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Abstract

TSP(1,2) is the problem of finding a tour with minimum length
in a complete weighted graph where each edge has length 1 or 2. Let
d, satisfy 0 < d, < 1/2. We show that TSP(1,2) has no PTAS on
the set of instances where the density of the subgraph spanned by
the edges with length 1 is bounded below by d,. We also show that
LONGEST PATH has no PTAS on the set of instances with density
bounded below by d,.
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1 Introduction

There have been recently several negative results concerning particular cases
of the TSP and LONGEST PATH problem. Trevisan [T97] proved that met-
ric TSP is Max-SNP-hard in R'&" for every ¢, metric. (Arora proved [A97]
that metric TSP has a PTAS for every fixed dimension.) Papadimitriou and
Yannakakis [PY93] proved that TSP(1,2), the traveling salesman problem
with lengths one and two, is Max-SNP-hard. Using this result, Karger, Mot-
wani and Ramkumar [KMR93] proved that LONGEST PATH is not constant
factor approximable unless P=NP, even for graphs with maximum degree 4.
Moreover, they proved that LONGEST PATH has no PTAS (polynomial
time approximation scheme) on Hamiltonian graphs. Both results were im-
proved by Bazgan, Santha and Tuza [BST98] who showed that LONGEST
PATH is not constant factor approximable for cubic Hamiltonian graphs,

unless P=NP.
The purpose of this note is to prove that LONGEST PATH and TSP(1,2)

are both Max-SNP-hard for "dense” instances. We define the density d of a
graph G as the ratio 6(G)/|V(G)| where §(G) is the minimum valency of G.

We shall prove the following theorems

Theorem 1 Let H be the graph spanned by the edges of length 1 in an
instance G of TSP (1,2) and let d, satisfy 0 < d, < 1/2. Then, TSP(1,2) is
Max-SNP-hard when restricted to the instances in which the density of H is
at least d,

Theorem 2 Let d, satisfy 0 < d, < 1/2. Then, LONGEST PATH is Maa-
SNP-hard when restricted to instances with density at least d,

The next theorem is immediate from Theorem 2 and the fact, observed by
Karger, Motwani and Ramkumar [KMR93], that, for any set of instances,
a PTAS for LONGEST PATH implies a PTAS for TSP(1,2) on the corre-

sponding subset of Hamiltonian instances

Theorem 3 Let d, satisfy 0 < d, < 1/2. Then, LONGEST PATH has no
PTAS when restricted to Hamiltonian instances with density at least d,

Before turning to the proofs of Theorems 1 and 2, let us remind the reader
of the following theorem of Dirac.

Dirac’s Theorem A graph G' on n vertices with minimum degree 6(G) >

|3

ts Hamiltonian.



The proof of Dirac is completely constructive: it allows one to find quickly
an Hamiltonian cycle in any graph which satisfies to the condition of the
theorem. In view of Dirac’s theorem our theorems are best possible in the
sense that in none of them can we replace the upper bound for d, by any
number greater than or equal to 1/2.

2 The Proofs

We consider simple undirected graphs. The vertex set and the edge set of a
graph G are denoted by V() and E((G), respectively. For any X C V(G), we
denote by G[X] the subgraph of G spanned by X. By a covering of a graph
we mean a covering of the vertices of this graph by pairwise vertex-disjoint
paths.

Proof of Theorem 1 Let (¢ be an instance of TSP(1,2), i.e. G is a complete
graph where each edge has length 1 or 2. Let H denote the subgraph of
with V(H) = V(@) and which contains only the edges of & of length 1. Let
C denote a covering of V(H) by disjoint paths. (The paths in C may contain
just one vertex.). Let e(C) denote the number of edges in C. Clearly, we can
always extend C to a tour with length

e(C)+2(n —e(C)) =2n —e(C).

Therefore, we can reformulate TSP(1,2) as the problem of finding a covering
of V(H) containing the maximum number of edges of H. Fix ¢ > 0 and split
the vertex set of H into three parts X, Y and Z with |X| =¢n, |Y|=|Z| =
(1 —¢)n/2. Assume that Y is an independent set, that all the edges linking
X to Y and Y to Z are present and that there are no edges between X and
7. Otherwise, H is arbitrary.

Let {*(H) denote the maximum number of edges in a covering of V(H).
Similarly, let £*(H[X]) denote the maximum number of edges in a covering
of X by paths in the subgraph H[X] of H spanned by X. We claim that we
have

CHIXD) + (L= n — 1 < 6(H) < C(H[X]) + (1 — ).

The left-side of this inequality is clear: Any covering of X using m edges,
say, can be augmented into a covering of V(G) with m 4 (1 — ¢)n — 1 edges
since the subgraph spanned by the set of vertices Y U Z is Hamiltonian.
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For the other direction, let @) be an optimal covering of V(G'). Then the set
Q N E(X) is a partial covering of Z and thus it contains at most (*( H[X])
edges. Now, for any covering of H there are at most 2 edges adjacent to any
vertex. Since every edge not in X is incident to a vertex in Y, it follows
immediately that () contains at most (*(H[X]) 4+ (1 — €)n edges. The claim
implies that in order to approximate ¢*( H) with an arbitrary small relative
error, we must approximate (*( H[X]) with a relative error which will also

be arbitrary small. But this is not possible since unrestricted TSP(1,2) is

Max-SNP hard.
O

Proof of Theorem 2 Let us show that a PTAS for LONGEST PATH
(in any given class of simple graphs) implies a PTAS for TSP(1,2) in the
corresponding class of instances. Thus, for each fixed § > 0, assume that we
can obtain in polynomial time for each graph H in our class, a path P of
length at least (1 — d)n* where n* is the length of the longest path of H. Let
us write
w'=n"4+«

where w* denotes the optimum value of TSP(1,2) for the instance (G obtained
from H by adding all the edges of K,,\ E(H) with lengths equal to 2.. Now,
by adding edges of length 2 to the path P, we can clearly obtain a tour with
length w < (1 — §)n* +26n* 4+ o = (1 + §)n* + o. We have thus

(I1+6)n* + o

n*+ «

Since § is arbitrarily small, this implies a PTAS for TSP(1,2).

w
— <
w*

<1+40.

O
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