximating MAX-BISECTION on F enables us to
approximate 0,1 MAX-BISECTION on the graphs with densities p; and orders D;, under
conditions (23) and (24.) This clearly contradicts Theorem 6. O

8 Proof of Theorem 8

In order to prove Theorem 8, we proceed as in the proof of Theorem 7. However, equality (25)
is no longer true since we can by no means guarantee that the maximum cut is a bisection.
To cure this, we restrict the graphs G to belong to the set {” as defined in Lemma 6 and
corresponding to the p!s and D!s of Theorem 7 and Theorem 8, which satisfies to the AES
condition. For this restricted set, the maximum cut of the whole instance I;,” is also (almost)
a bisection and, by using the same reasoning as for the proof of Theorem 7, we deduce that
finding an approximately maximum cut of I” allows one to find an approximately maximum
bisection of .J; which is not possible by Theorem 6. Theorem 8 follows.

O

9 Summary and Conclusions

With the aim of separating as sharply as possible the approximable from the inapproximable
families of weighted instances of MAX-CUT, we have introduced a notion of dense families of
instances or, more precisely, a notion of dense families of weight distributions. We have shown
that the corresponding families of instances have the (intended) approximability property for

MAX-CUT.

In the other direction, we have shown inapproximability only when the densities in the set of
instances do not decrease too fast, and we believe that this condition is not necessary. This
is our first question.

A second question is: Does our density definition capture the approximability of all MAX-
SNP-hard problems in the weighted case? We know by [AKIK95] that all these problems are
approximable in the dense unweighted case.
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