On-line Load Balancing for Related Machines ! (Revised
Version)

Piotr Berman

The Pennsylvania State University, University Park, PAIG&SA
E-mail: berman@cse.psu.edu

and
Moses Charikar

Stanford University, Stanford, CA 94305-9045
E-mail: moses@cs.stanford.edu

and
Marek Karpinski

University of Bonn, 53117 Bonn, and
International Computer Science Institute, Berkeley
E-mail: marek@cs.uni-bonn.de

We consider the problem of scheduling permanent jobs otebfaachinesin an on-line
fashion. We design a new algorithm that achieves the cotiyeatatio of3 + /8 & 5.828
for the deterministic version, angl31/In2.155 x~ 4.311 for its randomized variant,
improving the previous competitive ratios of 8 anél ~2 5.436. We also prove lower
bounds 0f2.4380 on the competitive ratio of deterministic algorithms an#é372 on the
competitive ratio of randomized algorithms for this proble

Key Words:on-line algorithm, load balancing, related machines, ostitipe ratio

1A preliminary version of this paper appeared in Proceedifiy§ADS 97, LNCS 1272, Springer-
Verlag, 1997, 116-125.

* Supported by Stanford School of Engineering Groswith Fedltip, an ARO MURI Grant
DAAH04-96-1-0007 and NSF Award CCR-9357849, with matcHingds from IBM, Schlumberger
Foundation, Shell Foundation, and Xerox Corporation.

T Partially supported by the DFG Grant KA 673/4-1, by the ESPBR Grants 7097, 21726, EC-US
030, and by the Max—Planck Research Prize.

1



2 BERMAN, CHARIKAR AND KARPINSKI

1. INTRODUCTION

The problem of on-line load balancing was studied extehsiweer the years
(cf., e.q., P, [?], [?], and [?]). In this paper we study the on-line load balancing
problem for related machines (cf?]). We are given a set of machines that differ
in speed but are related in the following sense: ajob ofjsieguires timey/v on
amachine with speed While we cannot compare structurally different machines
using a single speed parameter, it is a reasonable apprdeshtive machines are
similar; in other cases it may be a good approximation.

Our task is to allocate a sequence of jobs to the machineson-ine fashion,
while minimizing the maximum load of the machines. This penbwas solved
with a competitive ratio 8 by Aspnest al. [?]. Later, it was noticed by Indyk
[7] that by randomizing properly the key parameter of the oadjalgorithm the
expected competitive ratio can be reduceddo A similar randomization idea
has been used earlier by several authors in different ctntel [?, 2, ?, 2, ?]).

For the version of the problem where the speeds of all the meslare the same,
Albers [?] proved a lower bound of.852 on the competitive ratio of deterministic
algorithms. Cheet al. [?] and independently case Sgal] proved a lower bound
of e/(e — 1) = 1.5819 on the competitive ratio of randomized algorithms. No
better lower bounds are known for on-line load balancingateted machines.

Adapting the notation of Aspnest al, we haven machines with speeds
vy,...,v, and a stream ofn jobs with sizespy,...,p,,. A schedules as-
signs to each job the machine () that will execute it. We definbad(s, i), the
load of a machiné in schedules and Load(s), the load of entire scheduleas
follows:

1
load(s,1) = - Z pj, Load(s) = max load(s, 1)
' s(j)=t

Itis easy to observe that finding an optimum schedtilis NP-hard off-line, and
impossible on-line. We want to minimize the competitivéoatf our algorithm,
i.e. theratiadLoad(s)/Load(s™) wheres is the schedule resulting from our on-line
algorithm, ands* is an optimum schedule.

In Section??, we describe an on-line scheduling algorithm with competit
ratio 3 + /8 ~ 5.828 for the deterministic version, artd31/1n2.155 ~ 4.311
for its randomized variant. In Secti@?, we prove lower bounds @f4380 on the
competitive ratio of deterministic algorithms anh@372 on the competitive ratio
of randomized algorithms for on-line scheduling on relatetthines.

2. ALGORITHM
2.1. Prdiminaries

The previous algorithm for our problem, due to Aspm¢sal. [?] uses the
following idea. There exists a simple algorithm that achgegompetitive ratio 2



ON-LINE LOAD BALANCING FOR RELATED MACHINES 3

if we know exactly the optimum load: we simply assign each job to the slowest
machine that would not increase its load abéve Because we do not know
A, we make a safely small initial guess and later double it velienwe cannot
schedule a job within the current load threshold. In the woase, the final guess

is almost twice the optimum, and thus the load created bydbe $cheduled in
that phase can be almost four times the optimum; it is easgddisat the jobs
scheduled in the previous phases can add load of the sametutkgrThis way,
converting from known\ to unknown increases the resulting load at most four
times. In this paper, we will show more efficient methods afrsoonversion.

Our innovation is to double (or rather, increase by a fixedofac) the guess
as soon as we can prove that it is too small, without waitirglie time when
we cannot schedule the subsequent job. Intuitively, we weaatoid wasting the
precious capacity of the fast machines with puny jobs thalcte well served by
the slow machines. Therefore we start with describing ouhottof estimating
the necessary load, i.e. computing lower bounds on the aptimad for the
sequence of jobs seen so far.

LetV = {0,vy,...,v,} (for later convenience, we assume that the sequence
of speeds is nondecreasing). koe 1V we defineCap(v) as the sum of speeds
of these machines that have speed larger thaCap stands for capacity, note
that Cap(0) is the sum of speeds of all the machines @ (v,) = 0.) Fora
set of jobsJ and a load threshold we defineOnlyFor(v, A, J) as the sum of
sizes of those jobs that hawe/v > A. (OnlyFor stands for the work that can be
performed only by the machines with speed larger théithe load cannot exceed
A.) The following lemma is immediate:

LemMMa 2.1. Fora set of jobs/, there exists a schedutewith Load(s) < A
only if OnlyFor(v, A, J) < ACap(v) for everyv € V.

Before we formulate and analyze our algorithm, we will shawho use the
notions ofCapandOnlyForto analyze the already mentioned algorithmthat keeps
the load unde?A if load A is possible off-line. We first reformulate it to make it
more similar to the new algorithm which will be presenteeitatMachine; has
capacityc; = Awv; equal to the amount of work it can perform undetoad, and
the safety marginn; to assure that we will be able to accomodate the jobsin an
on-line fashion. In this algorithm the capacity and the tyafeargin are given the
same value, in the new one they will be different.

(* initialize *)
for i «— 1ton do

m; < C; < Avi
j<0
(* online processing *)
repeat

readp)

jeji+1



4 BERMAN, CHARIKAR AND KARPINSKI

s(j) < min{¢| ¢; + m; > p}
Cs(j) < Cs(j) — P
forever

Note thatm; remains fixed while;; could decrease during the execution of the
algorithm. In fact¢; could become negative; however the value;dé always at
least—m;.

This algorithm shares the following property with the newepnhe jobs are
offered first to machine 1 (the slowest), then to machine 2 stceach time the
slowest possible machine accepts the new job. Given a swé@hs.J, we can
defineJ; as the stream of jobs that are passed over by machamghat reach
machinei + 1 (for 1 < ¢ < n these two conditions are equivalent, foe 0
only the latter and foi = n only the former applies). The correctness of the
algorithm is equivalent to the fact that the stredmis empty—it consists of the
jobs passed over by all the machines. From the correctnedpdld guarantee
follows easily, because the sum of sizes of jobs assignecthime; is less than
the initial capacity plus the safety margin, i&v; + Av;, and so the load is less
than2Avi/vi = 2A.

For the inductive reasoning we defile= {0, v;, ..., v,} and Cap,(v) to be
the sum of speeds frofi} that exceed.

LemMMa 2.2. If there exists a schedul& with Load(s*) = A, then for every
i1=1,...,n+1andeveryw € V;

OnlyFO?“(v, A, Ji—l) < ACGPi(”)'

Proof. By inductiononi. For: = 1 the claim is equivalent to Lemnf®. For
the inductive step, after assuming the claim:fowve have to show that

OnlyFor(v, A, J;) < ACap; (v) for v € Viq1.

For v # 0, the inequality follows from the inductive hypothesis ditg: the
left hand side can only become smaller (becafisis a subsequence of_,),
while the right hand side remains unchanged. Thus it sufficeshow that
OnlyFor(0, A, J;) < ACap;,1(0).

We consider the following two cases according to the finalealfc; in the
execution of the algorithm.
Casel: ¢; > 0.
In this case machiné accepted all jobs with size at most; = Av; from the
streamJ;_1, henceOnlyFor(0, A, J;), which is the sum of job sizes i, is at
most OnlyFor(v;, A, J;—1), which in turn is less or equal t& Cap,(v;). Since
Cap;(v;) < Z?:i+1 v; = Cap;,(0), the claim follows.



ON-LINE LOAD BALANCING FOR RELATED MACHINES 5

Case2: ¢; <0.
In this case, the total size of the jobs accepted by machisat leastAv;, the
initial value ofc;, henceOnlyFor(0, A, J;) < OnlyFor(0, A, J;—1) — Av;, while

Cap;1(0) = Z v = (Z v) —v; = Cap,;(0) — v;.

VEViq1 vEV;

By the inductive hypothesig}nlyFor(0, A, J;—1) < ACap,;(0). Hence, the claim
follows. |

Lemma?? allows us to conclude that if a schedule with lo&adexists, then
OnlyFor(0,A, J,) < ACap,,,(0) = 0. Thus the streany,, of unscheduled
jobs is empty, which means that the algorithm is correct.

2.2. TheNew Algorithm

The next algorithm is similar, but it proceeds in phaseshgdtase having a
different value ofA. Note that the algorithm presented in the previous section
has to be combined with a doubling procedure to guess theaptiloadA ; thus
it can be viewed as a single phase in the complete algorithhoda balancing.
The new algorithm we describe incorporates the guessirgealptimal load\ as
an integral part of the algorithm. Unlike the previous althon, it is a complete
algorithm and not just a single phase. Instead of losing etyafiargin for each
phase, the safety margin is shared among all phases, thusrena better usage
of the available space.

The algorithm uses a parameter While it is correct for any value of the
parameter- > 1, we will later find the optimum values far (the values are
different in the deterministic and randomized versiongje @lgorithm maintains
a guess\ of the optimum load as well as variablesandm; for the capacity and
safety margin of machiné(as in the previous algorithm). Each time a new job
is received, the algorithm checks if its guessieeds to be updated. The guess
A is too low if OnlyFor(v, A, J) > ACap(v) for somev € V. (Here.J is the
sequence of jobs received so far). In such a casis, multiplied by r and the
values ofc; andm; are updated:mn; is set toAv; andc; is incremented byn,;.
The complete algorithm is as follows.

(* initialize *)
A + something very small
for i «— 1ton do
m; < ¢; 0
Jj <« 0,J < empty string
(* online processing *)
repeat
readp)
J < j+1,p; < p append] with p;



6 BERMAN, CHARIKAR AND KARPINSKI

(* start a new phase if needed *)
while OnlyFor(v, A, J) > ACap(v) for somev € VV do
Ae—rA, my— Avy, ¢ —c;+my
(* schedulep; *)
s(j) < min{i| ¢; +m; > p;}
Cs(j) = Cs(j) — Pj
forever

We will say that executings{(j) « min{i| ¢; + m; > p; }” scheduleg, (even
though, for the sake of argument, we admit the case that thef seachines with
sufficient capacity is empty). We need to prove that the dligoris correct, i.e.
that we never apply min to an empty set; in other words, fonejab we can find
a machine with sufficient remaining capacity.

Let Ay be the value ofA when the first job was scheduled. We view the
execution as consisting of phases numbered from B, twhere thel-th phase
schedules jobs witlh = A; = Agr!. Let J' be the stream of jobs scheduled in
phase. Using the same convention as in the analysis of the prewlgesithm,
we defineJ! to be the stream of jobs that in phasmachine: + 1 received or
machine passed over. Now the correctness will mean that the striéasempty
for every phase.

Because the initial estimate farmay be too low, machines may receive more
work than in the previous algorithm. This is due to the faetttim the initial
phases the slower machines needlessly refuse to pick jabthty would gladly
accept later, thus increasing the load on the faster mashMevertheless, as we
shall show, this increase is limited.

As a preliminary, we need to analyze the consequences oéshéhtat triggers
a new phase as soon &ss not appropriate for the stream of jobs received so far.
First of all, the test implies that evety, is appropriate for the strearf - - - J!,
and in particular, for the substream. Therefore

OnlyFor (v, Ay, Jl) < A; Cap(v) for every phase l and every v € V. (#)

This allows us to prove the following lemma by induction:

LEmMa 2.3. Forevery: = 0,...,n and every phask

{ { n
Z OnlyFor(0, Ay, J!) < (Z At) Z vj
t=0

t=0



ON-LINE LOAD BALANCING FOR RELATED MACHINES 7

Proof. Fori = 0 this follows simply from the fact that for every phase !

OnlyFor(0, Ay, J§) = OnlyFor(0, Ay, J') < Ay Cap(0) = A, (Z vj) .
j=1

For [ = 0 this follows from Lemma??, as the phase O is identical to the first
algorithm withA = A,.

Therefore we may assume that the claim is trugfgr— 1) and(: — 1,/). We
will prove the claim for(7, /). We consider two cases, according to the valug of
at the end of phade
Casel: ¢; > 0.

Subtract formally from both sides of the claim foand! the respective sides of
the claim for: and! — 1. This way we see that it suffices to show that

OnlyFor(0, A, J!) < Ay ( Z vj)
j=i+1

Because the final value efis positive, in phasémachine accepted all jobs from
the streany!_, thathad size bounded byv;, and therefore the streaf consists
only of the jObS that must be executed on machines fasterthdmus the sum of
sizes of all jobs in this streaninlyFor (0, A, J!), is at mostOnlyFor(v;, A, J'),
which by (#) is at mosh; Cap(v;). Lastly, Cap(v;) < 377_; ., v
Case2: ¢; <0.
Suppose the final value of in phasel equals some < 0. This time subtract
from both sides of the claim farand! the respective sides of the claim for 1
and!. By the inductive hypothesis, the claim is true for 1 andl. Thus,

Zl:OnlyFor(O Ae, JE ) < (ZAt) (Zn:vj).

t=0 Jj=i

Subtracting this from the claim farand!, we get

!
Z(OnlyFor(O A¢, JI) — OnlyFor(0, As, JI_1)) < (ZAt) V5.

t=0

It suffices to show that the above inequality holds, as addirsgo the statement
of the claim for: — 1 and! (which we know to be true), we will get the statement
of the claim for; andi. Equivalently, we need to prove that

!
Z(OnlyFor(O,At,Jf_l) OnlyFor(0, A¢, J; (ZAt) vi.  (F#H#)

t=0



8 BERMAN, CHARIKAR AND KARPINSKI

On the left hand side this inequality has the difference betwthe sum of jobs
sizes that reach machirieand the sum of the job sizes that are passed over by
machine: to the subsequent machines (during the phases from)0 to other
words, this is the sum of sizes of the jobs accepted by machétheing these
phases. This sum, sayis related in the following manner to

l l
0>c= (Z Atvi) — s which implies s > (Z At) vi = (#3).

t=0 t=0

Lemma?? implies that

i
Z OnlyFor(0, A, JE) <0

t=0

This means that, for every phase& k,
OnlyFor(0, A, JE) =0

Observe thaOnlyFor(0, A, J},) is simply the sum of the sizes of all jobs ifj.
ThusJ! is empty for every phasge implying the correctness of the algorithm.

To analyze the competitive ratio, we may assume ihat!(s*) = 1. Then the
penultimate value oA must be smaller than 1 and the final one smaller than
Consider a machine with speed 1. The work accepted by a meihémaller than
the sum of allA’s up to that time (additions to the capacity) plus the lagfiven
for the safety margin. Togetherit{s+1+7='+..)+r=r(1/(1—r=1)+1)
=r(2r — 1)/(r — 1). To find the best value of, we find zeros of the derivative
of this expression, namely ¢£»?> — 4r + 1)/(r — 1)2, and solve the resulting
quadratic equation. The solutiorvis= 1 + /1/2 and the resulting competitive
ratio is3 + /8 ~ 5.8284.

One can observe that the worst case occurs when our pentdtiadae ofA is
very close to 1 (i.e. to the perfect load factor). We will ckedhe initial value of
A to be of the form-—~+= where XN is a suitably large integer angdis chosen,
uniformly at random, from some interval —y, 1 — y > (we shifted the interval
< 0,1 > to compensate for the scaling that made:d(s*) = 1). Therefore we
can replace the factarwith the average value of the last For negativer this
value isr®*!, for positive itisr”. The average is

0 1-y 1 1-y 1 r—1
/ e de + / rPde = / rPde + / rPde = / rPde = :
~y 0 1—y 0 0 Inr




ON-LINE LOAD BALANCING FOR RELATED MACHINES 9

Therefore the expected competitive ratio is

r—l?r—l_?r—l

lnr r—1  Inr

The equation for the minimum value of this expression dog¢shage a closed
form solution, but nevertheless we can approximate it nicakly. The minimum
is achieved for close to 2.155, and approximately equals 4.311.

3. LOWER BOUNDS

In this section, we will prove deterministic and randomiteger bounds for
load balancing on related machines.

As with the algorithm in the previous section, we will usewsimilar con-
structions for the deterministic and the randomized cake.SEt of machines and
the sequences of jobs being considered are defined in terasavémeter > 1.
Different values of the parameter will be used in the deteistic and randomized
cases.

We will consider a set of machiné$, 1, . .., n}, wherei-th machine has speed
a~t ifi<n
vi_{%a_” Hi=n ()

Note thatv, = Y ;= a~%, consequenthy " v; = Y2 a~". Inthe deter-
ministic case the only requirement enwill be thatv,, < vz = a~3. In the
randomized case we will consider= 6. In both settings, a lower bound for some
particular value of: implies the same result for all higher values.

The sequences of job sizes that we will consider will have fthen J; =
(jo,---,ji), wherej, = o*. These sequences have two salient properties. Since
all of them are prefixes of the same infinite sequence, aftergssingt initial
jobs, all sequences of length at leasemain equally possible. Moreovgy, the
size of the last job of;, is also the optimum load: on one hand, the last job alone
requires load;;, as the largest speed equals 1; on the other, we can achisve th
load by assigning;, to machinemin(i — &, n).

3.1. Deterministic Lower Bound

The idea of the deterministic lower bound is to formulate@aseary condition
for the existence of a scheduling algorithm that has a caithyeetatio belowao?;
finally arriving at a condition that can be effectively tesbs a computer program.
Then to show a lower bound ef it will be sufficient to check that fails this
test. We start from the following lemma.

LeMMA 3.1. Suppose that a scheduling algorithdnachieves a competitive
ratio lower thano®. Then for every sequence of job sizes of the f@rall jobs
are scheduled on machines 0, 1, and 2.



10 BERMAN, CHARIKAR AND KARPINSKI

Proof. Suppose an algorithmd schedules théth job on machinen > 2
for somei. Then for the sequencg the algorithm will lead on maching: to
the loadj; /vy, > ji/a™2 = &3j; (remember that,, < a~3). On the other
hand the optimum load faJ; is j;, hence the competitive ratio is at least, a
contradiction. |

The second step in developing our necessary conditionnsifigra representa-
tion of the configuration achieved by an algorithm after pssing a sequenck.
Obviously, we can represent this configuration by recorffingach machine the
sum of sizes of jobs scheduled on this machine. By Lerifave may assume
that jobs are scheduled only on machines 0, 1, and 2, anduf6iées to record the
sums for these machines only, say that they form a vetter (S, S, S%). By
dividing the coefficients of this vector by the optimum loagl @btain the vector of
relative loadsRk’ = o~*S?. This way the necessary condition for the competitive
ratio to be below:? is thatR? < U for every; > (. Here the upper bound vector
Uis (o? a? o) and X < Y means that for every coordinate the entryXnis
lower than the entry ify.

Let By = (1,0,0), By = (0,1,0) and E5 = (0,0,1). Suppose that the
(i +1)stjobis scheduled on machine Thenki*! = o~ R! + E,,. Obviously,
RY = (0,0,0). Consider the following infinite grapfiy: the set of vertices i¥/
={V € R?| V < U} and the edges are of the forfii, o=V + E,,). Then if
there exists a deterministic scheduling algorithm with petitive ratio below?,
we have an infinite path in the gragh, that starts at the node, 0, 0).

To reduce the graph to a finite size wiéscretizethe relative load vector.
Intuitively, for some smalb, we want to map every vertéx in the infinite graph
(V is a vector inR?2), to the vector obtained by replacing every coordinat& of
by the smallest multiple of that does not exceed it. More precisely, we perform
discretization as follows. Consider the operatiatefined on vectors, such that
V' is a vector obtained frory’ by replacing each coordinatewith |x|. Let
n > 0 be a parameter of discretization (the value @f the previous discussion
is 1/n). We define a new grapfi; with the set of nodes» V')’ and edges of the
form (V, (a™'V + nE,,)’). Obviously, if there exists an infinite path starting at
(0,0,0) in Gy, we also have such a path @,. Moreover, the set of nodes of
(&1 consist of vectors with integer coordinates that satisfy), 0) < V < nU.
Therefore, this set is finite, and if there exists an infinathpstarting at (0,0,0) in
(G, then there exists a cycle ;.

To simplify the problem further, we defin€(«, n) to be a subgraph aff;
consisting of nodes reachable from (0,0,0). Now we can ghoas necessary
condition: for everyn > 0 the graph((«, n) contains a cycle. Consequently,
to show a lower bound af? it suffices to comput€/(«, n) for somen > 0 and
check that it is acyclic.

We have verified exactly that fer = 1.3459 andn = 1250, thus obtaining a
lower bound of® > 2.4380.



ON-LINE LOAD BALANCING FOR RELATED MACHINES 11

We mention that it is possible to give a purely analytic profd weaker lower
bound 0f2.25. The idea is to fixx = 1.5 and consider a similar setting as before,
except that we will prove that one cannot have a better cdtiygetatio than

2 = 2.25. By reasoning similarly as in Lemma 4, one can show that if we
achieve a better ratio, then all jobs are scheduled on mesiimnd 1. As before
we define vectors of relative loads, which must sat{$fy0) < V' < (2.25, 1.5).
When we schedule ajob on machine 0, the vector of relativaslohanges frorir
to 2V +(1,0), and if we schedule this job on machiné/lchanges t¢ V' + (0, 1).

Now observe that we can never schedule two jobs in a row on imach
because this would change the (relative) load vectdrito+ (0,2) and2 > 2.
Suppose now that = (vg, v1) and we can schedule twojobs in arow on machine
0. Then the load vectorchange%lﬁzfﬂg, 0), henc&v0+ 2 < 2, whichimplies
vg < Consequentlwo +u<i+5=3(1- ) On the other hand, after
schedullng of the firsk jobs,vy +v1 = 3(1 — (%)’“). Thus, once we schedule the
first seven jobs, we cannot ever schedule two jobs in a row ehima 0.

According to our last two observations, once we schedulditsteseven jobs,
we must strictly alternate between scheduling on machineddom machine 1.
However, if we schedule a job on machine 1 three times in swayathe resulting
relative load will be at least + £ + 1% = 123 > 2 a contradiction.

A more careful argument will succeeddf — o® — o + o — 1 < 0, which
allows to increase: from 1.5 to 1.5128, and the proven ratio from 2.25 to 2.288.
One can apply a similar technique to improve our better Idvamd, namely
2.438, but the gain is much smaller.

3.2. Randomized L ower Bound

Fix a constantn. We consider the distribution over the job sequences
Ji,...Jm Where the sequencg, 1 < i < m is given with probability-1. In
other words, we give the job sequengg ‘and stop the job sequence afte;obs
wherei is chosen uniformly and at random from the §&t2,...m}. As noted
before, the optimal load fof; is o’, hence the expected value of the optimal load
is % it ol

Consider the schedule produced by a deterministic algarfdr the job se-
quence/,,,. Note that any schedule fdt,, induces a schedule gk, 1 < i < m.
From this, we can compute the expected load incurred by Utm&hm for the
chosen distribution of job sequences.

We compute all possible schedules ffy, and for each schedule, compute
the expected load for the distribution of job sequences. mFtluis, we obtain
the minimum expected load for any deterministic algorittBy. Yao's principle
(cf. [?]), the ratio of the minimum expected load to the expectedeaf the
optimal load gives us a lower bound for randomized algorgiersus oblivious
adversaries.

A computer program tested all possible schedulesafer 6, m = 14 and
a = 1.6 and computed a lower bound adf8372. Note that this implies a



12 BERMAN, CHARIKAR AND KARPINSKI

randomized lower bound af.8372 for any » > 6 machines. Fon > 6, we
considem machines with speeds chosen as before. For the purpose of analysis,
we group the slowest — 5 machines into a single machine, i.e. pretend that any
job scheduled on the — 5 slowest machines is scheduled on a single machine
of speedy "' v; = %< - L. The load on this single machine is also a lower
bound for the maximum load on the slowest- 5 machines. Observe that this
gives uss machines whose speeds are the same as the speeds of theamaahin
use for the case = 6. Hence the analysis for = 6 applies and so does the
lower bound of1.8372.

4. CONCLUSIONS

We have designed new on-line algorithms for scheduling peemt jobs on
related machines achieving the best to date determinraticandomized compet-
itive ratios of 5.828 and 4.311, respectively. We have alawgrd lower bounds
of 2.4380 and 1.8372 for the corresponding competitiveosatiA challenging
problem remains to close huge gaps between upper and lowadboCan some
variants of our methods still lead to the improvements orctitapetitive ratios?
It seems that some new proof techniques are needed for imngrowur lower
bounds, especially for a randomized case.

5. ACKNOWLEDGEMENTS

We would like to thank Yossi Azar, Amos Fiat, Piotr Indyk andj&yv Motwani
for valuable discussions and encouragement, and SusatweesXbr letting us
read her paper before its publication.

REFERENCES
1. S. AlbersBetter bounds for online schedulirfgroc. 29th ACM STOC (1997), pp. 130-139.

2. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waa@s\-line load balancing with applications
to machine scheduling and virtual circuit routingroc. 25th ACM STOC(1993), pp. 623-631,
see alsoOn-line routing of virtual circuits with applications to &l balancing and machine
schedulingJ. ACM, 44:486-504, 1997.

3. Y.Azar, A. Broder, A. KarlinOn-line load balancingProc. 33rd IEEE FOCS (1992), pp. 218-225.

4. Y. Azar, J. Naor, R. Rorithe competitiveness of on-line assignmeric. 3rd ACM-SIAM SODA
(1992), pp. 203-210.

5. A.Beckand D.NewmarYetmore on the linear search problgisrael Journal of Math., 8:419-429,
1970.

6. S. Chakrabarti, C. Phillips, A. Schulz, D.B. Shmoys, @irgtand J. Weinlmproved scheduling
algorithms for minsum criterigProc. 23rd ICALP, Springer, 1996.

7. B. Chen, A. van Vliet and G. J. Woegingér,lower bound for randomized on-line scheduling
algorithms Information Processing Letters, vol.51, no.5, pp. 21912®4.

8. P. Indyk, personal communication.



11.

12.

13.

14.

ON-LINE LOAD BALANCING FOR RELATED MACHINES 13

. S. Gal,Search Game#\cademic Press, 1980.
10.

M. Goemans and J. Kleinbey improved approximation ratio for the minimum latencytgeon
Proc. 7th ACM-SIAM SODA, (1996), pp. 152-157.

R. L. GrahamBounds for certain multiprocessing anomali8gll System Technical Journal 45
(1966), pp. 1563-1581.

R. Motwani, S. Phillips and E. Tornblon-clairvoyant scheduling’roc. 4th ACM-SIAM SODA
(1993), pp. 422—-431, see also: Theoretical Computer Sejer3d (1994), pp. 17-47.

J. SgallA lower bound for randomized on-line multiprocessor scliedulnformation Processing
Letters, vol.63, no.1, pp. 51-5, 1997.

A.C. Yao Probabilistic computations: Towards a unified measure afhpkexity Proc. 17th IEEE
FOCS (1977), pp. 222-227.



